Meta-Learning Recipe, Black-Box Adaptation,
Optimization-Based Approaches

CS 330



Course Reminders

HW1 due Weds 10/9

First paper presentations & discussions on Wednesday!



Plan for Today

- Recap probabilistic formulation of meta-learning
- General recipe of meta-learning algorithms
- Black-box adaptation approaches

- Optimization-based meta-learning } Part of Homework 2

} Topic of Homework 1!



Recap from Last Time

learn meta-parameters 0: p(60|Dmeta-train ) o o
Dmeta—train — {(D ,r’ Dis)a SRR (Dﬁra an)}

whatever we need to know about D cia-train t0 solve new tasks

D = {(z1,¥1)s -+ (Ths U }

meta-learning: 6™ = arg max log p(0| Dimeta-train) D = {(z%,y"), ..., (z}, y))}

adaptation: ¢* = arg max log p(¢| D™, 6*)

L]

0 = fo-(D")

meta-learning: §* — ] | DY
G 0" = mp Y ogp (DY)
1—=

where ¢; = fo(D}")



General recipe

How to evaluate a meta-learning algorithm
the Omniglot dataset Lake et al. Science 2015

1623 characters from 50 different alphabets

Hebrew } ._Bengali _ Greek Futurama many ClaSSGS, feW examples
G[o[a[I[5] PEPEEET [@[CB[S[L] BRREXE
y X[ aln] Samamsm (M E[R] XV ?i?;gg the “transpose” of MNIST
Fnx ]2 [EEEEEEE (0|8 V]T]o RBCEIFE o |
ST o715 gﬂi?jiﬁ—i a[xMlole] wHT statistics more reflective
iln Felalal PLE(C|Y of the real world
20 instances of each character

Proposes both few-shot discriminative & few-shot generative problems

Initial few-shot learning approaches w/ Bayesian models, non-parametrics
Fei-Fei et al. ‘03 Lake et al. ‘11 Salakhutdinov et al. ‘12 Lake et al. ‘13

Other datasets used for few-shot image recogni5tion: Minilmagenet, CIFAR, CUB, CelebA, others



General recipe

How to evaluate a meta-learning algorithm
5-way, 1-shot image classification (Minilmagenet)

Given 1 example of 5 classes: Classify new examples

held-out classes

meta-training

training classes

Can replace image classifi

cat

any ML
on with: regressiorg, language generation, skill learning, problem



The Meta-Learning Problem: The Mechanistic View

Supervised Learning:

Inputs: X Outputs: Y Data: D = {(X, Y)z}

A7
y = f(x;0)

Meta-Supervised Learning:

X y 1K}\ / D; :{(XvY)j}

tr
Ytest — D xtest 9

Why is this view useful?
Reduces the problem to the design & optimization of f.

Finn. Learning to Learn with Gradients. PhD thesis 2018 !



The Meta-Learning Problem: The Probabilistic View

Supervised Learning:

Inputs: X Outputs: Y Data: D = {(X, }’)@}

A
y = f(x;0) As inference: p(6|D)

Meta-Supervised Learning:

X y 1K}\ / D; :{(X7Y)j}

tr
Ytest — D xtest 9

As inference: p(¢;|D;", 0) max Y logp(¢;| D)

Finn. Learning to Learn with Gradients. PhD thesis 2018 8



General recipe

How to design a meta-learning algorithm
1. Choose a form of p(¢;|D;", 0)

2. Choose how to optimize 8 w.r.t. max-likelihood objective using Deta-train

Can we treat p(¢;|D;", 0) as an inference problem?

Neural networks are good at inference.



Plan for Today

- Recap probabilistic formulation of meta-learning
- General recipe of meta-learning algorithms
- Black-box adaptation approaches

- Optimization-based meta-learning } Part of Homework 2

} Topic of Homework 1!
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Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)

For now: Use deterministic (point estimate) @; = fo (DET) (Bayes vviII‘cdowﬁi"e back later)
ts
Jo yT Train with standard supervised learning!
T | max » ) loggy, (ylx)
T T t Ti (z,y)~Dje"
(1,91) (22,92) (73,93) " —— p—
V . ‘gest
D‘Pr D;}est ’C(¢’L7 Dz )

tr test
mgax;afewi ), Di*")

11



Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)
ts

fo J
l 1. Sample task 7; (or mini batch of tasks)
] — — 0 i 2. Sample disjoint datasets D;*, D;*** from D;

