Reinforcement Learning: Review

CS 330

Reminders

Today: Project proposals due

Monday next week: Homework 2 due, Homework 3 out

Why Reinforcement Learning?

Isolated action that doesn't affect the future?

Common applications

robotics

language & dialog autonomous driving business operations (most deployed ML systems)

+ a key aspect of intelligence

finance

The Plan

Reinforcement learning problem

Policy gradients

Q-learning

The Plan

Reinforcement learning problem

Policy gradients

Q-learning

object classification

supervised learning

iid data

large labeled, curated dataset

well-defined notions of success

object manipulation

sequential decision making

action affects next state

how to collect data? what are the labels?

what does success mean?

Terminology & notation

 \mathbf{o}_t – observation

Imitation Learning

Imitation Learning vs Reinforcement Learning?

Images: Bojarski et al. '16, NVIDIA

Reward functions

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a})$: reward function

tells us which states and actions are better

high reward

 \mathbf{s} , \mathbf{a} , $r(\mathbf{s}, \mathbf{a})$, and $p(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ define Markov decision process

low reward

The goal of reinforcement learning

The goal of reinforcement learning

The goal of reinforcement learning

$$\underline{\pi_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t}) \qquad \theta^{*} = \arg \max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

What is a reinforcement learning task?

Supervised learning

data generating distributions, loss

A task:
$$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y}|\mathbf{x}), \mathcal{L}_i\}$$

Reinforcement learning

a Markov decision process

much more than the semantic meaning of task!

Examples Task Distributions

A task: $\mathcal{T}_i \triangleq \{S_i, \mathcal{A}_i, p_i(\mathbf{s}_1), p_i(\mathbf{s}'|\mathbf{s}, \mathbf{a}), r_i(\mathbf{s}, \mathbf{a})\}$

Character animation: across maneuvers

 $r_i(\mathbf{s}, \mathbf{a})$ vary

across garments & initial states

 $p_i(\mathbf{s}_1), p_i(\mathbf{s}'|\mathbf{s}, \mathbf{a})$ vary

Multi-robot RL:

 S_i , A_i , $p_i(\mathbf{s}_1)$, $p_i(\mathbf{s}'|\mathbf{s},\mathbf{a})$ vary

The Plan

Reinforcement learning problem

Policy gradients

Q-learning

The anatomy of a reinforcement learning algorithm

Evaluating the objective

$$\theta^* = \arg\max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

sum over samples from π_{θ}

Direct policy differentiation

$$\theta^* = \arg\max_{\theta} E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$

$$J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] = \int \pi_{\theta}(\tau)r(\tau)d\tau$$
$$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\nabla_{\theta} J(\theta) = \int \nabla_{\theta} \pi_{\theta}(\tau) r(\tau) d\tau = \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim \pi_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

a convenient identity
$$\underline{\pi_{\theta}(\tau)\nabla_{\theta}\log\pi_{\theta}(\tau)} = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \underline{\nabla_{\theta}\pi_{\theta}(\tau)}$$

Direct policy differentiation

$$\theta^* = \arg \max_{\theta} J(\theta)$$

$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)]$$

$$\log \text{of both sides} \qquad \pi_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\log \pi_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)]$$

$$\nabla_{\theta} \left[\log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \right]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

Evaluating the policy gradient

recall:
$$J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

generate samples (i.e. run the policy)

REINFORCE algorithm:

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

fit a model to estimate return

improve the policy

Comparison to maximum likelihood

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood:
$$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$$

What did we just do?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$abla_{\theta} J(\theta) pprox rac{1}{N} \sum_{i=1}^{N}
abla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})$$

$$\sum_{t=1}^{T}
abla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$

maximum likelihood:
$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i})$$

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of "trial and error"!

