Advanced Meta-Learning Topics Task Construction

CS 330

Following up on some high-res feedback:

- We'll consider autograders for future quarters.
- Homework 3 includes non-classification problems -
- Clarification on train/test terminology in today's lecture -

Course Reminders

- Homework 2 due today.
- Homework 3 out today, due **next Wednesday**. Note: This homework is brand new.

- **So far**: Multi-task & transfer learning basics Core meta-learning algorithms Core unsupervised pre-training algorithms
- Advanced meta-learning topics Next two weeks: (more advanced topics!) - Task construction (today) Large-scale meta-optimization (Weds) -
- Bayesian meta-learning

Course Roadmap (start of week 5!)

Question of the Day

How should tasks be defined for good meta-learning performance?

Plan for Today

Brief Recap of Meta-Learning & Supervised Task Construction

Memorization in Meta-Learning

- When it arises
- Potential solutions

Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning
- Semi-Supervised Meta-Learning

Goals for by the end of lecture:

- Understand when & how memorization in meta-learning may occur
- Understand techniques for constructing tasks automatically

} Part of (optional) Homework 4

n in meta-learning may occur g tasks automatically

Revisiting meta-learning terminology

Homeworks 1 & 2 sometimes refer to these as **train** & **test** (which is ambiguous & confusing!)

Recap: Black-Box Meta-Learning

Key idea: parametrize learner as a neural network

- - Training this network: outer loop
- + expressive

This network: inner loop, in-context learning

- challenging optimization problem

7

Recap: Optimization-Based Meta-Learning

Key idea: embed optimization inside the inner learning process

 $\mathcal{D}_i^{ ext{tr}}$

+ structure of optimization embedded into meta-learner

- typically requires second-order optimization

$\mathcal{D}_i^{ ext{tr}}$

Key idea: non-parametric learner with parametric embedding / distance (e.g. kNN to examples/prototypes)

+ easy to optimize, **computationally fast**

- largely restricted to classification

Supervised Task Construction

For N-way image classification

Use labeled images from prior classes

For adapting to regional differences

Rußwurm et al. Meta-Learning for Few-Shot Land Cover Classification. CVPR 2020 EarthVision Workshop

Use labeled images from prior regions

training classes

For few-shot imitation learning

Yu et al. One-Shot Imitation Learning from Observing Humans. RSS 2018

Use **demonstrations** for prior tasks

Plan for Today

Brief Recap of Meta-Learning & Task Construction

Memorization in Meta-Learning

- When it arises
- Potential solutions

Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning
- Semi-Supervised Meta-Learning

Question: What happens at <u>meta-test time</u> if you pass in D_i^{tr} and the task identifier for a <u>new task</u>? It won't generalize to the new task. 12

Thought Exercise #1

Question: What happens during <u>meta-training</u> if you pass in D_i^{tr} and the task identifier?

If it is difficult to learn from the data, the model will learn rely on \mathbf{Z}_i .

Thought Exercise #2

Question: What happens during <u>meta-training</u> if you pass in D_i^{tr} and the task identifier? It depends on whether using the **description** or the **data** is simpler.

Question: What happens at <u>meta-test time</u> if you pass in D_i^{tr} and the task identifier for a <u>new task</u>? It depends on what it learns to use during meta-training. 13

paragraph description Ĵθ of the task

Question: What happe It depends q meta-training loss without looking at D_i^{tr}

Question: What happens at <u>meta-test time</u> if you pass in D_i^{tr} and the task identifier for a <u>new task</u>?

It depends on what it learns to use during meta-training.

Thought Exercise #2

nd the task identifier? Key problem: Model can minimize a is simpler.

How we construct tasks for meta-learning.

Randomly assign class labels to image classes for each task \longrightarrow Tasks are *mutually exclusive*. Algorithms **must** use **training data** to infer label ordering.

Thought Exercise #3: What if label assignment is consistent across tasks?

The network can simply learn to classify inputs, irrespective of $\mathscr{D}_{\mathrm{tr}}$

Tasks are **non-mutually exclusive**: a single function can solve all tasks.

The network can simply learn to classify inputs, irrespective of $\mathscr{D}_{\mathrm{tr}}$

What if label order is consistent?