T T T |

ts

(z1,91) (22,92) (23,¥3) L




Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)

fo

— O,

T T T

(z1,91) (22,92) (23,¥3)

w
Dt

yts

T

Yo

|

ts

X

1. Sample task 7T; (or mini batch of tasks)
2. Sample disjoint datasets D}, D;**" from D;

3. Compute ¢; f@(Dfr)
4. Update 6 using Vg L(¢;, DfeSt)




Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)

Challenge
Outputting all neural net parameters does not seem scalable?
Idea: Do not need to output all parameters of neural net, only sufficient statistics
/ yts (Santoro et al. MANN, Mishra et al. SNAIL)
/
T low-dimensional vector h;
—> — — P 9o, represents contextual task information
T | g
(:Elayl) ($2792) (373,'93) xts ' Z { " 9}
—p— st recall: "~ ]—l l| l IJ =

tr
Dz’

t
general form: v~

What architecture should we use for Jo?

— fH(D},;:rai’f

’)



Black-Box Adaptation

LSTMs or Neural turing machine (NTM) Convolutions & attention

External Memory External Memory Ot h e r eXte r n a ‘ Predicted Label S;z

&2 I S

) P memory mechanisms g‘ 3

= el

| || Backpropagated I Memary ‘ i | _——+— 4+—| E

? ? Signal ? :IO /CIJ /Cl) /(i) E

1|~ ~ - :

X,: X, X Meta Memory access ; O' O’ O' -

| ye 2 | | | learner - E W E

" . . Slow wcights Fast weights o E & 7 :

| Bind a.nd Encode Retrieve Bound Information — “m“elgm gD 5 2’;“ eteri-arion E (l) /('2/ ’4(3' /? E

Meta-Learning with Memory-Augmented Neural Networks ‘ ;cly’/cln"/cl)/ﬁ::

. . . “rqe / _ “asi 1 1~ -~
Santoro, Bartunov, Botvinick, Wierstra, Lillicrap. ICML ‘16 e e | Meramio paraneieization © o o o;

. A A
Slow weights : Fasl weights Oulpul (E:S:::))'CS, Xt_3 xt_z Xt-l Xt
Feedforward + average = YL Ve Ya -

Meta Networks A Simple Neural Attentive Meta-Learner
ro W or r : , : . (
L dj)\ 2 Munkhdalai, Yu. ICML ‘17 Mishra, Rohaninejad, Chen, Abbeel. ICLR ‘18

y L y : _
G:D . O / 5 - Method 5-Way Omniglot 20-Way Omniglot
vi |l vo || va : ~e e 1-shot S-shot 1-shot 5-shot
SNAIL, Ours 99.07% +0.16% 99.78% +0.09% | 97.64% + 0.30% | 99.36% =+ 0.18%
X4 h X3 X4 X5

Observe  Aggregate Predict -Way Mini-ImageNet

Conditional Neural Processes. Garnelo, Ros¢ ' data processi
Ramalho, Saxton, Shanahan, Teh, Rezende, § ' : Slmp e b‘aCk-OOX meta—\eamer

not Omniglot classif

N g shot | 5-shot
+0.99% | 68.88% + 0.92%




Black-Box Adaptation

Key idea: Train a neural network to represent p(¢;|D;", 0)
ts

/o g ,
T + expressive
- . O 9, + easy to combine with variety of
T f f I learning problems (e.g. SL, RL)
(1,91) (22,92) (23,93) x* - complex model w/ complex task:
C—_ —— challenging optimization problem
D" D;est - often data-inefficient

How else can we represent p(¢;|D;", 0) ?

s there a way to infer all parameters in a scalable way?

What if we treat it as an optimization procedure?

10



Plan for Today

- Recap probabilistic formulation of meta-learning
- General recipe of meta-learning algorithms
- Black-box adaptation approaches

- Optimization-based meta-learning } Part of Homework 2

} Topic of Homework 1!
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Optimization-Based Inference
Key idea: Acquire ¢; through optimization.

max log p(D;"|¢:) + log p(¢4]0)

Meta-parameters 6 serve as a prior. ~ What form of prior?

One successful form of prior knowledge: initialization for fine-tuning

18



Optimization-Based Inference

/pre—trained parameters
Fine-tuning ¢ — 0 — va@[:(é’, DY

) training data

| | for new task
(typically for many gradient steps)

Pre-trained Dataset PASCAL SUN
Original 58.3 52.2
Random 41.3[21] 35.7 [?]

