Optimization-Based Meta-Learning

CS 330

Course Reminders

Project group form due tonight.

(for assigning project mentors)

Homework 1 due Monday

Homework 2 out today

Tutorial session tomorrow 4:30-5:20 pm on MAML.

Guest lectures!

James Harrison Google DeepMind

Learned optimizers

Jason Wei OpenAl

In-context learning

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Goals for by the end of lecture:

- Basics of optimization-based meta-learning techniques (& how to implement)
- Trade-offs between black-box and optimization-based meta-learning

Part of Homework 2!

Problem Settings Recap

Multi-Task Learning

Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once.

$$\min_{\theta} \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i)$$

Transfer Learning

Solve target task \mathcal{T}_b after solving source task \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_a

Meta-Learning Problem

Transfer Learning with Many Source Tasks

Given data from $\mathcal{T}_1, ..., \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably

Example Meta-Learning Problem

5-way, 1-shot image classification (Minilmagenet)

any ML problem

Black-Box Adaptation

+ expressive

- challenging optimization problem

Case Study: GPT-3

Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah* Jared Kaplan[†] Prafulla Dhariwal Arvind Neelakantan **Pranav Shyam** Girish Sastry Ariel Herbert-Voss Amanda Askell Sandhini Agarwal Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh **Clemens Winter** Daniel M. Ziegler Jeffrey Wu **Christopher Hesse** Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark **Christopher Berner** Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAI

May 2020

"emergent" few-shot learning

What is GPT-3?

a language model

black-box meta-learner trained on language generation tasks

 $\mathscr{D}_i^{ ext{tr}}$: sequence of characters $\mathscr{D}_i^{ ext{ts}}$: the following sequence of characters

[meta-training] dataset: crawled data from the internet, English-language Wikipedia, two books corpora architecture: giant "Transformer" network 175 billion parameters, 96 layers, 3.2M batch size

What do different tasks correspond to?

spelling correction simple math problems translating between languages a variety of other tasks

How can those tasks all be solved by a single architecture?

How can those tasks all be solved by a single architecture? Put them all in the form of text!

Why is that a good idea? Very easy to get a lot of meta-training data.

simple math problems

spelling correction

translating between languages

Some Results

One-shot learning from dictionary definitions:

Few-shot language editing:

Non-few-shot learning tasks:

To "screeg" something is to swing a sword at it. An example of a sentence that uses the word screeg is:

We screeghed at each other for several minutes and then we went outside and ate ice cream.

Poor English input: I eated the purple berries.

Good English output: I ate the purple berries.

Poor English input: Thank you for picking me as your designer. I'd appreciate it. Good English output: Thank you for choosing me as your designer. I appreciate it. Poor English input: The mentioned changes have done. or I did the alteration that you

requested. or I changed things you wanted and did the modifications.

Good English output: The requested changes have been made. or I made the alteration that you

requested. or I changed things you wanted and made the modifications.

Poor English input: I'd be more than happy to work with you in another project.

Good English output: I'd be more than happy to work with you on another project.

Poor English input: Please provide me with a short brief of the design you're looking for and that'd be nice if you could share some examples or project you did before.

Good English output: Please provide me with a brief description of the design you're looking for and that would be nice if you could share some examples or projects you have done before.

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination

Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020 calling their church the Christian Methodist

General Notes & Takeaways

The results are extremely impressive.

The model is far from perfect.

The model fails in unintuitive ways.

Q: How many eyes does a giraffe have?

A: A giraffe has two eyes.

Q: How many eyes does my foot have?

A: Your foot has two eyes.

Q: How many eyes does a spider have?

A: A spider has eight eyes.

Q: How many eyes does the sun have?

A: The sun has one eye.

Source: https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

The choice of \mathcal{D}_i^{tr} at test time is important. ("prompting")

Source: https://github.com/shreyashankar/gpt3-sandbox/blob/master/docs/priming.md

What is needed for few-shot learning to emerge?

An active research topic!

Data:

- temporal correlation
- dynamic meaning of words

Model:

large capacity modelstransformers > RNNslarge models > small models

Chan, Santoro, Lampinen, Wang, Singh, Richemond, McClelland, Hill. Data Distributional Properties Drive Emergent In-Context Learning in Transformers. '22 Brown*, Mann*, Ryder*, Subbiah* et al. Language Models are Few-Shot Learners. '20

Black-Box Adaptation

+ expressive

- challenging optimization problem

How else can we represent $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$?

