
Reinforcement Learning Tutorial

Dilip Arumugam

Stanford University

CS330: Deep Multi-Task & Meta Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 1 / 29



Learning Goals

Walk away with a cursory understanding of the following concepts in RL:

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

Much more to cover than we have time for today
Many other Stanford courses that study RL to varying degrees:

CS229, CS234, CS236, CS238, CS239, CS332

MS&E338, MS&E346

EE277

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 2 / 29



Learning Goals

Walk away with a cursory understanding of the following concepts in RL:

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

Much more to cover than we have time for today

Many other Stanford courses that study RL to varying degrees:

CS229, CS234, CS236, CS238, CS239, CS332

MS&E338, MS&E346

EE277

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 2 / 29



Learning Goals

Walk away with a cursory understanding of the following concepts in RL:

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

Much more to cover than we have time for today
Many other Stanford courses that study RL to varying degrees:

CS229, CS234, CS236, CS238, CS239, CS332

MS&E338, MS&E346

EE277

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 2 / 29



Some details & disclaimers

Please do ask questions as they come up

In the interest of time, I may defer some questions to the end

Be aware that these slides use one particular notation

This should (for the most part) align with the notation used in lectures
You will find many equivalent, alternative, or more general notations in
other places

Use office hours to resolve any lingering confusions after today

The rest of the course builds heavily upon these foundational concepts

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 3 / 29



Some details & disclaimers

Please do ask questions as they come up

In the interest of time, I may defer some questions to the end

Be aware that these slides use one particular notation

This should (for the most part) align with the notation used in lectures
You will find many equivalent, alternative, or more general notations in
other places

Use office hours to resolve any lingering confusions after today

The rest of the course builds heavily upon these foundational concepts

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 3 / 29



Some details & disclaimers

Please do ask questions as they come up

In the interest of time, I may defer some questions to the end

Be aware that these slides use one particular notation

This should (for the most part) align with the notation used in lectures
You will find many equivalent, alternative, or more general notations in
other places

Use office hours to resolve any lingering confusions after today

The rest of the course builds heavily upon these foundational concepts

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 3 / 29



Some details & disclaimers

Please do ask questions as they come up

In the interest of time, I may defer some questions to the end

Be aware that these slides use one particular notation

This should (for the most part) align with the notation used in lectures
You will find many equivalent, alternative, or more general notations in
other places

Use office hours to resolve any lingering confusions after today

The rest of the course builds heavily upon these foundational concepts

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 3 / 29



Agent-Environment Interface

Agent

Environment

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 4 / 29



Agent-Environment Interface

Agent

Environment

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 4 / 29



Agent-Environment Interface

Agent

Environment

st

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 5 / 29



Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment

atst

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 6 / 29



Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment
rt = R(st , at)

atst

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 7 / 29



Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment
rt = R(st , at)

st+1 ∼ T (·|st , at)

atst

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 8 / 29



Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment
rt = R(st , at)

st+1 ∼ T (·|st , at)

atst rt , st+1

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 9 / 29



Running the Agent-Environment Interface

Let’s watch a reinforcement-learning agent!

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 10 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 11 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 11 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉

S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R

T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)

How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉
S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 12 / 29



Value Functions

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

Image from CS234 - Lecture 3

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 13 / 29



Value Functions

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

Image from CS234 - Lecture 3

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 13 / 29



Value Functions

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

Image from CS234 - Lecture 3

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 13 / 29



Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 14 / 29



Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 14 / 29



Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 14 / 29



Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 14 / 29



Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 14 / 29



Checkpoint #1 – Questions?

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 15 / 29



Reinforcement Learning vs. Planning [Sutton and Barto,
1998, Kaelbling et al., 1996, Littman, 2015]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 16 / 29



Planning Algorithms

Take a full MDP as input
We know the transition function and the reward function!

Alternative perspective: the agent has a perfect simulator of the
environment in its brain
Sit and think until an optimal policy has been computed

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 17 / 29



Value Iteration [Bellman, 1957]

Algorithm 1 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S

∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Value Iteration [Bellman, 1957]

Algorithm 2 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S
∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Value Iteration [Bellman, 1957]

Algorithm 3 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S
∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Value Iteration [Bellman, 1957]

Algorithm 4 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S
∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Value Iteration [Bellman, 1957]

Algorithm 5 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S
∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Value Iteration [Bellman, 1957]

Algorithm 6 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S
∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]
CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 18 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S

An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S
An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S
An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S
An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S
An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S
An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 19 / 29



Convergence of Value Iteration

Why does VI converge to the optimal value function of the input
MDP?

