CS 330 Autumn 2019/2020 Homework 2

Model-Agnostic Meta-Learning and Prototypical Networks

Due Wednesday October 23, 11:59 PM PST
SUNet ID:
Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all
of this is my own work.

Overview

In this assignment we will experiment with two meta-learning algorithms, model-agnostic
meta-learning (MAML) [1] and prototypical networks [2], for few-shot classification. You
will
(1) Implement and train MAML. You also need to experiment with different choices of the
key hyperparameter of the MAML algorithm, the inner gradient step size, and implement a
variant of MAML that learns the inner step size automatically.
(2) Implement and train prototypical networks.

Similar to Homework 1, we will work with the Omniglot dataset [3], which contains
1623 different characters from 50 different languages. For each character there are 20 28x28
images. We are interested in training models for K-shot, N-way classification.

Submission: To submit your homework, submit one pdf report and one zip file to Grade-
Scope, where the report will contain answers to the deliverables listed below and the zip file

contains your code (run_maml.py, models/maml.py, run ProtoNet.py, models/ProtoNet.py,

load data.py) with the filled in solutions.

Code Overview: The code consists of five main files:

e load data.py: code to load batches of images and labels, which does not need to be

edited.
e run maml.py: training and testing script for running MAML.
e models/maml.py: network architecture and computation graph construction of MAML.
e run ProtolNet.py: training and testing script for running prototypical networks.
e models/ProtoNet.py: network architecture/loss of prototypical networks.

There is also the omniglot_resized folder with the data. You should not modify this folder.

Dependencies: We expect code in Python 3.5+ with Pillow, scipy, numpy, tensorflow
installed. If you use Anaconda, run conda env create -f environment.yml to build a vir-
tual environment containing packages required for the homework.

1

K— pre-trained parameters
Fine-tuning ¢ < 0 — OéVg,C(e, ’Dtr)

i training dat
[test-time] raining data

for new task
Meta-learning Hlein E ,C(@ — OAVQL:(Q, D;?r), 'Dfs)
task 7

Figure 1: For each task i, MAML computes inner gradient updates on training datapoints
D! and evaluates the loss on test datapoints DI*. Averaging over all tasks, the outer loop
loss function is optimized w.r.t. the original model parameter € to learn an initialization
that can quickly adapt to new tasks during meta-test time.

Note: Even though convolutional networks will be used for MAML and Prototypical Net-
works, the code should be able to be run with CPU.

Problem 1: Model-Agnostic Meta-Learning (MAML) [1]

We will first attempt few-shot classification with MAML. As introduced in the class, during
meta-training phase, MAML operates in two loops, an inner loop and an outer loop. In the
inner loop, MAML computes gradient updates using examples from each task and calculates
the loss on test examples from the same task using the updated model parameters. In the
outer loop, MAML aggregates the per-task post-update losses and performs a meta-gradient
update on the original model parameters. At meta-test time, MAML computes new model
parameters based a few examples from an unseen class and uses the new model parameters
to predict the label of a test example from the same unseen class. The main idea of MAML
is shown in Figure 1. The data processing will be done in the same way as in Homework 1.
In the run maml.py and models/maml.py files:

1. Fill in the data processing parts in the meta_train and meta_test functions in run_maml . py,
which should call the data generator provided in load_data.py to generate a batch of
images and their corresponding labels. You should partition the batch into two parts,
inputa, labela and inputb, labelb, where inputa, labela are used to compute
gradient updates in the inner loop and inputb, labelb are used to get the task losses
after the gradient update. Hint: You need to fill in data processing parts for meta-
training, meta-validation and meta-test, but they should be fairly similar.