What if we treat it as an optimization procedure?

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Part of Homework 2!

Black Box Adaptation Optimization-Based Adaptation

Black Box Adaptation Optimization-Based Adaptation

Key idea: embed optimization inside the inner learning process

Why might this make sense?

Recall: Fine-tuning

Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. '18

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning less effective with very small datasets.

Meta-learning
$$\min_{\theta} \sum_{\mathrm{task}\ i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}}), \mathcal{D}_i^{\mathrm{ts}})$$

Key idea: Over many tasks, learn parameter vector θ that transfers via fine-tuning

$$\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}}), \mathcal{D}_{i}^{\text{ts}})$$

 θ parameter vector being meta-learned

 ϕ_i^* optimal parameter vector for task i

Model-Agnostic Meta-Learning

Key idea: Acquire ϕ_i through optimization.

General Algorithm:

Black box approach Optimization-based approach

- Sample task \(\mathcal{T}_i \) (or mini batch of tasks)
 Sample disjoint datasets \(\mathcal{D}_i^{\text{tr}}, \mathcal{D}_i^{\text{test}} \) from \(\mathcal{D}_i \)
- 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ Optimize $\phi_i \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

-> brings up **second-order** derivatives

Do we need to compute the full Hessian? (3)

-> whiteboard

Do we get higher-order derivatives with more inner gradient steps?

$$\begin{split} &\frac{d}{d\theta} \mathcal{L}(\phi_{i}, \mathcal{D}_{i}^{\text{ts}}) \\ &= \nabla_{\bar{\phi}} \mathcal{L}(\bar{\phi}, \mathcal{D}_{i}^{\text{ts}})|_{\bar{\phi} = \phi_{i}} \frac{d\phi_{i}}{d\theta} \\ &= \nabla_{\bar{\phi}} \mathcal{L}(\bar{\phi}, \mathcal{D}_{i}^{\text{ts}})|_{\bar{\phi} = \phi_{i}} \left(I - \alpha \frac{d^{2}}{d\theta^{2}} \mathcal{L}(\theta, \mathcal{D}_{i}^{\text{tr}})\right) \end{split}$$

O PyTorch

Deep learning libraries handle the math for you.

Key idea: Acquire ϕ_i through optimization.

Meta-Test Time:

Optimization-based approach

- 1. Given task \mathcal{T}_j
- 2. Given training data $\mathcal{D}_j^{\mathrm{tr}}$
- 3. Fine-tune $\phi_j \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_j^{\text{tr}})$
- 4. Make predictions on new datapoints $f_{\phi_i}(x)$

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Part of Homework 2!

Optimization vs. Black-Box Adaptation

Black-box adaptation

general form: $y^{\text{ts}} = f_{\text{black-box}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$

Model-agnostic meta-learning

$$y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$$

$$= f_{\phi_i}(x^{\text{ts}})$$
where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$

MAML can be viewed as computation graph, with embedded gradient operator

Note: Can mix & match components of computation graph

Learn initialization but replace gradient update with learned network

where
$$\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$$

 $f(\theta, \mathcal{D}_i^{\text{tr}}, \nabla_{\theta} \mathcal{L})$

Ravi & Larochelle ICLR '17 (actually precedes MAML)

This computation graph view of meta-learning will come back again!

Optimization vs. Black-Box Adaptation

How well can learning procedures generalize to similar, but extrapolated tasks?

Does this structure come at a cost?

Finn & Levine ICLR '18

Black-box adaptation

Optimization-based (MAML)

$$y^{\text{ts}} = f_{\text{black-box}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$$

$$y^{\mathrm{ts}} = f_{\mathrm{MAML}}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

Does this structure come at a cost?

For a sufficiently deep network,

MAML function can approximate any function of $\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}}$

Finn & Levine, ICLR 2018

Assumptions:

- nonzero lpha
- loss function gradient does not lose information about the label
- datapoints in $\mathcal{D}_i^{\mathrm{tr}}$ are unique

Why is this interesting?

MAML has benefit of inductive bias without losing expressive power.

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Part of Homework 2!

Challenges. Bi-level optimization can exhibit instabilities.

Idea: Automatically learn inner vector learning rate, tune outer learning rate (Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop (Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.

