Reinforcement Learning Tutorial

Dilip Arumugam
Stanford University

CS330: Deep Multi-Task & Meta Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 1/29

Learning Goals

Walk away with a cursory understanding of the following concepts in RL:
@ Markov Decision Processes

Value Functions

Planning

Temporal-Difference Methods

Q-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 2/29

Learning Goals

Walk away with a cursory understanding of the following concepts in RL:
@ Markov Decision Processes
@ Value Functions
e Planning
@ Temporal-Difference Methods
@ Q-Learning

Much more to cover than we have time for today

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 2/29

Learning Goals

Walk away with a cursory understanding of the following concepts in RL:
@ Markov Decision Processes
@ Value Functions
e Planning
@ Temporal-Difference Methods
@ Q-Learning

Much more to cover than we have time for today
Many other Stanford courses that study RL to varying degrees:

e (5229, CS234, CS236, CS238, CS239, CS332
o MS&E338, MS&E346
e EE277

Autumn 2021 - Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Some details & disclaimers

@ Please do ask questions as they come up

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 3/29

Some details & disclaimers

@ Please do ask questions as they come up
@ In the interest of time, | may defer some questions to the end

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 3/29

Some details & disclaimers

@ Please do ask questions as they come up
@ In the interest of time, | may defer some questions to the end
@ Be aware that these slides use one particular notation

o This should (for the most part) align with the notation used in lectures
e You will find many equivalent, alternative, or more general notations in
other places

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 3/29

Some details & disclaimers

@ Please do ask questions as they come up
@ In the interest of time, | may defer some questions to the end
@ Be aware that these slides use one particular notation
o This should (for the most part) align with the notation used in lectures
e You will find many equivalent, alternative, or more general notations in
other places
@ Use office hours to resolve any lingering confusions after today
e The rest of the course builds heavily upon these foundational concepts

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 - Finn & Hausman 3/29

Agent-Environment Interface

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial — Finn & Hausman

Agent-Environment Interface

- N
Agent
L J
- N
Environment
L J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Agent-Environment Interface

(N\
Agent
|\ J
St
(N\
Environment

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Agent-Environment Interface

4 N\
> Agent

ag ~~ 7T9(‘|St)

|\ J

St at

4 N\
Environment <

|\ J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Agent-Environment Interface

4 N\
> Agent

ar ~ mo(-[st)

|\ J

St at

4 N\
Environment 3
ry = R(St, at) h

|\ J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Agent-Environment Interface

> Agent
a¢ ~ mo(+|st)

St at

Environment
ry = R(st,at)
L Se+1 ~ T(-|st, ar)

A

J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Agent-Environment Interface

> Agent
o ar ~ mo([st)

St re, Se4+1 at

Environment
ry = R(st,at)
L Se+1 ~ T(-|st, ar)

A

J

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Running the Agent-Environment Interface

Let’'s watch a reinforcement-learning agent!

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 10/ 29

https://www.youtube.com/watch?v=9XRL6d-yxp4

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,
Puterman, 1994]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions
R Reward function R : S x A — R

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)
S Set of states
A Set of actions
R Reward function R : S x A — R
T Transition function 7 : S x A — A(S)

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A - R

T Transition function 7 : S x A — A(S)
~ Discount factor v € [0, 1)

Autumn 2021 - Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A — R

T Transition function 7 : S x A — A(S)

~ Discount factor v € [0, 1)
Behavior is encoded via a stationary, stochastic policy 7 : S — A(A)

Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

CS330: Deep Multi-Task & Meta Learning

Markov Decision Processes (MDPs) [Bellman, 1957,

Puterman, 1994]

Infinite-horizon, discounted MDP M = (S, A, R, T,~)

S Set of states

A Set of actions

R Reward function R : S x A — R

T Transition function 7 : S x A — A(S)

~ Discount factor v € [0, 1)
Behavior is encoded via a stationary, stochastic policy 7 : S — A(A)

How do we assess the performance of a given policy 77

Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

CS330: Deep Multi-Task & Meta Learning

Value Functions

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial — Finn & Hausman

Value Functions

V7(27 R(st, at) ‘ So=Ss
t=0
Q" (s, a) ny R(st, at) ‘ So=S,3=a

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Value Functions

V7(27 R(st, at) ‘ So=Ss
=0
Q" (s, a) ny R(st, at) ‘ So=S,a0=a

| | |
CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 13 /29

Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i YR(st, at)
t=0

so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0

So=$,20=31|

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i YR(st, at)
t=0

so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)] Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i'yt7€(st, at)) so = s:| Q™ (s,a)=E l:i'th(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)] Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i'yt7€(st, at)) so = s:| Q™ (s,a)=E l:i'th(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)] Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3