For new image classes: can't make predictions w/o $\mathscr{D}_{\mathrm{tr}}$

NME Omniglot	20-way 1-shot	20-way	
MAML	7.8 (0.2)%	50.7 (2	

18

Is this a problem?

Help, it's not working when I don't shuffle the labels.

- **No**: for image classification, just shuffle labels* _
- No, if we see the same image classes as training (no need to adapt at _ meta-test time)
- But, yes, if we want to be able to adapt with data for new tasks. -

Another example

If you tell the robot the task goal, the robot can **ignore** the trials.

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. *Meta-World*. CoRL'19

"close box"

Another example

Model can memorize the canonical orientations of the training objects.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

Can we do something about it?

multiple solutions to the meta-learning problem

One solution:

Another solution:

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

- **If tasks** *mutually exclusive***:** single function cannot solve all tasks (i.e. due to label shuffling, hiding information)
- If tasks are non-mutually exclusive: single function can solve all tasks

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

- memorize canonical pose info in θ & ignore $\mathscr{D}_{i}^{\mathsf{Tr}}$
- carry no info about canonical pose in θ , acquire from $\mathscr{D}_i^{\mathrm{tr}}$
- An entire **spectrum of solutions** based on how **information** flows.
 - Suggests a potential approach: control information flow.

If tasks are non-mutually exclusive: single function can solve all tasks *multiple solutions* to the meta-learning problem

One solution: Another solution:

Meta-regularization

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

- memorize canonical pose info in θ & ignore $\mathscr{D}_i^{\mathsf{lf}}$ carry no info about canonical pose in θ , acquire from $\mathscr{D}_i^{\mathrm{tr}}$ An entire **spectrum of solutions** based on how **information** flows.
 - one option: max $I(\hat{\mathbf{y}}_{ts}, \mathcal{D}_{tr} | \mathbf{x}_{ts})$
 - minimize meta-training loss + information in θ
 - $\mathscr{L}(\theta, \mathscr{D}_{meta-train}) + \beta D_{KL}(q(\theta; \theta_{\mu}, \theta_{\sigma}) \| p(\theta))$
- Places precedence on using information from $\mathscr{D}_{\mathrm{tr}}$ over storing info in heta. Can combine with your favorite meta-learning algorithm.

Omniglot without label shuffling: "non-mutually-exclusive" Omniglot

NME Omniglot

MAML

TAML

MR-MAML (W) (ours)

On **pose prediction** task:

TAML: Jamal & Qi. Task-Agnostic Meta-Learning for Few-Shot Learning. CVPR'19 Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

20-way 1-shot	20-way 5-shot
7.8~(0.2)%	50.7~(22.9)%
9.6~(2.3)%	67.9~(2.3)%
83.3 (0.8)%	94.1 (0.1) %

Method	MAML	MR-MAML(W) (ours)	CNP	MR-CNF (ours)
MSE	5.39 (1.31)	2.26 (0.09)	8.48 (0.12)	2.89 (0.

(and it's not just as simple as standard regularization)

CNP	CNP + Weight Decay	CNP + BbB	MR-CNP (W) (
8.48 (0.12)	6.86 (0.27)	7.73 (0.82)	2.89 (0.18)

Does meta-regularization lead to better generalization?

Let $P(\theta)$ be an arbitrary distribution over θ that doesn't depend on the meta-training data. (e.g. $P(\theta) = \mathcal{N}(\theta; \mathbf{0}, \mathbf{I})$)

For MAML, with probability at least $1-\delta$,

With a Taylor expansion of the RHS + a particular value of $\beta \longrightarrow \frac{recover the MR MAML objective}{recover}$.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

$$\frac{1}{1)} + \sqrt{\frac{1}{2(n-1)}} \sqrt{D_{KL}(\mathcal{N}(\theta;\theta_{\mu},\theta_{\sigma}) \| P)} + \log \frac{n(K+1)}{\delta},$$

meta-regularization $\forall \theta_{\mu}, \theta_{\sigma}$

Proof: draws heavily on Amit & Meier '18

Summary of Memorization Problem

meta-learning

meta overfitting memorize training functions f_i corresponding to tasks in your meta-training dataset

> meta regularization control information flow regularizes description length of meta-parameters

standard supervised learning

standard overfitting memorize training datapoints (x_i, y_i) in your training dataset

standard regularization regularize hypothesis class (though not always for DNNs)

Plan for Today

Brief Recap of Meta-Learning & Task Construction

Memorization in Meta-Learning

- When it arises
- Potential solutions

Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning
- Semi-Supervised Meta-Learning

Where do tasks come from?

