protANIL: a Fast and Simple Meta-Learning Algorithm

Alexander Arzhanov
Deep Multi-Task and Meta Learning (CS330), Stanford University

aarz@stanford.edu

Abstract

A broad recognition of important practical benefits in-
herent to meta-learning paradigm has recently elevated the
few-shot learning problem into the spotlight of machine
learning research. While the optimization-based model-
agnostic meta-learning algorithms offer a variety of appeal-
ing properties, such as model architecture flexibility and
generalization capabilities, they come at a cost of high com-
putational complexity. On the other hand, the metric-based
meta-learning algorithms, that are built on a simple induc-
tive bias mechanism, have proven their high efficiency in
the limit of very few training examples. We propose an al-
gorithm that combines the complementary strengths of these
two approaches, and, at the same time, significantly lowers
the computational cost.

We benchmark the execution times of the proposed
protANIL algorithm to demonstrate its computational ben-
efits during both training and inference. We also analyze its
few-shot classification performance and find that the results
are on par with the original MAML algorithm.

1. Introduction

Much of the recent attention in the machine learning re-
search community was drawn to the meta-learning algo-
rithms that are specifically designed to quickly learn new
tasks by leveraging the prior experience from a set of simi-
lar tasks [3}/4,/13}[17}|19,23} 24, 27].

In the context of few-shot classification, the meta-
learning problem can be formally framed by defining a col-
lection of related tasks and splitting it into disjoint sets for
meta-training and meta-testing. Given that each task usu-
ally contains only a small number of data samples, a meta-
learning algorithm is designed with an objective to learn
how to quickly adapt to the new tasks in the most effi-
cient manner. Once trained, the generalization properties of
the meta-learning algorithm are assessed on the new unseen
tasks sampled from the meta-testing set.

Out of many proposed meta-learning methods (see, e.g.
Ref. [8] for a recent review), two particularly success-

ful groups of few-shot classification methods can be high-
lighted: the non-parametric algorithms that rely on mech-
anism of metric learning, and the so-called optimization-
based methods. The most notorious examples of the former
include Siamese networks [10], Prototypical networks [23],
Matching networks [27], Relational networks [24], and
Graph neural networks [4]] - all of which aim to tackle the
few-shot classification problem by “learning to compare”
and are based on the notion of similarity between the in-
put images. The second family of methods, on the other
hand, addresses the meta-learning problem by “learning to
adapt” and aims at finding a good initialization for model
parameters so that the required model adaptation procedure
to a new task is efficient both in the quantity of labeled ex-
amples and the number of gradient update steps. The most
renowned among these methods is perhaps the MAML [3]
algorithm, which has given rise to a number of different
variations, such as Reptile [15] and LEO [21]].

While the continuous scientific effort in meta-learning
research have lately resulted in many novel and increasingly
complex network architectures and algorithms [§], a num-
ber of recent studies of few-shot classification problem sug-
gest that learning good features during meta-training and
reusing them during adaptation is the dominant success fac-
tor [2,|18L25]]. Motivated by these findings, we propose a
simple and fast meta-learning algorithm titled protfANIL that

* integrates the highly efficient inductive bias mech-
anism of metric-based approaches into the versatile
optimization-based MAML algorithm, which is ex-
pected to reduce the intra-class embedding variance [5]]
and thereby contribute to learning better features;

 addresses the problem of computational complexity
of MAML approach by limiting the calculation of
second-order derivatives to only task-specific head of
the network [18]].

Our few-shot classification benchmarks show that, by
employing these two modifications, protANIL performs
similarly well as the original MAML algorithm, while, at
the same time, is able to show a 10-fold speedup during
training, and almost a 5-fold speedup during inference.



2. Method

In this section, we first introduce our notation and for-
mally define the few-shot classification problem. Then we
briefly review the two meta-learning methods that underlie
the proposed protANIL algorithm, which we present in de-
tail at the end of this section.

2.1. Problem definition

The goal of N-way K-shot classification problem is to
provide an algorithm that can efficiently learn to generalize
from a relatively small set of N classes with K examples
per class, so that it is capable of performing well on any
unseen examples among these IV classes.

We can formally approach this meta-learning problem by
first defining a collection of related tasks as 7 = {T}}}4,,
where each task is represented by a tuple 7; = (S;, Q;) that
consists of a support data set S = {(x;, y;)} XX, and a query
dataset @ = {(x},y;)} X . Here, the (x, y)-pairs are sam-
pled from the same distribution and represent input images
x € RP with the corresponding labels y € {1,..., N}.