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Policy Gradients

policy gradient:
$$\nabla_{\theta} J(\theta) = E_{\underline{\tau} \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$

Pros:

- + Simple
- + Easy to combine with existing multi-task & meta-learning algorithms

Cons:

- Produces a high-variance gradient
 - Can be mitigated with baselines (used by all algorithms in practice), trust regions
- Requires on-policy data
 - Cannot reuse existing experience to estimate the gradient!
 - Importance weights can help, but also high variance

On-policy vs

- Data comes from the current policy
- Compatible with all RL algorithms
- Can't reuse data from previous policies

Off-policy

- Data comes from any policy
- Works with specific RL algorithms
- Much more sample efficient,
 can re-use old data

Small note

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

Reward "to go"

The Plan

Reinforcement learning problem

Policy gradients

Q-learning

The anatomy of a reinforcement learning algorithm

Improving the policy gradient

$$abla_{ heta} J(heta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T}
abla_{ heta} \log \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} r(\mathbf{a}_{i,t'},\mathbf{s}_{i,t'})\right)$$
Reward "to go"
$$\hat{Q}_{i,t}$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$ can we get a better estimate?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t},\mathbf{a}_{i,t})$$

State & state-action value functions

Value-Based RL

Value function: $V^{\pi}(\mathbf{s}_t) = ?$

Q function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$

Advantage function: $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$

Reward = 1 if I can play it in a month, 0 otherwise

Current $\pi(\mathbf{a}_1|\mathbf{s})=1$

Multi-Step Prediction

$$\hat{Q}_{i,t} \approx \left(\sum_{t'=t}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'})\right) \hat{\mathbf{g}}_{i,t}^{\mathbf{g}} \hat{\mathbf{g}}_{i,t}^{\mathbf{g}}$$

$$\hat{Q}_{i,t} \approx \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t}\right]$$

- How do you update your predictions about winning the game?
- What happens if you don't finish the game?
- Do you always wait till the end?

How can we use all of this to fit a better estimator?

Goal: fit V^{π}

ideal target:
$$y_{i,t} = \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{i,t} \right] \approx r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \sum_{t'=t}^{T} \underbrace{\mathbf{s}_{i,t+1}}_{t'} \underbrace{\mathbf{s}_{i,t+1}}_{t'}$$

Monte Carlo target: $y_{i,t} = \sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})$

directly use previous fitted value function!

training data:
$$\left\{ \left(\mathbf{s}_{i,t}, r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) + \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i,t+1}) \right) \right\}$$

$$y_{i,t}$$

supervised regression:
$$\mathcal{L}(\phi) = \frac{1}{2} \sum_{i} \left\| \hat{V}_{\phi}^{\pi}(\mathbf{s}_{i}) - y_{i} \right\|^{2}$$

sometimes referred to as a "bootstrapped" estimate

Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992

Figure 2. An illustration of the normal opening position in backgammon. TD-Gammon has sparked a near-universal conversion in the way experts play certain opening rolls. For example, with an opening roll of 4-1, most players have now switched from the traditional move of 13-9, 6-5, to TD-Gammon's preference, 13-9, 24-23. TD-Gammon's analysis is given in Table 2.

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

AlphaGo, Silver et al. 2016

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

reward: game outcome

value function $\hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$:

expected outcome given board state

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)
- 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
- 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

online actor-critic algorithm:

- 2. update \hat{V}_{ϕ}^{π} using target $r + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}')$
- 3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}') \hat{V}_{\phi}^{\pi}(\mathbf{s})$
- 4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s},\mathbf{a})$
- 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

This was just the prediction part...

Improving the Policy

$$Q^{\pi}(\mathbf{a}, \mathbf{s}) - V^{\pi}(\mathbf{s}) = A^{\pi}(\mathbf{s}, \mathbf{a})$$

how good is an action compared to the policy?

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$
 (policy gradient)

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$$

Value-Based RL

Value function: $V^{\pi}(\mathbf{s}_t) = ?$

Q function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$

Advantage function: $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$

Reward = 1 if I can play it in a month, 0 otherwise

How can we improve the policy?

Current $\pi(\mathbf{a}_1|\mathbf{s})=1$

Improving the Policy

 $A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: how much better is \mathbf{a}_t than the average action according to π arg $\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$: best action from \mathbf{s}_t , if we then follow π

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

at least as good as any $\mathbf{a}_t \sim \pi(\mathbf{a}_t|\mathbf{s}_t)$ regardless of what $\pi(\mathbf{a}_t|\mathbf{s}_t)$ is!