What if we only have unlabeled data? **Today**: Explicit meta-learning with unlabeled data.

Requires tasks constructed from labeled data

Requires labeled data from other regions

Rußwurm et al. Meta-Learning for Few-Shot Land Cover Classification. 2020

e.g., unlabeled images, unlabeled text Last week: Pre-train representations & fine-tune

A general recipe for unsupervised meta-learning

Given unlabeled dataset(s) \longrightarrow

Goal of unsupervised meta-learning methods: Automatically construct tasks from unlabeled data

Question: What do you want 1. the task set to look like? 2.

Task construction from unlabeled image data Task construction from unlabeled text data

Next:

Propose tasks \longrightarrow Run meta-learning

<u>diverse</u> (more likely to cover test tasks) <u>structured</u> (so that few-shot meta-learning is possible)

Can we meta-learn with only **unlabeled** images?

Task construction

Unsupervised learning (to get an embedding space)

Result: representation suitable for learning downstream tasks

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR'19

Can we meta-learn with only **unlabeled** images?

Unsupervised learning (to get an embedding space) A few options: BiGAN — Donahue et al. '17 DeepCluster — Caron et al. '18

Clustering to Automatically Construct Tasks for Unsupervised Meta-Learning (CACTUs)

minilmageNet 5-wa	y 5-s
method	
MAML with labels	
BiGAN kNN	
BiGAN logistic	
BiGAN MLP + dropout	
BiGAN cluster matching	
BIGAN CACTUS MAML	
DeepCluster CACTUs MAML	

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR'19

Propose cluster discrimination tasks

→ Run meta-learning

MAML — Finn et al. '17 ProtoNets — Snell et al. '17

shot

accuracy
62.13%
31.10%
33.91%
29.06%
29.49%
51.28%
53.97%

Same story for:

- 4 different embedding methods
- 4 datasets (Omniglot, CelebA, minilmageNet, MNIST)
- 2 meta-learning methods (*)
- Test tasks with larger datasets

*ProtoNets underperforms in some cases.

Can we use **domain knowledge** when constructing tasks?

e.g. image's label often won't change when you:

- drop out some pixels
- translate the image
- reflect the image

Task construction:

For each i. Randomly sample N images & assign labels $1, \ldots, N$ task \mathcal{T}_i :

ii. For each datapoint in \mathscr{D}_i^{tr} , augment image using domain knowledge

Khodadadeh, Bölöni, Shah. Unsupervised Meta-Learning for Few-Shot Image Classification. NeurIPS '19

Can we use **domain knowledge** when constructing tasks?

For each i. Randomly sample N images & assign labels 1, ..., Ntask \mathcal{T}_i : ii. For each datapoint in \mathscr{D}_i^{tr} , augment image using domain knowledge

How to augment in practice?

Omniglot: translation & random pixel dropout **Minilmagenet:** AutoAugment* (translation, rotation, shear)

		Omniglot				Mini-Imagenet			
Algorithm (N, K)	Clustering	(5,1)	(5,5)	(20,1)	(20,5)	(5,1)	(5,5)	(5,20)	(5,50)
Training from scratch	N/A	52.50	74.78	24.91	47.62	27.59	38.48	51.53	59.63
linear classifier	ACAI/DC	61.08	81.82	43.20	66.33	29.44	39.79	56.19	65.28
MLP with dropout	ACAI/DC	51.95	77.20	30.65	58.62	29.03	39.67	52.71	60.95
cluster matching	ACAI/DC	54.94	71.09	32.19	45.93	22.20	23.50	24.97	26.87
CACTUs-MAML	ACAI/DC	68.84	87.78	48.09	73.36	39.90	53.97	63.84	69.64
CACTUs-ProtoNets	ACAI/DC	68.12	83.58	47.75	66.27	39.18	53.36	61.54	63.55
UMTRA (ours)	N/A	83.80	95.43	74.25	92.12	39.93	50.73	61.11	67.15
MAML (Supervised)	N/A	94.46	98.83	84.60	96.29	46.81	62.13	71.03	75.54
ProtoNets (Supervised)	N/A	98.35	99.58	95.31	98.81	46.56	62.29	70.05	72.04

Khodadadeh, Bölöni, Shah. Unsupervised Meta-Learning for Few-Shot Image Classification. NeurIPS '19

 \longrightarrow Store in $\mathscr{D}_i^{\mathrm{tr}}$ \longrightarrow Store in $\mathcal{D}_i^{\text{ts}}$

- outstanding Omniglot performance (where we have good domain knowledge!)
- MinilmageNet: slightly underperforms CACTUs

* Cubuk et al. 2018

Can we meta-learn with only **unlabeled** text? **Option A**: Formulate it as a language modeling problem.

