
Reinforcement Learning:
Review

CS 330



Reminders

Today:

Monday next week:

Project proposals due

Homework 2 due, Homework 3 out



Why Reinforcement Learning?
Isolated action that doesn’t affect the future?

Common applications

(most deployed ML systems)

robotics autonomous drivinglanguage & dialog business operations finance

+ a key aspect of intelligence

Supervised learning?



The Plan

Reinforcement learning problem

Policy gradients

Q-learning



The Plan

Reinforcement learning problem

Policy gradients

Q-learning



object classification object manipulation

iid data action affects next state

large labeled, curated dataset
how to collect data?

what are the labels?

well-defined notions of success what does success mean?

supervised learning sequential decision making



1. run away

2. ignore

3. pet

Terminology & notation

Slide adapted from Sergey Levine



Images: Bojarski et al. ‘16, NVIDIA

training

data

supervised

learning

Imitation Learning

Slide adapted from Sergey Levine

Imitation Learning vs Reinforcement Learning?



Reward functions

Slide adapted from Sergey Levine



The goal of reinforcement learning

Slide adapted from Sergey Levine



The goal of reinforcement learning

Slide adapted from Sergey Levine



The goal of reinforcement learning

Slide adapted from Sergey Levine



What is a reinforcement learning task?

data generating distributions, loss

A task: 𝒯𝑖 ≜ {𝑝𝑖(𝐱), 𝑝𝑖(𝐲|𝐱), ℒ𝑖}

Supervised learning Reinforcement learning

A task: 𝒯𝑖 ≜ {𝒮𝑖 , 𝒜𝑖 , 𝑝𝑖(𝐬1), 𝑝𝑖(𝐬
′|𝐬, 𝐚), 𝑟𝑖(𝐬, 𝐚)}

a Markov decision process

dynamicsaction space

state 
space

initial state 
distribution

reward

much more than the semantic meaning of task!



Examples Task Distributions

A task: 𝒯𝑖 ≜ {𝒮𝑖 , 𝒜𝑖 , 𝑝𝑖(𝐬1), 𝑝𝑖(𝐬
′|𝐬, 𝐚), 𝑟𝑖(𝐬, 𝐚)}

Multi-robot RL:

Character animation: across maneuvers

across garments & 

initial states

𝑟𝑖(𝐬, 𝐚) vary

𝑝𝑖(𝐬1), 𝑝𝑖(𝐬
′|𝐬, 𝐚) vary

𝒮𝑖 , 𝒜𝑖 , 𝑝𝑖(𝐬1), 𝑝𝑖(𝐬
′|𝐬, 𝐚) vary



The Plan

Reinforcement learning problem

Policy gradients

Q-learning



The anatomy of a reinforcement learning algorithm



Evaluating the objective

Slide adapted from Sergey Levine



Direct policy differentiation

a convenient identity

Slide adapted from Sergey Levine



Direct policy differentiation

Slide adapted from Sergey Levine



Evaluating the policy gradient

generate samples 
(i.e. run the policy)

fit a model to 
estimate return

improve the policy

Slide adapted from Sergey Levine



Comparison to maximum likelihood

training
data

supervised
learning

Slide adapted from Sergey Levine



What did we just do?

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

Slide adapted from Sergey Levine



Policy Gradients

Pros:
+ Simple
+ Easy to combine with existing multi-task & meta-learning algorithms

Cons:
- Produces a high-variance gradient

- Can be mitigated with baselines (used by all algorithms in practice), trust regions

- Requires on-policy data
- Cannot reuse existing experience to estimate the gradient!

- Importance weights can help, but also high variance



On-policy                     vs                       Off-policy

- Data comes from the current policy

- Compatible with all RL algorithms

- Can’t reuse data from previous 

policies

- Data comes from any policy

- Works with specific RL 

algorithms

- Much more sample efficient, 

can re-use old data



Small note

Reward “to go”



The Plan

Reinforcement learning problem

Policy gradients

Q-learning



The anatomy of a reinforcement learning algorithm



Improving the policy gradient

Reward “to go”

Slide adapted from Sergey Levine



State & state-action value functions

Slide adapted from Sergey Levine



Value-Based RL
Reward = 1 if I can play it 
in a month, 0 otherwise

a3

a1

a2

st

Current 𝜋 𝐚1 𝐬 = 1

Value function: 𝑉𝜋 𝐬𝑡 = ?

