
CS 330

Unsupervised pre-training 

for few-shot learning, vol. 2:


reconstruction-based methods



Logistics

Project proposal due TODAY!

Make sure you have set-up Azure!


(well before the HW deadline)

Homework 2 due Wednesday

2



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

Goals for by the end of lecture:

- Familiarize you with widely-used methods for unsupervised pre-training

- Introduce methods for efficient fine-tuning of pre-trained models

- Prepare you for HW3

Topic of Homework 3!}

Recap

- Problem formulation

- Contrastive learning

3



Plan for Today

Reconstruction-based unsupervised pre-training

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

Recap

- Problem formulation

- Contrastive learning

4



5

Unsupervised Pre-Training Set-Up

Goal: Get predictor  
for task 𝒯j

Diverse unlabeled  
dataset {xi}

Pre-trained model

Unsupervised  
pre-training

Labeled 𝒟tr
j

Fine-tuning



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

Recap

- Problem formulation

- Contrastive learning

6



Key Idea of Contrastive Learning
Similar	examples	should	have	similar	representations

(Requires labels, related to Siamese nets, ProtoNets)

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Examples	with	the	same	class	label

Nearby	image	patches Nearby	video	frames

van den Oord, Li, Vinyals. CPC. 2018;

Augmented	versions	of	the	example

(flip & crop)

Dog credit to Maggie & Luke



Contrastive Learning Implementation

Need to both compare & contrast!
Similar	examples	should	have	similar	representations

Embedding space fθ(x)

anchor x positix+ negatix−

V1. Triplet loss:

Schroff, Kalenichenko, Philbin. CVPR 2015

min
θ ∑

(x,x+,x−)

max (0, ∥fθ(x) − fθ(x+)∥2 − ∥fθ(x) − fθ(x−)∥2 + ϵ)

8



Contrastive Learning Implementation

Need to both compare & contrast!
Similar	examples	should	have	similar	representations

Embedding space fθ(x)

anchor x positix+ negatix−
V2. From binary to N-way classification (aka SimCLR*):

z−
1

z−
2 z−

3
z−

4

Sohn. N-Pair Loss Objective. NIPS 2016; Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

V1. Triplet loss:

min
θ ∑

(x,x+,x−)

max (0, ∥fθ(x) − fθ(x+)∥2 − ∥fθ(x) − fθ(x−)∥2 + ϵ)

*also known as the NT-Xent loss, when  is scaled	cosine	similarityd( ⋅ , ⋅ )

ℒN-way(θ) = − ∑
z

log
exp(−d(z, z+))

exp(−d(z, z+)) + ∑i exp(−d(z, z−
i ))

Loss read as “classification	loss	when	discriminating	
positive	pair	from	negatives”



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

- Emergent behaviors in large models

Recap

- Problem formulation

- Contrastive learning

10



Why reconstruction?

Simple intuition: a good representation of 
an input should be sufficient to reconstruct it

x

Input image, sentence,

audio signal, etc.


̂x

Reconstruction of 
input image


Decoder

(CNN) →→Encoder


(CNN)→ → r

Bonus: no need to worry about pesky things 
like sampling negatives or large batch sizes!

If the encoder is producing a “good” representation, a reasonably-sized decoder should be 
able to produce reconstruction  very close to input  from representation ̂x x r



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

- Emergent behaviors in large models

Recap

- Problem formulation

- Contrastive learning

12



Autoencoders: a first attempt

̂x

x

Input image, sentence,

audio signal, etc.


Reconstruction of 
input image


Loss function is reconstruction 
error, e.g. L2 distance:

Simple intuition: a good representation lets us reconstruct the input

Encoder

(CNN)

Decoder

(CNN)→ → →→r

What can go wrong here?
Is the identity function a good encoder/decoder?

13



Autoencoders: adding a bottleneck

̂x

x

Encoder

(CNN)

Decoder

(CNN)

r

Key idea: latent representation is bottlenecked, 
e.g., lower-dimensional than the input

Input image, sentence,

audio signal, etc.