Recall: GPT-3

 $\mathscr{D}_{i}^{\mathrm{tr}}$: sequence of characters $\mathscr{D}_{i}^{\mathrm{ts}}$: following sequence of characters

When might we not use this option?

- harder to combine w/ optimization- based meta-learning
- harder to apply to **classification** tasks — (e.g. sentiment, political bias, etc)

Brown, Mann, Ryder, Subbiah et al. Language Models are Few-Shot Learners. arXiv '20

Can we meta-learn with only **unlabeled** text?

Option B: Construct tasks by masking out words

Sample subset of N unique words & assign unique ID. For each i. task \mathcal{T}_i :

> ii. Sample K + Q sentences with that word, masking the word out iii. Construct \mathscr{D}_i^{tr} and \mathscr{D}_i^{ts} with masked sentences & corresponding word IDs

 $\mathcal{D}_{i}^{\mathrm{tr}}$

Support set

Sentence
A member of the [m] Party, he was the first African American to be elected to the presidency.
The [m] Party is one of the two major contemporary political parties in the United States, along with its rival, the Republican Party.
Honolulu is the [m] and largest city of the U.S. state of Hawaii.
Washington, D.C., formally the District of Columbia and commonly referred to as Washington or D.C., is the [m] of the United States.

- Task: Classify the masked word.
- {Democratic, Capital} 1 2

Bansal, Jha, Munkhdalai, McCallum. Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks. EMNLP '20