Q function: 𝑄𝜋 𝐬𝑡, 𝐚𝑡 = ?

Advantage function: 𝐴𝜋 𝐬𝑡 , 𝐚𝑡 = ?



Multi-Step Prediction

- How do you update your predictions about winning 

the game?

- What happens if you don’t finish the game?

- Do you always wait till the end?



How can we use all of this to fit a better estimator?

Slide adapted from Sergey Levine

Goal:



Policy evaluation examples

TD-Gammon, Gerald Tesauro 1992 AlphaGo, Silver et al. 2016



Slide adapted from Sergey Levine



This was just the prediction part…



Improving the Policy

how good is an 
action compared to 
the policy?



Value-Based RL
Reward = 1 if I can play it 
in a month, 0 otherwise

a3

a1

a2

st

Current 𝜋 𝐚1 𝐬 = 1

Value function: 𝑉𝜋 𝐬𝑡 = ?

Q function: 𝑄𝜋 𝐬𝑡, 𝐚𝑡 = ?

Advantage function: 𝐴𝜋 𝐬𝑡 , 𝐚𝑡 = ?

How can we improve 

the policy?



Improving the Policy

Slide adapted from Sergey Levine



Slide adapted from Sergey Levine

Policy Iteration



Slide adapted from Sergey Levine

Value Iteration

approximates the new value!



Q learning

doesn’t require simulation of actions! 



Value-Based RL
Reward = 1 if I can play it 
in a month, 0 otherwise

a3

a1

a2

st

Current 𝜋 𝐚1 𝐬 = 1

Value function: 𝑉𝜋 𝐬𝑡 = ?

Q function: 𝑄𝜋 𝐬𝑡, 𝐚𝑡 = ?

Q* function: 𝑄∗ 𝐬𝑡 , 𝐚𝑡 = ?

Value* function: 𝑉∗ 𝐬𝑡 = ?



Fitted Q-iteration Algorithm

Slide adapted from Sergey Levine

Algorithm hyperparameters

This is not a gradient descent algorithm!

Result: get a policy 𝜋(𝐚|𝐬) from arg𝑚𝑎𝑥
𝐚

𝑄𝜙(𝐬, 𝐚)

Important notes:
We can reuse data from previous policies!

using replay buffersan off-policy algorithm

Can be readily extended to multi-task/goal-conditioned RL



Example: Q-learning Applied to Robotics

Continuous action space?

Simple optimization algorithm -> 
Cross Entropy Method (CEM)



In-memory buffers

QT-Opt: Q-learning at Scale

Bellman updatersstored data from all 
past experiments

Training jobs

CEM optimization

QT-Opt: Kalashnikov et al. ‘18, Google BrainSlide adapted from D. Kalashnikov



QT-Opt: Setup and Results

7 robots collected 580k grasps Unseen test objects

96% test success rate!



Bellman equation:   𝑄⋆(𝐬𝑡 , 𝐚𝑡) = 𝔼𝐬′∼𝑝(⋅|𝐬,𝐚) 𝑟(𝐬, 𝐚) + 𝛾𝑚𝑎𝑥
𝐚′

𝑄⋆(𝐬′, 𝐚′)

Q-learning

Pros:
+ More sample efficient than on-policy methods
+ Can incorporate off-policy data (including a fully offline setting)
+ Can updates the policy even without seeing the reward
+ Relatively easy to parallelize

Cons:
- Lots of “tricks” to make it work
- Potentially could be harder to learn than just a policy



The Plan

Reinforcement learning problem

Policy gradients

Q-learning



Additional RL Resources

Stanford CS234: Reinforcement Learning

UCL Course from David Silver: Reinforcement Learning

Berkeley CS285: Deep Reinforcement Learning