(Finn et al. bias transformation, Zintgraf et al. CAVIA)

Takeaway: a range of simple tricks that can help optimization significantly

Challenges. Backpropagating through many inner gradient steps is compute- & memory-intensive.

Idea: [Crudely] approximate $\frac{d\phi_i}{d\theta}$ as identity (Finn et al. first-order MAML '17, Nichol et al. Reptile '18)

Surprisingly works for simple few-shot problems, but (anecdotally) not for more complex meta-learning problems.

Idea: Only optimize the last layer of weights.

```
ridge regression, logistic regression support vector machine (Bertinetto et al. R2-D2 '19) (Lee et al. MetaOptNet '19)
```

—> leads to a closed form or convex optimization on top of meta-learned features

Idea: Derive meta-gradient using the implicit function theorem (Rajeswaran, Finn, Kakade, Levine. Implicit MAML '19)

—> compute full meta-gradient without differentiating through optimization path

Key idea: Acquire ϕ_i through optimization.

Takeaways: Construct *bi-level optimization* problem.

- + positive inductive bias at the start of meta-learning
- + tends to extrapolate better via structure of optimization
- + maximally expressive with sufficiently deep network
- + model-agnostic (easy to combine with your favorite architecture)
- typically requires second-order optimization
- usually compute and/or memory intensive
 - -> Can be prohibitively expensive for large models

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Part of Homework 2!

Case Study

Meta-Learning for Few-Shot Land Cover Classification

Marc Rußwurm^{1,*,†}, Sherrie Wang^{2,3,*}, Marco Körner¹, and David Lobell²

¹Technical University of Munich, Chair of Remote Sensing Technology ²Stanford University, Center on Food Security and the Environment ³Stanford University, Institute for Computational and Mathematical Engineering

CVPR 2020 EarthVision Workshop

Link: https://arxiv.org/abs/2004.13390

Problem: Map land covering from satellite images

SEN12MS dataset (Schmitt et al. 2019)

DeepGlobe dataset (Demir et al. 2018)

Applications in global urban planning, climate change research

Challenges:

Labeling data is expensive.

Different regions look different & have different land use proportions

Framing land cover mapping as a meta-learning problem

Different tasks: different regions of the world

Goal: Segment/classify images from a new region with a small amount of data

Croplands from four countries.

Framing land cover mapping as a meta-learning problem

Goal: Segment/classify images from a new region with a small amount of data

SEN12MS dataset (Schmitt et al. 2019)

Geographic meta-data provided

Marseille (summer)

Iabel overlay

meta-train
meta-val
meta-test

Map tiles by Stamen Design, CC BY 3.0 -- Map data (C) OpenStreetMap contributors

Example 2-way 2-shot classification task

Framing land cover mapping as a meta-learning problem

Goal: Segment/classify images from a new region with a small amount of data

DeepGlobe dataset (Demir et al. 2018)

No geographic metadata, used clustering to guess region

Example 1-shot learning segmentation task.

Evaluation

Meta-training data: $\{\mathscr{D}_1,...,\mathscr{D}_T\}$ Meta-test time: small amount of data from new region: $\mathscr{D}_j^{\mathrm{tr}}$ (meta-test training set / meta-test support set)

Random init: Train from scratch on $\mathscr{D}_{j}^{\mathrm{tr}}$

Compare: Pre-train on meta-training data $\mathscr{D}_1 \cup ... \cup \mathscr{D}_T$, fine-tune on $\mathscr{D}_i^{\mathrm{tr}}$

MAML on meta-training data $\{\mathscr{D}_1,...,\mathscr{D}_T\}$, adapt with $\mathscr{D}_j^{\mathrm{tr}}$

More visualizations and analysis in the paper!

Plan for Today

Recap

- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning

- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Goals for by the end of lecture:

- Basics of optimization-based meta-learning techniques (& how to implement)
- Trade-offs between black-box and optimization-based meta-learning

Part of Homework 2!

Roadmap for upcoming lectures

Monday: Non-parametric few-shot learners, comparison of approaches

Weds & Next Monday: Unsupervised pre-training for few-shot learning

Following lectures: Advanced meta-learning topics (e.g. memorization, large-scale meta-optimization)

Course Reminders

Project group form due tonight.

Homework 1 due Monday

(for assigning project mentors)

Homework 2 out today

Tutorial session tomorrow 4:30-5:20 pm on MAML.