Causal Reasoning from Meta-reinforcement Learning

Dasgupta et al. (2018)

CS330 Student Presentation

There is only so much of the world we can understand via observation.

- Cancer (correlates to) Smoking → Cancer (causes) Smoking?
- Cancer (correlates to) Smoking → Smoking (causes) Cancer?
- Cancer (correlates to) Smoking → Genetics (causes) Cancer, Smoking?

There is only so much of the world we can understand via observation.

- Cancer (correlates to) Smoking → Cancer (causes) Smoking?
- Cancer (correlates to) Smoking → Smoking (causes) Cancer?
- Cancer (correlates to) Smoking → Genetics (causes) Cancer, Smoking?

There is only so much of the world we can understand via observation.

- Cancer (correlates to) Smoking → Cancer (causes) Smoking?
- Cancer (correlates to) Smoking → Smoking (causes) Cancer?
- Cancer (correlates to) Smoking → Genetics (causes) Cancer, Smoking?

Fig. 1: Tank hidden in grass. Photos taken on a sunny day.

Fig. 2: No tank present. Photos taken on a cloudy day.

- Limits of ML from observational data: the "tank classification" story.
- If we want machine learning algorithms to **affect** the world (especially RL agents), they need a good understanding of cause and effect!

Background: Causal Inference and the Do-Calculus

- Rather than: P(A | B=b, C=c)
- We might say: P(A | do(B=b), C=c) to represent an intervention where the random variable B is manipulated to be equal to b. This is completely different from an observational sample!
- Observing interventions lets us infer the causal structure of the data: a Causal Bayesian Network, or CBN.

Method Overview - Dataset

- Causal Bayesian Networks directed acyclic graph that captures both *independence* and *causal* relations.
 - Nodes are Random Variables
 - o Edges indicate one RV's causal effect on another
- Generated all graphs with 5 nodes ~ 60,000
- Each node was a Gaussian Random Variable. Parentless nodes had distribution N(0.0, 0.1), and child nodes had conditional distributions with mean equal to weighted sum of parents'
- One root node was always hidden to allow for an unobserved confounder

Method Overview - Agent Architecture

- LSTM network (192 hidden units)
- Input: concatenated vector $[o_t, a_{t-1}, r_{t-1}]$
 - o_t "observation vector" composed of values of nodes + one-hot encoding of external intervention during the quiz phase
 - \circ a_{t-1} previous action as a one-hot encoding
 - \circ r_{t-1} previous reward as a single real-value
- Output: policy logits plus a scalar baseline. Next action sampled from a softmax over these logits.

Method Overview - Learning Procedure

- Information phase (meta-train)
 - Output action a sets value of X to 5. Agent observes new values of RV's
 - Agent given T 1 = 4 information steps
- Quiz phase (meta-test)
 - One hidden node selected at random and set to -5.
 - Agent informed of which node was set, and then asked to select the node with the highest sampled value
- Used asynchronous advantage actor-critic framework

Experiments

Settings:

- Observational
- Interventional
- Counterfactual

Notation:

- *G*: CBN with confounders
- $\mathcal{G}_{\to X_j}$: Intervened CBN, where X_j is the node being intervened on

Experiment 1: observational

Setup: not allowed to intervene or observe external interventions (\mathcal{G} , not $\mathcal{G}_{\to X_j}$)

- Observational: agent's actions are ignored, and v_t sampled from \mathcal{G}
 - o Obs (T=5)
 - o Long-Obs (T=20)
- Conditional: choose an observable node and set its value to 5, then take a conditional sample from G
 - Active
 - Random
- Optimal associative baseline (not learned): can perform exact associative reasoning but not cause-effect reasoning

Experiment 1: observational

Figure 4. Active and Random Conditional Agents

Questions:

- 1. Do agents learn cause-effect reasoning from *observational* data?
- 2. Do agents learn to select useful *observations*?

Experiment 2: *interventional*

Setup: allowed to make interventions in *information* phase only and observe samples from $\mathcal{G}_{\to X_j}$

- Interventional: chooses to intervene on an observable node X_j , and samples from the intervened graph $\mathcal{G}_{\to X_j}$
 - Active
 - Random
- Optimal Cause-Effect Baseline (not learned):
 - \circ Receives the true CBN \mathcal{G}
 - \circ In quiz phase, chooses the node with max value according to $\mathcal{G}_{ o X_i}$
 - Maximum possible score on this task

Experiment 2: *interventional*

Figure 5. Active and Random Interventional Agents

0.6

0.8

1.0

Questions:

- 1. Do agents learn cause-effect reasoning from interventional data?
- 2. Do agents learn to select useful *interventions*?

Experiment 3: counterfactual

Setup: same as interventional setting, but tasked with answering a counterfactual question at quiz time

Implementation:

- Assume: $X_i = \sum_j w_{ji} X_j + \epsilon_i$
- Store some additional latent randomness in the last information phase step to use during the quiz phase
- "Which of the nodes would have had the highest value in the last step of the information phase if the intervention was different?"

Agents: counterfactual (active, random); optimal counterfactual baseline

Experiment 3: counterfactual

Figure 7. Active and Random Counterfactual Agents

Questions:

- 1. Do agents learn to do *counterfactual* inference?
- 2. Do agents learn to make useful interventions in the service of a counterfactual task?

Strengths

- First direct demonstration of causal reasoning learning from an end-to-end model-free reinforcement learning algorithms.
- Experiments consider three grades of causal sophistication with varying levels of agent-environment interaction.
- Training these models via a meta-learning approach shifts the learning burden onto the training cycle and thus enables fast inference at test time.
- RL agents learned to more carefully gather data during the 'information' phase compared to a random data-collection policy: aspects of active learning.
- Agents also showed ability to perform do-calculus: agents with access to only observational data received more reward than highest possible reward achievable without causal knowledge.

Weaknesses

- Experiment setting is quite limited: maximum of 6 nodes in the CBN graph, one hidden, edges/causal relationships were unweighted (sampled from {-1, 0, 1}), all nodes had a Gaussian distribution with the root node always having mean 0 and standard deviation 0.1.
- Experiments are entirely performed on toy datasets. Would have been nice to see some real world demonstrations.
- Authors don't interpret what strategy the agent is learning. Though results indicate that some causal
 inference is being made, to what extent and how is generally unclear.
- Perhaps outside the scope of this paper, but unclear about how well their approaches would scale to more complex datasets.
- Not clear why agent was not given more observations (T > N).

Questions?