Some common practices

What makes ImageNet good for transfer learning? Huh, Agrawal, Efros. ‘16

- Fine-tune with a smaller learning rate
Where do you get the pre-trained parameters? - Lower learning rate for lower layers
- ImageNet classification - Freeze earlier layers, gradually unfreeze
- Models trained on large language corpora (BERT, LMs) - Reinitialize last layer
- Other unsupervised learning techniques - Search over hyperparameters via cross-val
- Whatever large, diverse dataset you might have - Architecture choices matter (e.g. ResNets)

Pre-trained models often available online.
19



Optimization-Based Inference

/pre—trained parameters
: : tr
Fine-tunin —
5 ¢ A 0 CVVQ,C(Q, D ) training data

| | for new task
(typically for many gradient steps)

Universal Langauge Model Fine-Tuning for Text Classification. Howard, Ruder. ‘18
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Figure 3: Validation error rates for supervised and semi-supervised ULMFEIT vs. training from scratch
with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning less effective with very small datasets.



Optimization-Based Inference

/pre—trained parameters
Fine-tuning ¢ — 0 — CVVQL:(Q, DY

. ) training data
[test-time]

for new task

Meta-learning m@in Z £(9 — Oéveﬁ(Q, Dgr)v foS)
task 1

Key idea: Over many tasks, learn parameter vector 0 that transfers via fine-tuning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 20174



Optimization-Based Inference
m@in Z L(0 —aVeLl(0,D;"), D)

task 17 |
— Mmeta-learning

9 parameter vector 9 ---- learning/adaptation

being meta-learned

¢>l< optimal parameter
1 vector for task | VL,

e

Model-Agnostic Meta-Learning
Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 201742



Optimization-Based Inference

Key idea: Acquire @; through optimization.
General Algorithm:

Arrertzedappreach- Optimization-based approach

1. Sample task 7;  (or mini batch of tasks)
2. Sample disjoint datasets D;", D;**" from D;

3. Compute-o~Fg(P Optimize ¢; <+ 0 — aVeL(0, D)
4. Update 6 using Vg L(¢;, DfeSt)

—> brings up second-order derivatives

Do we need to compute the full Hessian? 3,

-> whiteboard
Do we get higher-order derivatives with more inner gradient steps?



Optimization vs. Black-Box Adaptation

Black-box adaptation Model-agnostic meta-learning
general form: y*° = fo(D;", 2*°) v = fmamn (D), )
Y — f¢i (xts)
R . . ! where ¢; = 0 — aVL(0,D;")
I T i y MAML can be viewed as computation graph,
(x1,y1) (22,92) (w3,943) 2% with embedded gradient operator

Note: Can mix & match components of computation graph

Learn initialization but replace gradient update with learned network
where ¢; = 0 — aVg£O-PH
f(@, D}zrv Vo )

Ravi & Larochelle ICLR 17
(actually precedes MAML)

This computation graph view of meta-learning will come back again!



performance

Optimization vs. Black-Box Adaptation

How well can learning procedures generalize to similar, but extrapolated tasks?

5-way, l-shot accuracy
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Omniglot image classification

e N ~
o TN
R "N
7 \
/ \

/ e M AML

- SNAIL
/ — MetaNet

] _

08 -06 -04 —02 0.4
dlglt shear radlans

1UU

e
wun

75

5-way, 1-shot accuracy

70

0.25

MAML SNAIL,

MetaNetworks

e M AML
SNAIL
-« MetaNet

Y

Does this structure come at a cost?

1.00 125
digit scale

Finn & Levine ICLR 18



Black-box adaptation Optimization-based (MAML)
t tr .t
y'™ = fo(DJ",a") y"™ = faanr (DY, o)

Does this structure come at a cost?

For a sufficiently deep f, t
MAML function can approximate any function of D,,;r, X
Finn & Levine, ICLR 2018

ts

Assumptions:
nonzero
loss function gradient does not lose information about the label
. . mytr .
datapoints in Di are unique

Why is this interesting?
MAML has benefit of inductive bias without losing expressive power.

20



Probabilistic Interpretation of Optimization-Based Inference

Key idea: Acquire @; through optimization.

Meta-parameters 6 serve as a prior. One form of prior knowledge: initialization for fine-tuning

task-specific parameters

RESNS

g \
4 R
¢i Xin

.

meta-parameters

max log H p(D;|6

= logH/p(Dﬂqﬁi)p(qbiW)dgbi (empirical Bayes)

~ long (Di|¢i)p(:|6)

\I\/IAP estimate

How to compute MAP estimate?