A common meta-learning procedure [27] is to first dis-
jointly split the task collection set 7 into meta-train T¢qin,
meta-validation 7,,;, and meta-test T4 sets, so that they
have no classes in common. The meta-training is then car-
ried out by first drawing a training task 7' = (S, Q) from
Tirain- Then, conditioned on the support set S, a differ-
entiable distribution over classes p(y*|x*,S) is computed
for each query point x* € Q, whereupon the parameters
of the model are learned end-to-end to minimize the classi-
fication loss with, for example, gradient descent algorithm.
Having adapted the model parameters to the entire query set
within a training task, the progress of meta-training can be
monitored by evaluating the performance of meta-learner
on a task sampled from the validation set 7,,;. Once fully
meta-trained, the generalizability of the meta-learning al-
gorithm is assessed by its performance averaged across all
tasks from the meta-test set T;eqs.

The meta-learning approaches can vary by computation
details of the predicted class distributions, as well as how
they are conditioned on the support set. Before presenting
our proposed meta-learning algorithm, we briefly summa-
rize the two approaches that lie in its foundation.

2.2. Prototypical Networks

Prototypical networks [23|| adopt metric-based approach
and utilize an embedding module f, : RP — R
(parametrized by ) to compute a prototype ¢ € R for
each class by taking a mean of all representation vectors
from the support set that bear the same class label &, i.e.
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Figure 1: The class prototypes cj in Prototypical networks
are calculated as mean embedding vectors of all support
points from the same class k. The query sample fy(x*) is
classified by the closest prototype. Adapted from Ref. [23].

where S, C S denotes the set of samples of class k.

The query samples are then distance-compared to all of
the prototypes, and classification is made based on the label
of the prototype with the shortest Euclidean distance (see
Fig. I] for illustration). The class probability distribution is
then calculated as
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where the summation is over all classes in Q.

2.3. MAML

The Model-Agnostic Meta-Learning (MAML) [3]] algo-
rithm aims to learn a good initialization for the parameters
of the model in order to enable an efficient optimization of
the meta-learner algorithm to a new task. The class proba-
bility distribution for a query sample x* € Q is calculated
as

ply” = kx", S) = ok(gy; o fo, (x7)) S

where oy, is a softmax function, fy is a embedding mod-
ule and g, is a classifier head, s.t. g, : RH — RV,
In this case, the meta-learner is fully parameterized by
¢ = (0,¢). Then the parameters ¢; = (0}, }) are ob-
tained by an optimization of the initial outer-loop param-
eters ¢ (also known as meta-initialization parameters) via
a so-called inner-loop adaptation by taking one (or more)
gradient steps over the samples from the support set S.
This inner-loop adaptation is performed separately for each
training task T;. See Fig. [2]for an illustration. The MAML
algorithm usually implements a linear classification head,
so that ¢ = (W, b), but the architecture of the embedding
module can differ [6l/1320,[26]. The meta-training is per-
formed by calculating the cross-entropy loss on the query
set Q after the inner loop adaptation, whereupon the error
is backpropagated through all inner-loop steps and meta-
initialization parameters ¢ are adjusted (Fig.[2). This pro-
cedure, however, imposes a considerable computational and
memory burden due to necessity of computing the second-
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Figure 2: The principles of ANIL and MAML algorithms:
the former does not tune the parameters of the embedding
module during inner-loop adaptation, whereas the latter per-
forms optimization of all parameters.

order derivatives and keeping track of the multiple inner-
gradient paths. To this end, a number of different vari-
ations of MAML algorithm have been proposed [15,21].
The simplest among them is perhaps the so-called first-
order MAML (foMAML), which does not involve com-
putation of second-order terms during training. This im-
plies a significantly smaller computational footprint during
meta-training, while still showing a surprisingly good per-
formance on many few-shot classification tasks [3].

2.4. The protANIL algorithm

Motivated by the recent studies suggesting that learning
good features during meta-training and reusing them dur-
ing adaptation is the dominant success factor [2,/18}[25[], we
propose two modifications to the original MAML algorithm
that are aimed to make it both simpler and faster without a
noticeable accuracy sacrifice.

The prototype generator. First, in order to capitalize on
the simple and effective inductive bias of Prototypical net-
works, we propose to incorporate the mechanism of metric-
learning into the versatile approach of MAML algorithm.
To this end, we swap the head of MAML meta-learner with
a differentiable distance-based classifier, parametrized by a
weight matrix W = [cy,...,cy] € RE*N where each
individual weight vector ¢, € R¥ can intuitively be in-
terpreted as a class prototype. Then for each embedded
sample fp(x) we compute its cosine-similarity with ev-
ery weight vector ¢, to obtain the corresponding similarity
scores s = [s1, ..., Sn|, where each score is calculated as

ci, - fo(x)
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The class probability distribution for samples are then ob-
tained by normalizing the similarity scores with a softmax
function. See Fig. [3|for illustration.