Compact, latent 
representation of input image


Reconstruction of 
input image


Loss function is reconstruction 
error, e.g. L2 distance:

Hope: latent dimensions are forced to represent 
high-level concepts that generalize to other tasks

14



Autoencoders: few-shot learning

x

r

Prediction head 
mapping  to 
output space

r

P

̂y

Few-shot learning recipe: freeze encoder, fine-tune prediction head using our few-shot data
(e.g., a linear layer)

Encoder

(CNN)

15



Autoencoders

Pros:

- Simple, general

- Just need to pick 

- No need to select positive/negative pairs

d(x, ̂x)

Cons:

- Need to design a bottlenecking mechanism

- Relatively poor few-shot performance

 is more like a hash of  than a 
conceptual summary 
r x

Why?
 is just memorizing details of  needed to 

minimize pixel-level reconstruction loss
r x

How	do	we	encourage	the	encoder	to	extract	high-level	features?
One strategy is other types of bottlenecks:

- information bottlenecks (adding noise)

- sparsity bottlenecks (zero most dimensions)

- capacity bottlenecks (weak decoder)

In	practice,	we’ll	stop	worrying	about	designing	
bottlenecks	and	just	make	the	task	a	little	harder



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

Recap

- Problem formulation

- Contrastive learning

17



Ultimately, regular autoencoders are trying to predict  from…      (through )x x r

Masked autoencoders use a more difficult learning task to encourage 
the encoder to extract more meaningful features

Beyond the bottleneck: masked autoencoders

We bottleneck  to avoid totally degenerate solutions, but what if 
the task is just “too easy”, admitting unhelpful solutions?

z

̂x

x

Encoder

(CNN)

Decoder

(CNN)

r

Input image, sentence,

audio signal, etc.


Compact, latent 
representation of input image


Reconstruction of 
input image


18



Ultimately, regular autoencoders are trying to predict  from…      (through )x x z

Masked autoencoders use a more difficult learning task to encourage 
the encoder to extract more meaningful features

Beyond the bottleneck: masked autoencoders

We bottleneck  to avoid totally degenerate solutions, but what if 
the task is just “too easy”, admitting unhelpful solutions?

z

Encoder

(CNN)

Decoder

(CNN)

r

Masked input image Latent representation

x

Reconstruction of masked 
portion (or entire) input 

image

̂x

19



General recipe for pre-training masked autoencoder   :fθ

Beyond the bottleneck: masked autoencoders

1. Choose distance function 
d( ⋅ , ⋅ ) → ℝ

 are typically two disjoint sub-regions of 


 

x̃i, yi xi

C. Compute loss          = d(yi, ̂yi)

These pieces 
are our design 
choices/control 

knobs

mask( Joe Biden is the US president ) =

Joe <mask> is the US <mask>,   { Biden; president }

xi

x̃i yi

 : CNN or Transformer (stay tuned)
fθ
d(y, ̂y) = ∥y − ̂y∥2

xi yix̃i

mask(              ) = ,

 : Transformer (e.g., BERT; stay tuned)
fθ
d(y, ̂y) = KL (y∥ ̂y)

2. For train batch examples  :xi

in some cases, the target  may be all of  yi xi

B. Make prediction ̂yi = fθ(x̃i)

A. Sample  ~ mask(  )x̃i, yi xi

20



Masked autoencoders for language:

BERT (Devlin et al, 2017)

21



Case study: BERT as a masked autoencoder

[CLS] Joe Biden is the US president. [SEP] He was inaugurated on January…x :

KLd(y, ̂y) = ∑
j

( yj ∥ ̂yj )  president− log p6
θ ( | x̃)  was− log p9

θ ( | x̃) Biden− log p2
θ ( | x̃)=

Probability distribution over possible words at each masked index j

BERT

p2
θ ( ⋅ | x̃) p6

θ ( ⋅ | x̃) p9
θ ( ⋅ | x̃)

Target word for 
each masked index

Biden

president

was

y2 =
y6 =
y9 =

[CLS] Joe <mask> is the US <mask>. [SEP] He <mask> inaugurated on January…x̃ :
    0             1                  2                3      4           5                 6                      7            8                 9                             10                       11              12t :

1. Choose random 15%* of input timesteps

2. Of these, 80% are replaced with <mask> token

3. Replace other 20% with a random token

*It’s possible we can do better than just picking random timesteps:

- Mask longer spans of text

- Selecting for information-dense spans

Details of BERT masking:

22



Masked autoencoders for language:

BERT (Devlin et al, 2017)

For images:

MAE (He et al, 2021)

Instead of words, we have a sequence of image patches

1. Mask ~75% of image patches

2. Compute representations of only unmasked patches

3. Insert placeholder patches at masked locations

4. Decode back into original image


Fine-tune on top of the output of step 2

1.
2. { 3.