@ Bellman Optimality Equations - identify policy 7m* achieving maximal value

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 14 /29

Value Functions & Bellman Equations

@ Bellman Equations (Policy evaluation)

V™ (s) =E |:i Y R(st,at) | so = s:| Q™ (s,a)=E l:i Y R(st, at)
t=0 t=0

So=$,ao=a:|

V7(s) = Eann(19[Q7(s:2)] Q7(s,2) = R(s,2) + 1Esrn7(1s,0)[V"(5)]

‘-~ = Expectation
= Terminal state

Image from CS234 - Lecture 3

@ Bellman Optimality Equations - identify policy 7m* achieving maximal value

VH(s) £ VT () =maxQ*(s5,8) Q(5,9) £ Q7 (s,8) = R(s, a)+1Eg (s [V ()]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 14 /29

Checkpoint #1 — Questions?

v~ Markov Decision Processes
v~ Value Functions

@ Planning

@ Temporal-Difference Methods
@ @-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Autumn 2021 - Finn & Hausman

Reinforcement Learning vs. Planning [Sutton and Barto,
1998, Kaelbling et al., 1996, Littman, 2015]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Planning Algorithms

@ Take a full MDP as input

o We know the transition function and the reward function!
o Alternative perspective: the agent has a perfect simulator of the
environment in its brain
@ Sit and think until an optimal policy has been computed

0.88 0.94 1.0 1.0

0.83 0.83 1.0

0.78 0.74 0.79 0.62

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 17 /29

Value Iteration [Bellman, 1957]

Algorithm 1 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O (s) =0, Vs € S

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Value Iteration [Bellman, 1957]

Algorithm 2 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S

A=00, k=0

while A > ¢ do

Autumn 2021 — Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Value Iteration [Bellman, 1957]

Algorithm 3 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS

Autumn 2021 — Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Value Iteration [Bellman, 1957]

Algorithm 4 Value lteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA

Autumn 2021 - Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Value Iteration [Bellman, 1957]

Algorithm 5 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA
end for
A = max |V (s) = V()] k= k+1
se
end while

Autumn 2021 - Finn & Hausman

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Value Iteration [Bellman, 1957]

Algorithm 6 Value Iteration (VI)

Input: Finite MDP (S, A, R, T,~), Tolerance ¢ > 0
Initialize V(O)(s) =0,VseS8S
A=00, k=0
while A > ¢ do
for (s,a) € S x A do
QUt(s,a) = R(s,a) +v 3 T(s' | s,a)VKI(s)

s'eS
V(k+1)(s) = max Q(k+1)(s, a)
acA
end for
A = max |V (s) = V()] k= k+1
se
end while

Q*(s,a)

Output: 7*(s) = argmax | R(s,a) + 7 Z T(s' | s,a)V*(s)
acA s'eS

Autumn 2021 - Finn & Hausman

18 /2

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 19 /29

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S

@ An operator maps from input functions to output functions

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 19 /29

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

BV(s) = max R(s,a)+~ Z T(s'|s,a)V(s)

s'eS

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S
@ An operator maps from input functions to output functions

@ For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

— / /
BV(s) = max R(s,a) + VS,EG;T(S | s,a)V(s')

e For a finite MDP (|S| < o), {S = R} = RISl — B: RISl - RIS

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Bellman Operators

o Let {S — R} denote the space of all real-valued functions on the
MDP state space S

An operator maps from input functions to output functions

For an arbitrary value function V : § — R, we define the Bellman
operator B: {S — R} — {S — R} as

BV(s) = max R(s,a)+~ Z T(s'|s,a)V(s)

s'eS

For a finite MDP (|S| <), {S — R} = RISl — B RISI — RIS
From the VI algorithm:

v — gy,

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

The Bellman operator B : RISl — RISI js a v-contraction mapping with
respect to || - ||oo. That is, for any two value functions V, V' € RIS|,

IBY = BVllas <A1V = Vlloo =y max | V(s) = V().

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 20 /29

Convergence of Value lteration

@ Why does VI converge to the optimal value function of the input
MDP?

