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Background: Why Causal Reasoning?

Fig. 1: Tank hidden in grass. Photos taken on a sunny day. Fig. 2: No tank present. Photos taken on a cloudy day.

e Limits of ML from observational data: the “tank classification” story.
e |f we want machine learning algorithms to affect the world (especially RL
agents), they need a good understanding of cause and effect!



Background: Causal Inference and the Do-Calculus

e Ratherthan: P(A|B=b, C=c)
e We mightsay: P(A|do(B=b), C=c) to
p(4)

represent an intervention where the
random variable B is manipulated to be FE
equal to b. This is completely different from -

an observational sample! p(ElA) HIAE 5(B—e) p(HlAE
e Observinginterventions lets us infer the

causal structure of the data: a Causal

Bayesian Network, or CBN.



Method Overview - Dataset

e (Causal Bayesian Networks - directed acyclic graph that

captures both independence and causal relations.
o  Nodes are Random Variables
o Edgesindicate one RV’s causal effect on another

e Generated all graphs with 5 nodes ~ 60,000

e Each node was a Gaussian Random Variable.
Parentless nodes had distribution N(0.0, 0.1),
and child nodes had conditional distributions with mean
equal to weighted sum of parents’

e Oneroot node was always hidden to allow for an
unobserved confounder

p(El4)  pHIAE)  §E—) pHAE)



Method Overview - Agent Architecture

e LSTM network (192 hidden units)

e Input: concatenated vector [0, a, . ,r, ]

o o, - “observation vector” composed of values of nodes + one-hot

-
encoding of external intervention during the quiz phase —() D=
© a, - previous action as a one-hot encoding o
o r, , - previousreward as asingle real-value o] o]
e Output: policy logits plus a scalar baseline. Next action

sampled from a softmax over these logits.



Method Overview - Learning Procedure

Information phase (meta-train)
o Outputaction a. setsvalue of X to 5. Agent observes new values of RV’s
o AgentgivenT-1=4information steps

Quiz phase (meta-test)
o  One hidden node selected at random and set to -5.

o Agentinformed of which node was set, and then asked to select the
node with the highest sampled value

Used asynchronous advantage actor-critic framework

Global Network

— e A—
—
-

r 1 Worker

|
(au: -
Ll

@
g

[

Worker
¢

aadl i
=i
El




Experiments

Settings:

1. Observational
2. Interventional
3. Counterfactual

Notation:

e G:CBN with confounders
e U.x, :Intervened CBN, where Xj is the node being intervened on



Experiment 1: observational
Setup: not allowed to intervene or observe external interventions ( ¢, not 9-x;)

e Observational: agent’s actions are ignored, and » sampled from ¢
o  Obs (T=5)
o Long-Obs (T=20)
e Conditional: choose an observable node and set its value to 5, then take a
conditional sample from ¢

o Active
o Random

e Optimal associative baseline (not learned): can perform exact associative
reasoning but not cause-effect reasoning



Experiment 1: observational
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Questions:

1. Do agents learn cause-effect reasoning from observational data?
2. Do agents learn to select useful observations?



Experiment 2: interventional

Setup: allowed to make interventions in information phase only and observe samples
from G_.x,

e Interventional: chooses to intervene on an observable node X;, and samples from

the intervened graph ¢_.x,
o Active
o Random
e Optimal Cause-Effect Baseline (not learned):

o  Receives the true CBN G
o Inquiz phase, chooses the node with max value according to G_, x,
o  Maximum possible score on this task



Experiment 2: interventional
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Questions:

1. Do agents learn cause-effect reasoning from interventional data?
2. Do agents learn to select useful interventions?



Experiment 3: counterfactual

Setup: same as interventional setting, but tasked with answering a counterfactual
question at quiz time

Implementation:

o Assume: Xi=D wiXj+e

e Storesome adéjitional latent randomness in the last information phase step to use
during the quiz phase

e “Which of the nodes would have had the highest value in the last step of the

information phase if the intervention was different?”

Agents: counterfactual (active, random); optimal counterfactual baseline



Experiment 3: counterfactual
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Figure 7. Active and Random Counter-
factual Agents
Questions:

1. Do agentslearn to do counterfactual inference?
2. Do agents learn to make useful interventions in the service of a counterfactual
task?



Strengths

e Firstdirect demonstration of causal reasoning learning from an end-to-end model-free reinforcement
learning algorithms.

e Experiments consider three grades of causal sophistication with varying levels of agent-environment
interaction.

e Training these models via a meta-learning approach shifts the learning burden onto the training cycle and
thus enables fast inference at test time.

e RL agents learned to more carefully gather data during the ‘information’ phase compared to a random
data-collection policy: aspects of active learning.

e Agents also showed ability to perform do-calculus: agents with access to only observational data received

more reward than highest possible reward achievable without causal knowledge.



Weaknesses

e Experiment setting is quite limited: maximum of 6 nodes in the CBN graph, one hidden, edges/causal
relationships were unweighted (sampled from {-1, 0, 1}), all nodes had a Gaussian distribution with the root
node always having mean 0 and standard deviation 0.1.

e Experiments are entirely performed on toy datasets. Would have been nice to see some real world
demonstrations.

e Authors don’tinterpret what strategy the agent is learning. Though results indicate that some causal
inference is being made, to what extent and how is generally unclear.

e Perhaps outside the scope of this paper, but unclear about how well their approaches would scale to more
complex datasets.

e Not clear why agent was not given more observations (T > N).



Questions?