An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

Fact

The Bellman operator B : R|S| → R|S| is a γ-contraction mapping with
respect to || · ||∞. That is, for any two value functions V ,V ′ ∈ R|S|,

||BV − BV ′||∞ ≤ γ||V − V ′||∞ = γmax
s∈S
|V (s)− V ′(s)|.

VI converges as a consequence of the Banach Fixed-Point Theorem

Technically, we looked at an approximate version [Tseng, 1990,
Littman et al., 1995]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 20 / 29



Convergence of Value Iteration

Why does VI converge to the optimal value function of the input
MDP?

An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

Fact

The Bellman operator B : R|S| → R|S| is a γ-contraction mapping with
respect to || · ||∞. That is, for any two value functions V ,V ′ ∈ R|S|,

||BV − BV ′||∞ ≤ γ||V − V ′||∞ = γmax
s∈S
|V (s)− V ′(s)|.

VI converges as a consequence of the Banach Fixed-Point Theorem

Technically, we looked at an approximate version [Tseng, 1990,
Littman et al., 1995]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 20 / 29



Convergence of Value Iteration

Why does VI converge to the optimal value function of the input
MDP?

An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

Fact

The Bellman operator B : R|S| → R|S| is a γ-contraction mapping with
respect to || · ||∞. That is, for any two value functions V ,V ′ ∈ R|S|,

||BV − BV ′||∞ ≤ γ||V − V ′||∞ = γmax
s∈S
|V (s)− V ′(s)|.

VI converges as a consequence of the Banach Fixed-Point Theorem

Technically, we looked at an approximate version [Tseng, 1990,
Littman et al., 1995]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 20 / 29



Convergence of Value Iteration

Why does VI converge to the optimal value function of the input
MDP?

An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

Fact

The Bellman operator B : R|S| → R|S| is a γ-contraction mapping with
respect to || · ||∞. That is, for any two value functions V ,V ′ ∈ R|S|,

||BV − BV ′||∞ ≤ γ||V − V ′||∞ = γmax
s∈S
|V (s)− V ′(s)|.

VI converges as a consequence of the Banach Fixed-Point Theorem

Technically, we looked at an approximate version [Tseng, 1990,
Littman et al., 1995]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 20 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 21 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 7 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S

for k ∈ [K ] do
Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 8 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S
for k ∈ [K ] do

Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )

for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 9 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S
for k ∈ [K ] do

Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 10 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S
for k ∈ [K ] do

Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 11 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S
for k ∈ [K ] do

Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 12 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S
for k ∈ [K ] do

Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 22 / 29



Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 13 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S

for t = 1, 2, 3, . . . do
Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))
V π(st) = V π(st) + αδt

end for

Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 23 / 29



Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 14 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S
for t = 1, 2, 3, . . . do

Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))
V π(st) = V π(st) + αδt

end for

Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 23 / 29



Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 15 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S
for t = 1, 2, 3, . . . do

Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))

V π(st) = V π(st) + αδt
end for

Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 23 / 29



Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 16 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S
for t = 1, 2, 3, . . . do

Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))
V π(st) = V π(st) + αδt

end for

Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 23 / 29



Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 17 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S
for t = 1, 2, 3, . . . do

Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))
V π(st) = V π(st) + αδt

end for

Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 23 / 29



TD(λ) [Sutton, 1984, 1988]

So what’s the difference?

Consider what happens to Monte-Carlo policy evaluation when run on
a highly-stochastic MDP

A general bias-variance trade-off [Kearns and Singh, 2000]
Greater reliance on environment increases variance but incurs no bias
Greater reliance on bootstrapping increases bias with reduced variance

Can we live in between Monte-Carlo and dynamic programming?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 24 / 29



Q-Learning [Watkins and Dayan, 1992]

Value-based reinforcement-learning algorithms exploit the fact that

π?(s) = arg max
a∈A

Q?(s, a)

Algorithm 18 Tabular Q-learning with ε-greedy exploration

Input: Learning rate α > 0, Initial Q-value qinit, Exploration probability
ε ≥ 0
Initialize Q̂?(s, a) = qinit, ∀s, a ∈ S ×A
for t = 1, 2, 3, . . . do

Observe current state st

π(a | s) = (1− ε)1

(
a = arg max

a?∈A
Q̂?(s, a?)

