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Learning Goals

Walk away with a cursory understanding of the following concepts in RL:
@ Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning
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Walk away with a cursory understanding of the following concepts in RL:
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@ Value Functions
e Planning
@ Temporal-Difference Methods
@ Q-Learning

Much more to cover than we have time for today
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Learning Goals

Walk away with a cursory understanding of the following concepts in RL:
@ Markov Decision Processes
@ Value Functions
e Planning
@ Temporal-Difference Methods
@ Q-Learning

Much more to cover than we have time for today
Many other Stanford courses that study RL to varying degrees:

e (5229, CS234, CS236, CS238, CS239, CS332
o MS&E338, MS&E346
e EE277

Autumn 2021 - Finn & Hausman
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Some details & disclaimers

@ Please do ask questions as they come up
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Some details & disclaimers

@ Please do ask questions as they come up
@ In the interest of time, | may defer some questions to the end
@ Be aware that these slides use one particular notation

o This should (for the most part) align with the notation used in lectures
e You will find many equivalent, alternative, or more general notations in
other places
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Some details & disclaimers

@ Please do ask questions as they come up
@ In the interest of time, | may defer some questions to the end
@ Be aware that these slides use one particular notation
o This should (for the most part) align with the notation used in lectures
e You will find many equivalent, alternative, or more general notations in
other places
@ Use office hours to resolve any lingering confusions after today
e The rest of the course builds heavily upon these foundational concepts
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Agent-Environment Interface
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Agent-Environment Interface
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Agent-Environment Interface
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Agent-Environment Interface

4 N\
> Agent

ag ~~ 7T9(‘|St)

|\ J

St at

4 N\
Environment <

|\ J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman



Agent-Environment Interface
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Agent-Environment Interface
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Agent-Environment Interface

> Agent
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Running the Agent-Environment Interface

Let’'s watch a reinforcement-learning agent!
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https://www.youtube.com/watch?v=9XRL6d-yxp4

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]
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Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman



Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions
R Reward function R : S x A — R
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions
R Reward function R : S x A — R
T Transition function 7 : S x A — A(S)
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A - R

T Transition function 7 : S x A — A(S)
~ Discount factor v € [0, 1)
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A — R

T Transition function 7 : S x A — A(S)

~ Discount factor v € [0, 1)
Behavior is encoded via a stationary, stochastic policy 7 : S — A(A)
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Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A — R

T Transition function 7 : S x A — A(S)

~ Discount factor v € [0, 1)
Behavior is encoded via a stationary, stochastic policy 7 : S — A(A)

How do we assess the performance of a given policy 77

Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman
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Value Functions
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Value Functions

V7( 27 R(st, at) ‘ So=Ss
t=0
Q" (s, a) ny R(st, at) ‘ So=S,3=a
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Value Functions

V7( 27 R(st, at) ‘ So=Ss
=0
Q" (s, a) ny R(st, at) ‘ So=S,a0=a

| | |
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Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i YR(st, at)
t=0

so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0

So=$,20=31|
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Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i YR(st, at)
t=0

so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)]  Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]
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Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i'yt7€(st, at) ) so = s:| Q™ (s,a)=E l:i'th(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)]  Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3
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Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i'yt7€(st, at) ) so = s:| Q™ (s,a)=E l:i'th(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)]  Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3

@ Bellman Optimality Equations - identify policy 7m* achieving maximal value
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Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i Y R(st,at) | so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)]  Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3

@ Bellman Optimality Equations - identify policy 7m* achieving maximal value

VH(s) £ VT () =maxQ*(s5,8)  Q(5,9) £ Q7 (s,8) = R(s, a)+1Eg (s [V ()]
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Checkpoint #1 — Questions?

v~ Markov Decision Processes
v~ Value Functions

@ Planning

@ Temporal-Difference Methods
@ @-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial
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Reinforcement Learning vs. Planning [Sutton and Barto,
1998, Kaelbling et al., 1996, Littman, 2015]
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Planning Algorithms

@ Take a full MDP as input

o We know the transition function and the reward function!
o Alternative perspective: the agent has a perfect simulator of the
environment in its brain
@ Sit and think until an optimal policy has been computed

0.88 0.94 1.0 1.0

0.83 0.83 1.0

0.78 0.74 0.79 0.62
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Value Iteration [Bellman, 1957]

Algorithm 1 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O (s) =0, Vs € S
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Value Iteration [Bellman, 1957]

Algorithm 2 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S

A=00, k=0

while A > ¢ do

Autumn 2021 — Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial



Value Iteration [Bellman, 1957]

Algorithm 3 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS

Autumn 2021 — Finn & Hausman
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Value Iteration [Bellman, 1957]

Algorithm 4 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA

Autumn 2021 - Finn & Hausman
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Value Iteration [Bellman, 1957]

Algorithm 5 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA
end for
A = max |V (s) = V()] k= k+1
se
end while

Autumn 2021 - Finn & Hausman
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Value Iteration [Bellman, 1957]

Algorithm 6 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA
end for
A = max |V (s) = V()] k= k+1
se
end while

Q*(s,a)

Output: 7*(s) = argmax | R(s,a) + 7 Z T(s' | s,a)V*(s)
acA s'eS

Autumn 2021 - Finn & Hausman
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S