entirely unsupervisedsupervised or semi-pre-trainingsupervised pre-training

Task	N	k	BERT	SMLMT	MT-BERT _{softmax}	MT-BERT	LEOPARD	Hybrid-SMLMT
CoNI I		4	$50.44 \pm \textbf{08.57}$	$46.81 \pm \textbf{4.77}$	52.28 ± 4.06	55.63 ± 4.99	$54.16 \pm \textbf{6.32}$	57.60 ± 7.11
	4	8	50.06 ± 11.30	61.72 ± 3.11	65.34 ± 7.12	58.32 ± 3.77	67.38 ± 4.33	70.20 ± 3.00
CONLL	-	16	74.47 ± 03.10	75.82 ± 4.04	71.67 ± 3.03	71.29 ± 3.30	76.37 ± 3.08	80.61 ± 2.77
		32	83.27 ± 02.14	84.01 ± 1.73	73.09 ± 2.42	79.94 ± 2.45	83.61 ± 2.40	85.51 ± 1.73
		4	$49.37 \pm \textbf{4.28}$	$46.23 \pm 3{,}90$	45.52 ± 5.90	$50.49 \pm \textbf{4.40}$	49.84 ± 3.31	$\textbf{52.29} \pm \textbf{4.32}$
MITR	8	8	49.38 ± 7.76	61.15 ± 1.91	58.19 ± 2.65	58.01 ± 3.54	62.99 ± 3.28	65.21 ± 2.32
IVIIIK	0	16	69.24 ± 3.68	69.22 ± 2.78	66.09 ± 2.24	66.16 ± 3.46	70.44 ± 2.89	$\textbf{73.37} \pm 1.88$
		32	78.81 ± 1.95	78.82 ± 1.30	69.35 ± 0.98	76.39 ± 1.17	78.37 ± 1.97	79.96 ± 1.48
		4	42.76 ± 13.50	$42.83 \pm \textbf{6.12}$	43.73 ± 7.86	$46.29 \pm \textbf{12.26}$	$54.95 \pm \textbf{11.81}$	56.46 ± 10.67
Airline	3	8	38.00 ± 17.06	51.48 ± 7.35	52.39 ± 3.97	49.81 ± 10.86	$61.44 \pm \textbf{03.90}$	$\textbf{63.05} \pm 8.25$
Annie	5	16	$58.01 \pm \textbf{08.23}$	58.42 ± 3.44	58.79 ± 2.97	$57.25 \pm \textbf{09.90}$	$62.15 \pm \textbf{05.56}$	$\textbf{69.33} \pm 2.24$
		32	63.70 ± 4.40	$65.33 \pm \textbf{3.83}$	61.06 ± 3.89	$62.49 \pm \textbf{4.48}$	$67.44 \pm \textbf{01.22}$	$\textbf{71.21} \pm 3.28$
		4	55.73 ± 10.29	62.26 ± 9.16	52.87 ± 6.16	50.61 ± 8.33	51.45 ± 4.25	55.26 ± 8.32
Disastar	2	8	$56.31 \pm \textbf{09.57}$	$\textbf{67.89} \pm 6.83$	56.08 ± 7.48	$54.93 \pm \textbf{7.88}$	55.96 ± 3.58	$63.62 \pm \textbf{6.84}$
Disaster	Z	16	$64.52 \pm \textbf{08.93}$	$\textbf{72.86} \pm 1.70$	65.83 ± 4.19	60.70 ± 6.05	61.32 ± 2.83	70.56 ± 2.23
		32	73.60 ± 01.78	$\textbf{73.69} \pm 2.32$	67.13 ± 3.11	72.52 ± 2.28	63.77 ± 2.34	71.80 ± 1.85
		4	09.20 ± 3.22	09.84 ± 1.09	09.41 ± 2.10	09.84 ± 2.14	11.71 ± 2.16	11.90 ± 1.74
Emotion	12	8	08.21 ± 2.12	11.02 ± 1.02	11.61 ± 2.34	11.21 ± 2.11	12.90 ± 1.63	13.26 ± 1.01
Emotion	15	16	13.43 ± 2.51	12.05 ± 1.18	13.82 ± 2.02	12.75 ± 2.04	13.38 ± 2.20	15.17 ± 0.89
		32	16.66 ± 1.24	14.28 ± 1.11	13.81 ± 1.62	$\pmb{16.88} \pm 1.80$	14.81 ± 2.01	16.08 ± 1.16
Political Bias		4	54.57 ± 5.02	57.72 ± 5.72	54.32 ± 3.90	54.66 ± 3.74	60.49 ± 6.66	61.17 ± 4.91
	2	8	56.15 ± 3.75	$63.02 \pm \textbf{4.62}$	57.36 ± 4.32	$54.79 \pm \textbf{4.19}$	$61.74 \pm \textbf{6.73}$	64.10 ± 4.03
		16	60.96 ± 4.25	$\textbf{66.35} \pm 2.84$	59.24 ± 4.25	60.30 ± 3.26	65.08 ± 2.14	66.11 ± 2.04
		32	65.04 ± 2.32	$\textbf{67.73} \pm 2.27$	62.68 ± 3.21	64.99 ± 3.05	64.67 ± 3.41	67.30 ± 1.53

More results & analysis in the paper!

Bansal, Jha, Munkhdalai, McCallum. Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks. EMNLP '20

BERT - standard self-supervised
learning + fine-tuning
SMLMT - proposed unsupervised
meta-learning

MT-BERT - multi-task learning + fine-tuning (on supervised tasks)

LEOPARD - optimization-based

meta-learner (only on supervised tasks)

Hybrid-SMLMT - meta-learning on proposed tasks + supervised tasks

Given unlabeled dataset(s) \longrightarrow

Existing task proposal techniques:

- Classify between clusters of images
- Generate text from a particular context
- Classify a masked word

Summary of Unsupervised Meta-Training

Propose tasks \longrightarrow Run meta-learning

- Classify augmented image vs. different image instance

Plan for Today

Brief Recap of Meta-Learning & Task Construction

Memorization in Meta-Learning

- When it arises
- Potential solutions

Meta-Learning without Tasks Provided Part of (optional) Homework 4

- Unsupervised Meta-Learning
- Semi-Supervised Meta-Learning

Goals for by the end of lecture:

- Understand when & how memorization in meta-learning may occur
- Understand techniques for constructing tasks automatically

Homework 2 due today.

Homework 3 out today, due **next Wednesday**.

Course Reminders

Wednesday's lecture: large-scale meta-optimization

by Yoonho Lee (ML PhD student)