Inspired by Ref. [2]], we also incorporate a couple of sim-
ple tricks to stabilize and improve training with a prototyp-
ical head. First, we introduce scaling of similarity scores
by a constant factor in order to strengthen the signal input
to the softmax function. This introduced hyper-parameter
helps to prevent the weight vectors from collapsing to ze-
ros. The scaling can be thought of as an inverse of the
temperature parameter [/|] often used, for example, in RL
or NLP domain. Besides this, we also use weight normal-
ization [22] for the weight matrix W. This reparameteri-
zation technique decouples the length of the weight vectors
from their direction, which helps us to improve the condi-
tioning of the optimization problem and speeds up conver-
gence of stochastic gradient descent. Finally, we also note
that an introduction of the prototype mechanism has been
shown [5,/9] to help with the reduction of variance among
the intra-class embedding, which is also expected to con-
tribute to better feature learning.

The ANIL algorithm. We address the issue of MAML’s
computational complexity by suggesting to leverage the re-
cently proposed ANIL algorithm [[18] which removes the
MAMVL’s inner loop for all but the task-specific head of the
network (see Fig. [2), while still showing performance on
par with the original MAML implementation.

We would like to stress, that the idea of equipping
MAML with a parametric prototype generator was origi-
nally motivated by discussions in Refs. [2,|17], and only
once this project was underway, it came to our attention that
similar ideas have been already proposed and recently pub-
lished (as a secondary objective) in an ICLR paper [26]. The
novelty of our contribution is in the thorough benchmark of
the computationally beneficial ANIL algorithm augmented
with a prototypical classifier head.

3. Experiments

We leverage the learn2learn [1] meta-learning re-
search library and implement MAML, foMAML, and
protANIL in PyTorch [16] to evaluate these algorithms on
two established datasets for few-shot classification bench-
marks: Omniglot and mini-Imagenet. First, in order to test
our implementation, we replicate the reported results for
the original MAML [3]] and ANIL [18] algorithms. Then
we perform a thorough benchmark of training and infer-
ence speedups of foMAML and protANIL relative to the
computationally demanding MAML algorithm. Finally, we
present a detailed performance comparison of MAML and
protANIL algorithms on the mini-Imagenet few-shot clas-
sification problem.
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Figure 3: Schematic overview of the protANIL network architecture. The feature vector h = fy(x) is cosine-compared with
column vectors ¢y, of the classification head, whereupon softmax is used to produce a distribution of class probabilities.

3.1. Datasets

Omniglot [12] contains 1623 classes, where each class is
a character coming from one of 50 different alphabets. For
every class there is a total of 20 hand-written monochrome
samples with 28 x 28 pixel resolution. We follow the proce-
dures of Ref. [|19]] and take the first 1100 classes for training,
the next 100 classes for validation, and the rest for testing.
Each split is augmented with multiples of 90-degree rota-
tions.

mini-Imagenet [27]] was specifically derived for few-
shot classification tasks from the original ILSVRC-12
dataset [11] and is comprised of 100 classes with a total
of 60k RGB-images in 84 x 84 resolution. According to
the established procedure [[19], we split the dataset in 3 sets
with 64 training, 16 validation, and 20 testing classes, with
each class containing 600 examples.

3.2. Network architecture

In order to make direct comparison to previously pub-
lished results, we implement a similar 4-layer CNN archi-
tecture of the embedding module as described in Ref. [3]
and Ref. [19] for Omniglot and mini-Imagenet cases, re-
spectively.

3.3. Replication of published results

The first part of the project involved replicating some
of the previously published results to test our implemen-
tation of MAML and ANIL algorithms. To this end, we
performed two benchmarks: one with Omniglot dataset on
the 20-way 5-shot classification tasks, and another one with
mini-Imagenet on 5-way 5-shot classification tasks. The
models were trained with meta-batches of 32 tasks for 3k
iterations and 1 inner gradient step in case of Omniglot, and
for 12k iterations and 5 inner gradient steps in case of mini-
Imagenet. The tests were performed on 600 randomly sam-
pled tasks from the corresponding meta-test set. The results
are shown in Tab. [I] where they are also compared to the
previously published values. It is likely that our test accura-
cies could still improve a bit further with a longer training,

Omniglot mini-Imagenet

(20-way / 5-shot)  (5-way / 5-shot)
MAML [3]] 98.9+0.2 63.14+0.9
MAML (ours) | 96.8 0.1 64.44+0.6
ANIL [[18] 98.0+0.3 61.5+0.5
ANIL (ours) 95.5+0.2 61.0+0.8

Table 1: Comparison of few-shot classification performance
of our implementation and previously published results.

but given that a MAML training on Omniglot took around 8
hours on an Nvidia Tesla V100 GPU, and ran for more than
14 hours on mini-Imagenet, we chose to stop training once
a large degree of convergence was seemingly reached.