2. Fill in the function called task_inner loop in the models/maml.py file which takes
inputs inputa, labela, inputb, labelb and computes the inner loop updates in
the main MAML algorithm. Feel free to use self.loss_func to compute the losses.
Your main work should be calculating the gradient updates of each weight variable
stored in the weights dictionary and passing the updated weights to forward_conv in

Dtr Z f9
(Y)EDY
exp(—d(fo(),cx))

ol = ko) = S o d(fo(x),)

(a) Few-shot

Figure 2: Prototypical networks compute the prototypes of all tasks using training datapoints
D!*. Then by comparing the query example z to each of the prototype, the model makes
prediction based on the softmax function over the distance between the embedding of the
query and all prototypes.

order to get the new prediction. Note that you need to do multiple gradient updates
as num_inner _updates could be greater than 1. Hint: You may need tf.gradients
to calculate the inner gradients instead of using tf.train.Optimizer

3. Run python runmaml.py --n_way=5 --k_shot=1 --inner_update_1lr=0.4
--num_inner updates=1. Also try with inner_update_lr being 0.04 and 4.0. For each
configuration, submit a plot of the validation accuracy over iterations as well as the
number of the average test accuracy. Can you briefly explain why different values of
inner update_1r would affect meta-training?

4. Tuning inner update_lr could turn out to be tricky when running MAML for different
datasets. A variant of MAML [4] proposes to automatically learn the inner update_1r.
Try to learn separate inner update_lr per num_inner_update per weight variable.
Specifically, for each inner gradient update, for each weight variable stored in the
weights dictionary, initialize one inner_update_lr variable and learn it using back-
propagation. Plot the meta-validation accuracy over meta-training iterations and state
how it compares to the MAML with fixed inner_update_lr.

Problem 2: Prototypical Networks [2]

Now we will try a non-parametric meta-learning algorithm, prototypical networks. As dis-
cussed in lecture, the basic idea of prototypical networks resembles weighted nearest neigh-
bors. It computes the prototype of each class using a set of support examples and then
calculates the distance between the query example and all the prototypes. The query ex-
ample is classified based on the label of the prototype it’s closest to. See Figure 2 for an
overview.

1. Similar to Problem 1, fill in the data processing parts in run ProtoNet.py, which
should also call the data generator provided in load_data.py. You should partition

the sampled batch into support, i.e. the per-task training data, and query, i.e. the
per-task test datapoints. The support will be used to calculate the prototype of each
class and query will be used to compute the distance to each prototype. You also need
to get labels of the query examples in order to compute the cross-entropy loss for
training the whole model.

2. Fill in the function called ProtoLoss in the models/ProtoNet.py file which takes the
embeddings of the support and query examples as well as the one-hot label encodings of
the queries and computes the loss and prediction accuracy based on the main algorithm
of the prototypical networks.

3. Run python run ProtoNet.py ./omniglot._resized/ and plot the validation ac-
curacy over iterations. Report the average test accuracy along with its standard devi-
ation.

Problem 3: Comparison and Analysis

After implementing both meta-learning algorithms, we would like to compare them a bit. In
practice, we usually have limited amount of meta-training data but relatively more meta-test
datapoints. Hence one interesting comparison would be meta-training both algorithms with
5-way 1-shot regime but meta-testing them using 4-shot data. Specifically, run the following
to evaluate Prototypical Networks:

python run ProtoNet.py ./omniglot_resized/ --n-way=5 --k-shot=1 --n-query=5
--n-meta-test-way=5 --k-meta-test-shot=4 --n-meta-test-query=4

For evaluating MAML, first do meta-training by running:
python run maml.py --n_way=5 --k_shot=1 --inner_update_1lr=0.4
--num_inner_updates=1

Then restore the weights to get meta-test performance by running:
python run maml.py --n.way=5 --k_shot=4 --inner_update_1lr=0.4
--num_inner _updates=1 --meta_train=False --meta_test_set=True --meta_train_k shot=1

Try K = 4,6,8,10 at meta-test time. Compare the meta-test performance between
MAML and Prototypical Networks by plotting the meta-test accuracies over different choices
of K.

References

[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1126-1135. JMLR. org, 2017.

[2] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learn-
ing. In Advances in Neural Information Processing Systems, pages 4077-4087, 2017.

[3] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level con-
cept learning through probabilistic program induction. Science, 350(6266):1332-1338,
2015.

[4] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv
preprint arXiw:1810.09502, 2018.