Slide adapted from Sergey Levine

Policy Iteration

policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 \text{ otherwise} \end{cases}$$

as before:
$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

Value Iteration

policy iteration algorithm:

- 1. evaluate $Q^{\pi}(\mathbf{s}, \mathbf{a})$ 2. set $\pi \leftarrow \pi'$

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}, \mathbf{a}) \\ 0 \text{ otherwise} \end{cases}$$

$$A^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')] - V^{\pi}(\mathbf{s})$$

$$\arg\max_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

$$Q^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma E[V^{\pi}(\mathbf{s}')]$$
 (a bit simpler)

skip the policy and compute values directly!

value iteration algorithm:

- 1. set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

 $V^{\pi}(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q^{\pi}(\mathbf{s}, \mathbf{a})$

Qlearning

$$\pi'(\mathbf{a}_t|\mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg\max_{\mathbf{a}_t} Q^{\pi}(\mathbf{s}, \mathbf{a}) \\ 0 \text{ otherwise} \end{cases}$$

value iteration algorithm:

1. set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$ 2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

fitted Q iteration algorithm:

1. set $\mathbf{y}_{i} \leftarrow r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma E[V_{\phi}(\mathbf{s}'_{i})] \leftarrow$ approxiate $E[V(\mathbf{s}'_{i})] \approx \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})$ 2. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$ doesn't require simulation of actions!

Value-Based RL

Value function: $V^{\pi}(\mathbf{s}_t) = ?$

Q function: $Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = ?$

Q* function: $Q^*(\mathbf{s}_t, \mathbf{a}_t) = ?$

Value* function: $V^*(\mathbf{s}_t) = ?$

Reward = 1 if I can play it in a month, 0 otherwise

Current $\pi(\mathbf{a}_1|\mathbf{s})=1$

Fitted Q-iteration Algorithm

full fitted Q-iteration algorithm:

2. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$$

3. set
$$\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_{i} \|Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{y}_{i}\|^{2}$$

Algorithm hyperparameters

dataset size N, collection policy

iterations K

gradient steps S

$$Q_{\phi}(\mathbf{s}, \mathbf{a})$$
 parameters ϕ

Result: get a policy $\pi(\mathbf{a}|\mathbf{s})$ from $\underset{\mathbf{a}}{\operatorname{arg}} \max_{\mathbf{a}} Q_{\phi}(\mathbf{s},\mathbf{a})$

Important notes:

We can reuse data from previous policies! an off-policy algorithm using replay buffers

This is **not** a **gradient descent** algorithm!

Can be readily extended to multi-task/goal-conditioned RL

Example: Q-learning Applied to Robotics

- 1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

 - 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}_i'} Q_{\phi}(\mathbf{s}_i', \mathbf{a}_i')$ 3. set $\phi \leftarrow \arg\min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i\|^2$

Continuous action space?

Simple optimization algorithm -> Cross Entropy Method (CEM)

QT-Opt: Q-learning at Scale

on-policy $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$

labeled $(\mathbf{s}, \mathbf{a}, Q_T(\mathbf{s}, \mathbf{a}))$

Training jobs

 $\min_{\theta} ||Q_{\theta}(\mathbf{s}, \mathbf{a}) - Q_{T}(\mathbf{s}, \mathbf{a})||^{2}$

minimize
$$\sum_{i} (Q(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \max_{\mathbf{a}'_i} Q(\mathbf{s}'_i, \mathbf{a}'_i)])^2$$

QT-Opt: Setup and Results

7 robots collected 580k grasps

Unseen test objects

96% test success rate!

Q-learning

Bellman equation:
$$Q^*(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}_{\mathbf{s}' \sim p(\cdot|\mathbf{s}, \mathbf{a})} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \max_{\mathbf{a}'} Q^*(\mathbf{s}', \mathbf{a}') \right]$$

Pros:

- + More sample efficient than on-policy methods
- + Can incorporate off-policy data (including a fully offline setting)
- + Can updates the policy even without seeing the reward
- + Relatively easy to parallelize

Cons:

- Lots of "tricks" to make it work
- Potentially could be harder to learn than just a policy

The Plan

Reinforcement learning problem

Policy gradients

Q-learning

Additional RL Resources

Stanford CS234: Reinforcement Learning

UCL Course from David Silver: Reinforcement Learning

Berkeley CS285: Deep Reinforcement Learning