3.4. Computational benefits

We benchmark the computation times of our implemen-
tations for MAML, foMAML, and protANIL algorithms.
The results for Omniglot 20-way and mini-Imagenet 5-way
classifications tasks are shown on Fig. ] The z-axis indi-
cate average execution times in seconds per one meta-batch
of 32 tasks during training (Fig.[4] left side) and during in-
ference (Fig. [] right side). The results are averaged over
1000 such batches. The computations were performed on
an Nvidia MX250 GPU. The labels at the edges of the bars
indicate the observed speedup relative to MAML algorithm.

We can see that both foMAML and protANIL offer a
significant computational benefit during meta-training. The
boost to training times noticeably increases as the num-
ber of inner gradient updates is raised from 1 to 5. For
example, in case of mini-Imagenet 5-way 5-shot tasks,
the speedup offered by foMAML increases from 2.1x to
2.9x as we go from 1 to 5 inner updates. This notice-
able computational advantage relative to MAML comes
foremost from removing the necessity of using second-
order derivatives when backpropagating the outer-loop gra-
dient through the inner-loop gradient operator in the meta-
objective. In the meantime, given the same classification
task, the protANIL yields a speedup of 3.0x and 10.1x, re-
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Figure 4: Comparison of estimated computational times for MAML, foMAML, and protANIL during training (left) and
inference (right) on both Omniglot 20-way (above) and mini-Imagenet 5-way (below) datasets. The execution times are
seconds per meta-batches of 32 tasks for either 1-shot or 5-shot classification problems with either 1 or 5 number of inner
gradient updates. The values at the edges on the bar plots indicate a computational speedup relative to MAML algorithm.

spectively. The difference in computational boost between
foMAML and protANIL, stems from the fact that, whereas
foMAML removes the need for computing Hessian-vector
products in an inner-loop backward pass, the protANIL
removes the inner-loop almost completely. Furthermore,
since foMAML is identical to MAML during the inference
time, we expectedly do not see any noticeable difference
here. At the same time, however, an absence of the full
inner-update loop for protANIL offers a drastic up to 5-fold
speedup during inference, if compared to both MAML and
foMAML.

3.5. Classification performance

We perform a series of experiments with our imple-
mentations of MAML, foMAML, ANIL, and protANIL
on mini-Imagenet 5-way 5-shot classification benchmark.

The results are tabulated in Tab. With some minor
hyper-parameter tuning (such as adjusting inner-loop learn-
ing rate, number of inner gradient steps, and softmax tem-
perature), we were able to replicate all the published re-

Ours Published
MAML 64.4+ 0.6 63.1+09 [3]
foMAML 63.6+0.7 |63.2+09 [3]
ANIL 61.0+0.8 61.5+0.5 [18]
protANIL 64.1 0.8 —

Table 2: Performance of MAML, foMAML, ANIL, and
protANIL on mini-Imagenet 5-way 5-shot classification
benchmark. Previously published results are shown for ref-
erence.
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Figure 5: The loss and accuracy training curves for MAML and protANIL algorithms on mini-Imagenet 5-way 5-shot clas-

sification problem.

sults, and even saw a slight improvement over the reported
MAML values in Ref. [3]]. The Fig. 5] shows the loss and
accuracy curves both for MAML and protANIL algorithms,
which exhibit very similar dynamics during training. This,
in turn, results in almost indistinguishable performance of
our MAML implementation and protANIL with the test ac-
curacies reaching 64.4% and 64.1%, respectively (Tab. 2).
At the same time, we find that protANIL performs signif-
icantly better (64.4%) than its ANIL counterpart (61.0%),
which can be indicative of the fact that introduction of pro-
totypical head has indeed improved the quality of learned
features.

4. Conclusions and Outlook

The gradient-based MAML algorithm offers a variety of
appealing properties, such as model architecture flexibil-
ity and generalization capabilities, which, however, come
at the cost of high computational complexity. Meanwhile,
the metric-based Prototypical networks, built on a sim-
ple inductive bias mechanism, are found to be highly effi-
cient in the limit of very few training examples. The pro-
posed protANIL algorithm combined the complementary
strengths of these two approaches and significantly lowered
the computational cost at the same time.

Given the very limited time for this project, there are still
many interesting directions to explore in the future work.
For example:

* test the performance of protANIL on other established
datasets for few-shot classification benchmarks;

* closely investigate the effect of the prototypical head
on the quality of the learned features, by e.g. com-
paring the t-SNE [[14]] visualizations of the feature re-
spresentations learned with the protANIL and other
MAML-based variants;

* since most of meta-testing implementations for few-
shot classification approaches operate in a de facto
transductive mode [15] and are somewhat overly op-
timistic due to sharing of the batch-norm statistics be-
tween the test samples, it would be interesting to com-
pare their performance in truly inductive (and more re-
alistic) scenarios;

* investigate other network architectures for the embed-
ding module;

* explore if protANIL can also be successfully employed
for reinforcement learning applications.
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