4.

23



Masked AEs give state-of-the-art few-shot image classification performance (with unsup. pre-training)

When fine-tuning (not just linear probing on frozen pre-
trained model), better than contrastive learning!

He et al, 2021

The unsupervised masked autoencoding recipe works 
better than pre-training with labels on the same data!

24



A (very quick) overview of Transformers

Image by Ray Shrewsberry from Pixabay
25

https://pixabay.com/users/ray_shrewsberry-7673058/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6627077
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=6627077


A (very quick) overview of Transformers

The ~only difference between Transformers 
for vision/language/RL/molecules/etc. is 

what we do for this initial embedding stepViT; Dosovitskiy, Beyer, Kolesnikov, et al. (2021) 26



Transformers in a bit more detail

Joe

Biden

is

the

US

President

tokenize
embed

lookup norm

μ(xt) = 0
σ(xt) = 1

self-attention

& norm

self-attention 
matrix

value 
matrix

+ residual

connection

MLP

+ residual

connection

x2

x1

x3

x4

x5

x6

inputs to block

e2

e1

e3

e4

e5

e6

input embeddings 

587

27504

243

75

5478

3938

input tokens 

o2

o1

o3

o4

o5

o6

outputs of block

One transformer block; repeat typically 6-96 times

project to

vocab. size

dimensions 

p1
θ ( ⋅ )

p2
θ ( ⋅ )

p3
θ ( ⋅ )

p4
θ ( ⋅ )

p5
θ ( ⋅ )

p6
θ ( ⋅ )

length-T input 
sequence 

+ positional 
embeddings

a2

a1

a3

a4

a5

a6

self-attention 
output

“queries” “keys” “values”

Three separate linear projections of inputs :X

27



So… how do we pre-train fine-tune Transformers?

Joe

Biden

is

the

US

President

[CLS]

What should we do with 
the parameters of this 

guy during fine-tuning?

Options:

1. Freeze them

2. Fine-tune them


take representation 
of [CLS]  

Fine-tune new 
prediction head on 

top of [CLS] rep.

Extra token prepended to 
beginning of sequence

Image by Cedric Yong from Pixabay 

3. Something else???

a. Fine-tune some of them?

b. Freeze and inject new 

parameters?

28

https://pixabay.com/users/scribblinggeek-1818314/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2413365
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2413365


LoRA: Low-rank adaptation of language models (Hu et al., 2021)

What if we just want to fine-tune our model… “a little bit”? What does “a little bit” even mean? <discuss>

1. Preserve the knowledge in the pre-trained 
model (to avoid overfitting)


2. Avoid needing to store a new version of every 
single parameter in the model (to save space)

29



LoRA: Low-rank adaptation of language models (Hu et al., 2021)

What if we just want to fine-tune our model… “a little bit”? What does “a little bit” even mean? <discuss>

1. Preserve the knowledge in the pre-trained 
model (to avoid overfitting)


2. Avoid needing to store a new version of every 
single parameter in the model (to save space)

Associative [key-value] memory view of 
linear transform (Kohonen, 1972)

Consider the linear transform, the building block of NNs & Transformers

W = ∑
r

vr u⊤
r For rank-  matrix, we have this decomposition (with orthogonal  by SVD)r ur

Therefore, Wx = (∑
r

vru⊤
r ) x = ∑

r

vr (u⊤
r x) →  produces a sum over the ‘memories’  

weighted by the relevance    (each  is a ‘key’)
Wx vr

u⊤
r x ur

“A little bit” means only add a few memories  only make a low-rank change to → W

pre-trained dxd weights (frozen) new low-rank residual (fine-tuned)

 should be zero-initialized (how?)AB⊤

Wft = W0 + AB⊤, A, B ∈ ℝd × pLoRA: p < d



(Many) other approaches to “lightweight” fine-tuning

T-Few; Lu, Tam, Muqeeth, et al. (2022)

When “few-shot” means ~20-70, lightweight fine-tuning (T-Few) 
can outperform in-context learning in much larger models!