Gradient descent with early stopping = MAP inference under

Gaussian prior with mean at in

(exact in linear case, approxi

itial parameters [Santos "96]

mate in nonlinear case)

MAML approximates hierarchical Bayesian inference. Grant et al. ICLR ‘18



Optimization-Based Inference

Key idea: Acquire ¢; through optimization.
Meta-parameters 6 serve as a prior. One form of prior knowledge: initialization for fine-tuning

Gradient-descent + early stopping (MAML): implicit Gaussian prior ¢ < 6 — aVQE(H, Dtr)

Other forms of priors?

A
Gradient-descent with explicit Gaussian prior ¢ < rré)in L(¢', D) - > 160 — ¢'||°
Rajeswaran et al. implicit MAML ‘19

Bayesian linear regression on learned features Harrison et al. ALPaCA ‘18

Closed-form or convex optimization on learned features

ridge regression, logistic regression support vector machine
Bertinetto et al. R2-D2 ‘19 Lee et al. MetaOptNet ‘19

Current SOTA on few-shot image classification




Optimization-Based Inference

Key idea: Acquire @; through optimization.

Challenges

How to choose architecture that is effective for inner gradient-step?

Idea: Progressive neural architecture search + MAML

- finds highly non-standard arc
- different from architectures t

Minilmagenet, 5-way 5-shot

nitectu

Nat wo

e (dee

(Kim et al. Auto-Meta)

0 & narrow)

k well -

‘or standard supervised learning

MAML, basic architecture: 63.11%

MAML + AutoMeta: 74.65%

29



Optimization-Based Inference

Key idea: Acquire @; through optimization.

Challenges
Bi-level optimization can exhibit instabilities.

Idea: Automatically learn inner vector learning rate, tune outer learning rate
(Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop
(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step  (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.
(Finn et al. bias transformation, Zintgraf et al. CAVIA)

Takeaway: a range of simple tricks that can help optimization significantly

30



Optimization-Based Inference

Key idea: Acquire @; through optimization.

Challenges

Backpropagating through many inner gradient steps is compute- & memory-

iIntensive.
doi
dd (

Takeaway: works for simple few-s

Idea: [Crudely] approximate

-1N

identity

n et al. first-orde

not problems,

for more complex meta-learning problems.

" MAML ‘17, Nic

out (anecdotal

nol et al. Reptile "18)

V) not

Can we compute the meta-gradient without differentiating through the optimization path?

-> whiteboard

Idea: Derive meta-gradient using the implicit function theorem
(Rajeswaran, Finn, Kakade, Levine. Implicit MAML "19)

31



Optimization-Based Inference

Can we compute the meta-gradient without differentiating through the optimization path?

1.0

0.8

0.6

0.4

0.2

0.0

Idea: Derive meta-gradient using the implicit function theorem
(Rajeswaran, Finn, Kakade, Levine. Implicit MAML)

Memory and computation trade-offs

GPU Memory (Normalized)

---= Capacity ----eeemeaa-
—e— 1MAML (all CG)

0 5 10 15

# Grad Steps

0.5

0.4

0.3

0.2

0.1

Compute Time (sec/iter)

5 10
# Grad Steps

15

ttt

i

Allows for second-order optimizers in inner loop

Algorithm S-way 1-shot 5-way 5-shot 20-way 1-shot 20-way 5-shot

MAML [15] 987 +04% | 999+01% | 958+03% | 989 +02%

first-order MAML [15] 9083+05% | 992+02% | 894+05% | 97.9+0.1%

Reptile [43] 97.68 + 0.04% | 99.48 + 0.06% | 89.43 + 0.14% | 97.12 + 0.32%
ik iMAML, GD (ours) 99.16 + 0.35% | 99.67 + 0.12% | 94.46 + 0.42% | 98.69 + 0.1%
Fgm“&m ,) _IMAML, Hessian Firee (ours) | 9950 +0.26% | 9974 £0.11% | 9618 +0.36% | 9914 £ 0.1%
l —

IMAML (CG=5)
iMAML (CG=10)

A very recent development (NeurlPS '19)
(thus, all the typical caveats with recent work)

32



Optimization-Based Inference

Key idea: Acquire ¢; through optimization.

Takeaways: Construct bi-level optimization p
+ positive inductive bias at the start of meta

roblem.
-learning

+ consistent procedure, tends to extrapolate better

+ maximally expressive with sufficiently dee

0 hetwork

+ model-agnostic (easy to combine with you
architecture)

r favorite

- typically requires second-order optimization
- usually compute and/or memory intensive

33



Wednesday: Applications of meta-learning, multi-task learning to:
imitation learning, generative models, drug discovery, machine translation

Next time: . . .
student presentations & discussions

Monday: Non-parametric few-shot learners, comparison of approaches
lecture

34



