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Learning Goals

Walk away with a cursory understanding of the following concepts in RL:

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

Much more to cover than we have time for today
Many other Stanford courses that study RL to varying degrees:

CS229, CS234, CS236, CS238, CS239, CS332

MS&E338, MS&E346

EE277
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Some details & disclaimers

Please do ask questions as they come up

In the interest of time, I may defer some questions to the end

Be aware that these slides use one particular notation

This should (for the most part) align with the notation used in lectures
You will find many equivalent, alternative, or more general notations in
other places

Use office hours to resolve any lingering confusions after today

The rest of the course builds heavily upon these foundational concepts
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Agent-Environment Interface

Agent

Environment
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Agent-Environment Interface

Agent

Environment

st
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Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment

atst

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 6 / 29



Agent-Environment Interface

Agent
at ∼ πθ(·|st)
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rt = R(st , at)
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Agent-Environment Interface

Agent
at ∼ πθ(·|st)

Environment
rt = R(st , at)

st+1 ∼ T (·|st , at)

atst rt , st+1
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Running the Agent-Environment Interface

Let’s watch a reinforcement-learning agent!
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https://www.youtube.com/watch?v=9XRL6d-yxp4


Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]
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Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

Infinite-horizon, discounted MDP M = 〈S,A,R, T , γ〉

S Set of states

A Set of actions

R Reward function R : S ×A → R
T Transition function T : S ×A → ∆(S)

γ Discount factor γ ∈ [0, 1)

Behavior is encoded via a stationary, stochastic policy π : S → ∆(A)
How do we assess the performance of a given policy π?
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Value Functions

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

Image from CS234 - Lecture 3
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Value Functions & Bellman Equations

Bellman Equations (Policy evaluation)

Vπ(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
Qπ(s, a) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s, a0 = a

]

V π(s) = Ea∼π(·|s)[Q
π(s, a)] Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a)[V

π(s ′)]

Image from CS234 - Lecture 3

Bellman Optimality Equations - identify policy π? achieving maximal value

V ?(s) , Vπ
?
(s) = max

a∈A
Q?(s, a) Q?(s, a) , Qπ

?
(s, a) = R(s, a)+γEs′∼T (·|s,a)[V

?(s′)].
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Checkpoint #1 – Questions?

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning
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Reinforcement Learning vs. Planning [Sutton and Barto,
1998, Kaelbling et al., 1996, Littman, 2015]
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Planning Algorithms

Take a full MDP as input
We know the transition function and the reward function!

Alternative perspective: the agent has a perfect simulator of the
environment in its brain
Sit and think until an optimal policy has been computed
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Value Iteration [Bellman, 1957]

Algorithm 1 Value Iteration (VI)

Input: Finite MDP 〈S,A,R, T , γ〉, Tolerance ε > 0
Initialize V (0)(s) = 0, ∀s ∈ S

∆ =∞, k = 0
while ∆ > ε do

for (s, a) ∈ S ×A do
Q(k+1)(s, a) = R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (k)(s ′)

V (k+1)(s) = max
a∈A

Q(k+1)(s, a)

end for
∆ = max

s∈S
|V (k+1)(s)− V (k)(s)|, k = k + 1

end while

Output: π?(s) = arg max
a∈A

Q?(s,a)︷ ︸︸ ︷[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V ?(s ′)

]
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Value Iteration [Bellman, 1957]
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Bellman Operators

Let {S → R} denote the space of all real-valued functions on the
MDP state space S

An operator maps from input functions to output functions

For an arbitrary value function V : S → R, we define the Bellman
operator B : {S → R} → {S → R} as

BV (s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S
T (s ′ | s, a)V (s ′)

]
.

For a finite MDP (|S| <∞), {S → R} = R|S| =⇒ B : R|S| → R|S|

From the VI algorithm:

V (k+1) = BV (k).
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Convergence of Value Iteration

Why does VI converge to the optimal value function of the input
MDP?

An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

Fact

The Bellman operator B : R|S| → R|S| is a γ-contraction mapping with
respect to || · ||∞. That is, for any two value functions V ,V ′ ∈ R|S|,

||BV − BV ′||∞ ≤ γ||V − V ′||∞ = γmax
s∈S
|V (s)− V ′(s)|.