You will compare fine-tuning and 
in-context learning in HW3!31



Plan for Today

Reconstruction-based unsupervised pre-training 

- Why reconstruction?

- Autoencoders

- Masked autoencoders: BERT, MAE

- Autoregressive models: GPT, Flamingo

Recap

- Problem formulation

- Contrastive learning

32



Biden

x2

pθ ( ⋅ | [BOS] Joe Biden)

AR 
model

 

target y1

Striving for simplicity: autoregressive models

What are some downsides of masked autoencoders?


Instead of masking a random subset, what if we 
just predict the next word/pixel/token?

No need to pick a masking 
strategy; mask every token!→

[BOS] ____


[BOS] Joe ____


[BOS] Joe Biden ____


[BOS] Joe Biden is ____


[BOS] Joe Biden is the ____


[BOS] Joe Biden is the US ____
}

Simply learn ,  probability of the next token given the previous tokenspθ (xt |x<t)
Special “beginning of sequence” token

Autoregressive Transformers let us compute each  efficiently:

we can re-use representations from the previous step

pθ (xt |x<t)

[BOS]

x0

AR 
model

pθ ( ⋅ | [BOS])

Joe

x1

pθ ( ⋅ | [BOS] Joe)

AR 
model

 

target y0

is

x3

 

target y2

AR 
model

…

Newly

Processed

Using cached 
representations

(recall GPT-3 from the black-box meta-learning lecture!)

1. Need to pick mask

2. Only using ~15% of the example for training

3. Difficult to sample from



Autoregressive Transformers are everywhere these days
…for vision too!
…and RL/decision-making!
…and vision + language!

34



Case study: Flamingo
How would you build a multimodal autoregressive model? From scratch? (NO)

General-purpose 
Vision-Language 

Model=

General-
purpose LM

Few-shot 
data+ = Task-specific 

LM

[so far] Fine-tuning to specialize:

General-
purpose LM

General-
purpose Vision 

Model

Multimodal 
data+ +

Flamingo

Fine-tuning to combine models:

35



Case study: Flamingo

In-context few-shot learning on sequences that freely mix text and 
images! Enables few-shot captioning, visual question-answering, etc.



Case study: Flamingo

Few-shot Flamingo  Non-few-shot state of the art!≈
37



Are AR models really different from masked autoencoders?

General recipe for training masked autoencoder   :fθ

1. Choose distance function 


2. For train batch examples  :

d( ⋅ , ⋅ ) → ℝ
xi

A. Sample  ~ mask(  )


B. Make prediction 


C. Compute loss          

x̃i, yi xi

̂yi = fθ(x̃i)

= d(yi, ̂yi)

Joe

<mask>

is

the

<mask>

President

Masked autoencoder: AR model:

Joe

Biden

is

the

US

____

Biden

US

x̃ : y : x̃ : y :

President

AR models are just masked AEs 
with a special choice of mask

38



Summary of today

1. Intuition for autoencoders (AEs): “A good representation lets us 
reconstruct the input”

2. Masked AEs learn to restore a partially-deleted input & help avoid 
degeneracies in unmasked AEs

3. State of the art in pre-training for few-shot learning in language & 
vision

4. Autoregressive models (e.g., GPT-3) are special case of masked AEs; give a 
generative model for free at some cost to fine-tuning performance

39



Contrastive Learning vs AEs vs Masked AEs
Contrastive learning:


+ Learns very high-quality 
representations


+ Don’t need as large a model


- Need to select negatives 
carefully*


- Generally needs larger batch 
size*


- Cross-example dependencies 
can make implementation 
more difficult


* new methods are addressing these 
downsides but are more difficult to 
interpret/analyze 

(Bottlenecked) Autoencoders: Masked autoencoders:

+ Simple to implement


+ No need to select pos/neg pairs; just 


- Generally need a larger model

d(x, ̂x)

- Need to design a bottleneck


- (Comparatively) poor few-shot 
performance


- Not generally used in practice

+ Few-shot performance as good 
or better than contrastive


+ AR special case gives generative 
model for free


- Raw representations (without 
fine-tuning) still can be lower 
quality than contrastive

40



Reminders

Project proposal due TODAY!

Make sure you have set-up Azure!


(well before the HW deadline)

Homework 2 due Wednesday