@ An operator is a contraction mapping if applying it to separate inputs
brings the resulting outputs “closer” together

The Bellman operator B : RISl — RISI js a v-contraction mapping with
respect to || - ||oo. That is, for any two value functions V, V' € RIS|,

IBY = BVllas <A1V = Vlloo =y max | V(s) = V().

@ VI converges as a consequence of the Banach Fixed-Point Theorem

@ Technically, we looked at an approximate version | ,

]

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 20 /29

Policy Evaluation

@ An illustrative warm-up before we get to full RL

CS330: Deep Multi-Task & Meta Learning Reinforcement Learnin,

Policy Evaluation

@ An illustrative warm-up before we get to full RL

@ A step up from planning — no model of the environment

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 21 /29

Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 21 /29

Policy Evaluation

An illustrative warm-up before we get to full RL

A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment

Different goal than trying to learn 7*

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Policy Evaluation

An illustrative warm-up before we get to full RL
A step up from planning — no model of the environment
Suppose we have a policy 7 : S — A(A)

Question: how well does this policy perform?

Need to compute V™ using trajectories or rollouts sampled from
executing 7 in the environment

Different goal than trying to learn 7*

First attempt: recall that

[Z’}/ st,at ’50251.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 7 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 8 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do
Sample trajectory T = (sp, a0, 0, S1, 31, My -+ ST—1,3T—1, FT—1,5T)

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 9 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 22 /29

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 10 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1
-
G(st) = G(se)+ S Af tre

t'=t

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 22 /29

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 11 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(st) = N(s¢) +1
-
G(st) = G(st) + ; Yty

t'=t

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 22 /29

Monte-Carlo Policy Evaluation

@ Let's help ourselves to an episodic MDP — guaranteed termination

Algorithm 12 Monte-Carlo Policy Evaluation

Input: Learning rate o > 0, Total episodes K
Initialize G(s) =0 and N(s) =0,Vse S
for k € [K] do

Sample trajectory T = (507 a0, fo, s1,41, 1, - .-, 57-1,d7-1, 71, ST)
fort =1,2,3,..., T do
if t == first_occurrence(s;) then

N(s¢) = N(s¢) +1
-
G(st) = G(se)+ S Af tre

t'=t
V(1) = ()
end if
end for
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 22 /29

Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 13 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial

Autumn 2021 - Finn & Hausman

Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 14 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 15 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 16 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))
V7 (st) = V™ (st) + ade
end for

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 23 /29

Temporal-Difference Methods [Sutton, 1988]

@ A central idea to reinforcement learning

Algorithm 17 TD(0)

Input: Learning rate a > 0
Initialize V™(s) =0,Vs € S
fort=1,2,3,... do
Observe current state s;
Execution action a; ~ 7(- | st)
Observe reward r; and next state s;y1
Compute TD(0)-error §; = (re +yV7(st41) — V™ (st))
V7 (st) = V™ (st) + ade
end for

@ Leverage bootstrapping to incrementally align value function
estimates

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 23 /29

[Sutton, 1984, 1988|

@ So what's the difference?

o Consider what happens to Monte-Carlo policy evaluation when run on
a highly-stochastic MDP

@ A general bias-variance trade-off [|

o Greater reliance on environment increases variance but incurs no bias
o Greater reliance on bootstrapping increases bias with reduced variance

@ Can we live in between Monte-Carlo and dynamic programming?

TD())

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 25 /29

Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 19 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0 R
Initialize Q*(s, a) = @Ginit, Vs, a € S x A

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 20 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0
Initialize @*(s, a) = Ginit, Vs,a € S x A
fort=1,2,3,... do

Observe current state s;

m(als)=(1-¢)l (a — arg max Q*(s, a*)) +

a*eA
Execution action a; ~ (- | st)
Observe reward r; and next state s;y1

R

PN

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Q-Learning [Watkins and Dayan, 1992]

@ Value-based reinforcement-learning algorithms exploit the fact that

7*(s) = arg max Q*(s, a)
acA

Algorithm 21 Tabular Q-learning with e-greedy exploration

Input: Learning rate a > 0, Initial Q-value gnit, Exploration probability
e>0
Initialize @*(s, a) = Ginit, Vs,a € S x A
fort=1,2,3,... do

Observe current state s;

m(als)=(1-¢)l (a — arg max Q*(s, a*)) +

a*eA
Execution action a; ~ (- | st)
Observe reward r; and next state s;y1

@*(Sn 3t) = Q*(Sn 3t) +« (ft + meaj @*(5t+17 a’) - @*(Sh 3t))
a

R

PN

1le ()
CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 25 /29

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:

@ How does the gjnit parameter influence learning?

o Why didn't we start executing the optimal policy after collecting the
coin for the first time?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

https://www.youtube.com/watch?v=9XRL6d-yxp4

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:
@ How does the gjnit parameter influence learning?
o Why didn't we start executing the optimal policy after collecting the
coin for the first time?

o Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

https://www.youtube.com/watch?v=9XRL6d-yxp4

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:
@ How does the gjnit parameter influence learning?
o Why didn't we start executing the optimal policy after collecting the
coin for the first time?
o Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

@ What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

https://www.youtube.com/watch?v=9XRL6d-yxp4

Tabular Q-Learning in Action!

Sutton & Barto's Cliff Walking Example — Project Malmo
Some questions to ponder:

@ How does the gjnit parameter influence learning?

o Why didn't we start executing the optimal policy after collecting the
coin for the first time?

Why did the agent fail a small handful of times at the end, even after
seeming to have found the optimal policy?

@ What would happen if the Minecraft agent was traversing slippery ice
(where going straight might end up moving left) instead of stone?

@ Could the environment have given rewards in some other way that
could have made learning faster?

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 26 / 29

https://www.youtube.com/watch?v=9XRL6d-yxp4

Deep Q-Network (DQN) [Mnih et al., 2015]

o Augment Q-learning with general function approximation
o Q:S5—RM

o One forward pass yields Q@*-values for all actions

Experience replay |]

e Maintain a FIFO buffer D of past (s, a, r,s’) experiences for training
e Sample mini-batches uniformly at random for updating 6

@ Target networks

o Maintain old parameters 6~ from C updates ago
o Compute TD(0)-target as r + v max Q- (st41,a")
a'e

e Bring us closer to supervised learning for stability

o Final loss function

£(0) = E(srsyep |(r+7max Qj(s', &) = Qj(s. 2)°
a

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 27 / 29

DQN Results

Convglution Conyglution Fully connected Fully cgnnected

James Bond
-~ Yo

. : ! Spoce invagos

g $ by [~] m Rider

= S 3 3 i
i O Em Kung-Fu Master

4 ! } Frooway

of] =S . . Time Plot
/ e/ b b Enduro
Y : Fishing Doy

of] & X b Up and Do
AN a4 Ice Hockey

At human-level or above

.. §

o]
|]

Below human-level

=~]
b O]
[0}
[~ 0]
[< O]
(<O}

Private Eye
Montezuma's Revenge

L
T T T T T T
200 300 400 500 600 1,000 4,500%

Deep Multi-Task & Meta Learr nforcement Learnin, Autumn 2021 — Finn & Hausman

Final Questions, Takeaways, & Parting Thoughts

v~ Markov Decision Processes
v~ Value Functions

v~ Planning

v~ Temporal-Difference Methods
v~ Q-Learning

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman

Richard Bellman. A Markovian decision process. Journal of mathematics
and mechanics, pages 679-684, 1957.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. J. Artif. Intell. Res., 4:237-285, 1996.

Michael J Kearns and Satinder P Singh. Bias-variance error bounds for
temporal difference updates. In Proceedings of the Thirteenth Annual
Conference on Computational Learning Theory, pages 142-147, 2000.

Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine learning, 8(3-4):293-321,
1992.

Michael L Littman. Reinforcement learning improves behaviour from
evaluative feedback. Nature, 521(7553):445-451, 2015.

Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the
complexity of solving Markov decision problems. In Proceedings of the

Eleventh conference on Uncertainty in Artificial Intelligence, pages
394-402, 1995.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 29 /29

Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015.

Martin L. Puterman. Markov Decision Processes—Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, 1994.

Richard S Sutton. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9-44, 1988.

Richard S Sutton and Andrew G Barto. Introduction to reinforcement
learning. 1998.

Richard Stuart Sutton. Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts Amherst, 1984.

Paul Tseng. Solving H-horizon, stationary Markov decision problems in
time proportional to log(H). Operations Research Letters, 9(5):287-297,
1990.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279-292, 1992.

CS330: Deep Multi-Task & Meta Learning Reinforcement Learning Tutorial Autumn 2021 — Finn & Hausman 29 /29

	Problem Formulation
	MDPs & Value Functions
	Planning
	Temporal-Difference Methods
	Q-Learning
	References