@ An operator maps from input functions to output functions
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

BV(s) = max R(s,a)+~ Z T(s'|s,a)V(s)

s'eS
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

— / /
BV(s) = max R(s,a) + VS,EG;T(S | s,a)V(s')

e For a finite MDP (|S| < o), {S = R} = RISl — B: RISl - RIS
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Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S

An operator maps from input functions to output functions

For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

BV(s) = max R(s,a)+~ Z T(s'|s,a)V(s)

s'eS

For a finite MDP (|S| < ), {S — R} = RISl — B RISI — RIS
From the VI algorithm:

v — gy,
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Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?
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Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together
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Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

The Bellman operator B : RISl — RISI js a v-contraction mapping with
respect to || - ||oo. That is, for any two value functions V, V' € RIS|,

IBY = BVllas <A1V = Vlloo =y max | V(s) = V().
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Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

The Bellman operator B : RISl — RISI js a v-contraction mapping with
respect to || - ||oo. That is, for any two value functions V, V' € RIS|,

IBY = BVllas <A1V = Vlloo =y max | V(s) = V().

@ VI converges as a consequence of the Banach Fixed-Point Theorem

@ Technically, we looked at an approximate version | ,

]
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Policy Evaluation

@ An illustrative warm-up before we get to full RL
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Policy Evaluation

@ An illustrative warm-up before we get to full RL

@ A step up from planning — no model of the environment
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Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?
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Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment
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Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment

Different goal than trying to learn 7*
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Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment

Different goal than trying to learn 7*

First attempt: recall that

[Z’}/ st,at ’50251.
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 7 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 8 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do
Sample trajectory T = (sp, a0, 0, S1, 31, My -+ ST—1,3T—1, FT—1,5T)
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 9 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 10 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1
-
G(st) = G(se)+ S Af tre

t'=t
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 11 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(st) = N(s¢) +1
-
G(st) = G(st) + ; Yty

t'=t
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Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 12 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1
-
G(st) = G(se)+ S Af tre

t'=t
V(1) = ()
end if
end for
end for
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Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 13 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial
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Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 14 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
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Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 15 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))
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Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 16 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))
V7 (st) = V™ (st) + ade
end for
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Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 17 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))
V7 (st) = V™ (st) + ade
end for

@ Leverage bootstrapping to incrementally align value function
estimates
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[Sutton, 1984, 1988|

@ So what's the difference?

o Consider what happens to Monte-Carlo policy evaluation when run on
a highly-stochastic MDP

@ A general bias-variance trade-off [ |

o Greater reliance on environment increases variance but incurs no bias
o Greater reliance on bootstrapping increases bias with reduced variance

@ Can we live in between Monte-Carlo and dynamic programming?

TD())
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Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA
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Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 19 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0 R
Initialize Q*(s, a) = @Ginit, Vs, a € S x A
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Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 20 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0
Initialize @*(s, a) = Ginit, Vs,a € S x A
fort=1,2,3,... do

Observe current state s;

m(als)=(1-¢)l (a — arg max Q*(s, a*)) +

a*eA
Execution action a; ~ (- | st)
Observe reward r; and next state s;y1

R

PN
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Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 21 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0
Initialize @*(s, a) = Ginit, Vs,a € S x A
fort=1,2,3,... do

Observe current state s;

m(als)=(1-¢)l (a — arg max Q*(s, a*)) +

a*eA
Execution action a; ~ (- | st)
Observe reward r; and next state s;y1

@*(Sn 3t) = Q\*(Sn 3t) +« (ft + meaj @*(5t+17 a’) - @*(Sh 3t))
a

R

PN

1le ()
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Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
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https://www.youtube.com/watch?v=9XRL6d-yxp4

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:

@ How does the gjnit parameter influence learning?

o Why didn't we start executing the optimal policy after collecting the
coin for the first time?
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Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:
@ How does the gjnit parameter influence learning?
o Why didn't we start executing the optimal policy after collecting the
coin for the first time?

o Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?
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Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:
@ How does the gjnit parameter influence learning?
o Why didn't we start executing the optimal policy after collecting the
coin for the first time?
o Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

@ What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?
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Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:

@ How does the gjnit parameter influence learning?

o Why didn't we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

@ What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

@ Could the environment have given rewards in some other way that
could have made learning faster?
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Deep Q-Network (DQN) [Mnih et al., 2015]

o Augment Q-learning with general function approximation
o Q:S5—RM

o One forward pass yields Q@*-values for all actions

Experience replay | ]

e Maintain a FIFO buffer D of past (s, a, r,s’) experiences for training
e Sample mini-batches uniformly at random for updating 6

@ Target networks

o Maintain old parameters 6~ from C updates ago
o Compute TD(0)-target as r + v max Q- (st41,a")
a'e

e Bring us closer to supervised learning for stability

o Final loss function

£(0) = E(srsyep |(r+7max Qj(s', &) = Qj(s. 2)°
a
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DQN Results
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Final Questions, Takeaways, & Parting Thoughts

v~ Markov Decision Processes
v~ Value Functions

v~ Planning

v~ Temporal-Difference Methods
v~ Q-Learning
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