VI converges as a consequence of the Banach Fixed-Point Theorem

Technically, we looked at an approximate version [Tseng, 1990,
Littman et al., 1995]
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Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning – no model of the environment

Suppose we have a policy π : S → ∆(A)

Question: how well does this policy perform?

Need to compute V π using trajectories or rollouts sampled from
executing π in the environment

Different goal than trying to learn π?

First attempt: recall that

V π(s) = E

[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
.
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Monte-Carlo Policy Evaluation

Let’s help ourselves to an episodic MDP =⇒ guaranteed termination

Algorithm 7 Monte-Carlo Policy Evaluation

Input: Learning rate α > 0, Total episodes K
Initialize G (s) = 0 and N(s) = 0, ∀s ∈ S

for k ∈ [K ] do
Sample trajectory τ = (s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT )
for t = 1, 2, 3, . . . ,T do
if t == first occurrence(st) then

N(st) = N(st) + 1

G (st) = G (st) +
T∑

t′=t

γt
′−trt′

V π(st) = G(st)
N(st)

end if
end for

end for

But wait, why bootstrap if V π(s) = E
[ ∞∑
t=0

γtR(st , at)
∣∣∣ s0 = s

]
?
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Temporal-Difference Methods [Sutton, 1988]

A central idea to reinforcement learning

Algorithm 13 TD(0)

Input: Learning rate α > 0
Initialize V π(s) = 0, ∀s ∈ S

for t = 1, 2, 3, . . . do
Observe current state st
Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Compute TD(0)-error δt = (rt + γV π(st+1)− V π(st))
V π(st) = V π(st) + αδt

end for

Leverage bootstrapping to incrementally align value function
estimates
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TD(λ) [Sutton, 1984, 1988]

So what’s the difference?

Consider what happens to Monte-Carlo policy evaluation when run on
a highly-stochastic MDP

A general bias-variance trade-off [Kearns and Singh, 2000]
Greater reliance on environment increases variance but incurs no bias
Greater reliance on bootstrapping increases bias with reduced variance

Can we live in between Monte-Carlo and dynamic programming?
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Q-Learning [Watkins and Dayan, 1992]

Value-based reinforcement-learning algorithms exploit the fact that

π?(s) = arg max
a∈A

Q?(s, a)

Algorithm 18 Tabular Q-learning with ε-greedy exploration

Input: Learning rate α > 0, Initial Q-value qinit, Exploration probability
ε ≥ 0
Initialize Q̂?(s, a) = qinit, ∀s, a ∈ S ×A
for t = 1, 2, 3, . . . do

Observe current state st

π(a | s) = (1− ε)1

(
a = arg max

a?∈A
Q̂?(s, a?)

)
+ ε
|A|

Execution action at ∼ π(· | st)
Observe reward rt and next state st+1

Q̂?(st , at) = Q̂?(st , at) + α

(
rt + γ max

a′∈A
Q̂?(st+1, a

′)− Q̂?(st , at)

)
end for
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Tabular Q-Learning in Action!

Sutton & Barto’s Cliff Walking Example – Project Malmo

Some questions to ponder:

How does the qinit parameter influence learning?

Why didn’t we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

Could the environment have given rewards in some other way that
could have made learning faster?
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Deep Q-Network (DQN) [Mnih et al., 2015]

Augment Q-learning with general function approximation

Q̂?
θ : S → R|A|

One forward pass yields Q?-values for all actions

Experience replay [Lin, 1992]

Maintain a FIFO buffer D of past (s, a, r , s ′) experiences for training
Sample mini-batches uniformly at random for updating θ

Target networks

Maintain old parameters θ− from C updates ago
Compute TD(0)-target as r + γ max

a′∈A
Q̂?
θ−(st+1, a

′)

Bring us closer to supervised learning for stability

Final loss function

L(θ) = E(s,a,r ,s′)∼D

[
(r + γ max

a′∈A
Q̂?
θ−(s ′, a′)− Q̂?

θ (s, a))2
]
.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 – Finn & Hausman 27 / 29



DQN Results
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Final Questions, Takeaways, & Parting Thoughts

Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning
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