)
+ ε
|A|

Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Q̂?(st , at) = Q̂?(st , at) + α

(
rt + γ max

a′∈A
Q̂?(st+1, a

′)− Q̂?(st , at)

)
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 25 / 29



Q-Learning [Watkins and Dayan, 1992]

Value-based reinforcement-learning algorithms exploit the fact that

π?(s) = arg max
a∈A

Q?(s, a)

Algorithm 19 Tabular Q-learning with ε-greedy exploration

Input: Learning rate α > 0, Initial Q-value qinit, Exploration probability
ε ≥ 0
Initialize Q̂?(s, a) = qinit, ∀s, a ∈ S ×A

for t = 1, 2, 3, . . . do
Observe current state st

π(a | s) = (1− ε)1

(
a = arg max

a?∈A
Q̂?(s, a?)

)
+ ε
|A|

Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Q̂?(st , at) = Q̂?(st , at) + α

(
rt + γ max

a′∈A
Q̂?(st+1, a

′)− Q̂?(st , at)

)
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 25 / 29



Q-Learning [Watkins and Dayan, 1992]

Value-based reinforcement-learning algorithms exploit the fact that

π?(s) = arg max
a∈A

Q?(s, a)

Algorithm 20 Tabular Q-learning with ε-greedy exploration

Input: Learning rate α > 0, Initial Q-value qinit, Exploration probability
ε ≥ 0
Initialize Q̂?(s, a) = qinit, ∀s, a ∈ S ×A
for t = 1, 2, 3, . . . do

Observe current state st

π(a | s) = (1− ε)1

(
a = arg max

a?∈A
Q̂?(s, a?)

)
+ ε
|A|

Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Q̂?(st , at) = Q̂?(st , at) + α

(
rt + γ max

a′∈A
Q̂?(st+1, a

′)− Q̂?(st , at)

)
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 25 / 29



Q-Learning [Watkins and Dayan, 1992]

Value-based reinforcement-learning algorithms exploit the fact that

π?(s) = arg max
a∈A

Q?(s, a)

Algorithm 21 Tabular Q-learning with ε-greedy exploration

Input: Learning rate α > 0, Initial Q-value qinit, Exploration probability
ε ≥ 0
Initialize Q̂?(s, a) = qinit, ∀s, a ∈ S ×A
for t = 1, 2, 3, . . . do

Observe current state st

π(a | s) = (1− ε)1

(
a = arg max

a?∈A
Q̂?(s, a?)

)
+ ε
|A|

Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Q̂?(st , at) = Q̂?(st , at) + α

(
rt + γ max

a′∈A
Q̂?(st+1, a

′)− Q̂?(st , at)

)
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 25 / 29



Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo

Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo
Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo
Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo
Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo
Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4


Deep Q-Network (DQN) [Mnih et al., 2015]

Augment Q-learning with general function approximation

Q̂?
θ : S → R|A|

One forward pass yields Q?-values for all actions

Experience replay [Lin, 1992]

Maintain a FIFO buffer D of past (s, a, r , s ′) experiences for training
Sample mini-batches uniformly at random for updating θ

Target networks

Maintain old parameters θ− from C updates ago
Compute TD(0)-target as r + γ max

a′∈A
Q̂?
θ−(st+1, a

′)

Bring us closer to supervised learning for stability

Final loss function

L(θ) = E(s,a,r ,s′)∼D

[
(r + γ max

a′∈A
Q̂?
θ−(s ′, a′)− Q̂?

θ (s, a))2
]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 27 / 29



DQN Results

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 28 / 29



Final Questions, Takeaways, & Parting Thoughts

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 29 / 29



Richard Bellman. A Markovian decision process. Journal of mathematics
and mechanics, pages 679–684, 1957.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. J. Artif. Intell. Res., 4:237–285, 1996.

Michael J Kearns and Satinder P Singh. Bias-variance error bounds for
temporal difference updates. In Proceedings of the Thirteenth Annual
Conference on Computational Learning Theory, pages 142–147, 2000.

Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293–321,
1992.

Michael L Littman. Reinforcement learning improves behaviour from
evaluative feedback. Nature, 521(7553):445–451, 2015.

Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the
complexity of solving Markov decision problems. In Proceedings of the
Eleventh conference on Uncertainty in Artificial Intelligence, pages
394–402, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 29 / 29



Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, 1994.

Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement
learning. 1998.

Richard Stuart Sutton. Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts Amherst, 1984.

Paul Tseng. Solving H-horizon, stationary Markov decision problems in
time proportional to log(H). Operations Research Letters, 9(5):287–297,
1990.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 29 / 29


	Problem Formulation
	MDPs & Value Functions
	Planning
	Temporal-Difference Methods
	Q-Learning
	References

