
CS 330

Advanced Meta-Learning Topics 
Task Construction
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Course Reminders
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Homework 2 due today.

Following up on some high-res feedback:

- We’ll consider autograders for future quarters.

- Homework 3 includes non-classification problems

- Clarification on train/test terminology in today’s lecture

Homework 3 out today, due next	Wednesday.
Note: This homework is brand new.



Next	two	weeks:
(more advanced topics!)

Course Roadmap

Multi-task & transfer learning basics


Core meta-learning algorithms


Core unsupervised pre-training algorithms

So	far:

Advanced meta-learning topics
- Task construction (today)

- Large-scale meta-optimization (Weds)

Bayesian meta-learning

(start of week 5!)



Question of the Day

How should tasks be defined for good meta-learning performance?



Plan for Today
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Goals for by the end of lecture:

- Understand when & how memorization in meta-learning may occur

- Understand techniques for constructing tasks automatically

Brief Recap of Meta-Learning & Supervised Task Construction


Memorization in Meta-Learning

- When it arises

- Potential solutions


Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning

- Semi-Supervised Meta-Learning

} Part of (optional) Homework 4



“support set”

Revisiting meta-learning terminology

“query set”

Dtest
itask test datasetDtr

itask training set

Homeworks 1 & 2 sometimes 
refer to these as train & test

(which is ambiguous & confusing!)
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Recap:	Black-Box	Meta-Learning
Key	idea:	parametrize learner as a neural network

+ expressive - challenging	optimization problem

This	network:	inner loop, in-context learning

Training	this	network:	outer loop

7



0 1 2 3 4

4

Dtr
i

�i

xts

yts
r✓L

Recap:	Optimization-Based	Meta-Learning
Key	idea:	embed optimization inside the inner learning process

+ structure	of	optimization	
embedded into meta-learner

- typically requires	 
second-order	optimization
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Recap:	Non-Parametric	Meta-Learning

Key	idea:	non-parametric	learner with parametric embedding / distance

+ easy	to	optimize,	
computationally	fast

- largely	restricted	to	
classification

0
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(e.g. kNN to examples/prototypes)
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Supervised	Task	Construction
For	N-way	image	classification

Use labeled	images from prior classes

For	adapting	to	regional	differences

Rußwurm et al. Meta-Learning for Few-Shot Land Cover 
Classification. CVPR 2020 EarthVision Workshop

Use labeled	images from prior regions

For	few-shot	imitation	learning

Use demonstrations for prior tasks

Yu et al. One-Shot Imitation Learning from 
Observing Humans. RSS 2018
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Plan for Today
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Brief Recap of Meta-Learning & Task Construction


Memorization in Meta-Learning

- When it arises

- Potential solutions


Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning

- Semi-Supervised Meta-Learning



Thought Exercise #1
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zi

one-hot 
task identifier

Question:	What happens during meta-training if you pass in  and the task identifier?Dtr
i

Question:	What happens at meta-test time if you pass in  and the task identifier for a new task?Dtr
j

If it is difficult to learn from the data, the model will learn rely on .zi

It won’t generalize to the new task.
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Thought Exercise #2
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zi

paragraph description 
of the task

Question:	What happens during meta-training if you pass in  and the task identifier?Dtr
i

Question:	What happens at meta-test time if you pass in  and the task identifier for a new task?Dtr
j

It depends on whether using the description or the data is simpler.

It depends on what it learns to use during meta-training.
13
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Thought Exercise #2
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zi

paragraph description 
of the task

Question:	What happens during meta-training if you pass in  and the task identifier?Dtr
i

Question:	What happens at meta-test time if you pass in  and the task identifier for a new task?Dtr
j

It depends on whether using the description or the data is simpler.

It depends on what it learns to use during meta-training.

Key	problem: Model can minimize  
meta-training loss without looking at Dtr

i



How we construct tasks for meta-learning.

0 1 2 3 4 42

0 1 2 3 4 3 1

0 1 2 3 4 34

T3

Randomly assign class labels to image classes for each task

Algorithms must use training data to infer label ordering.

𝒟tr xts

—> Tasks are mutually exclusive.
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Thought Exercise #3: What if label assignment is consistent across tasks?

The network can simply learn to classify inputs, irrespective of 𝒟tr

0 1 2 3 4 42

0 1 2 3 4 3 1

0 1 2 3 4 1

T3
2

𝒟tr xts

Tasks are non-mutually exclusive: a single function can solve all tasks.
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The network can simply learn to classify inputs, irrespective of 𝒟tr

0 1 2 3 4

4

0 1 2 3 4

4r✓L



What if label order is consistent?

0 1 2 3 4 42

0 1 2 3 4 3 1

0 1 2 3 4 1

T3
2

𝒟tr xts

training data test set

Ttest
For new image classes: can’t make 
predictions w/o 𝒟tr

18



Is this a problem?
Help, it’s not working when 

I don’t shuffle the labels.

- No: for image classification, just shuffle labels*

- No, if we see the same image classes as training (no need to adapt at 

meta-test time)

- But, yes, if we want to be able to adapt with data for new tasks.
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Another example

If you tell the robot the task goal, the robot can ignore the trials.

Ttest

“close box”

meta-training …

“close drawer” “hammer” “stack”

T50

T Yu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL ‘19



Another example

Model can memorize the canonical orientations of the training objects.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR ‘19



Can we do something about it?
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If tasks mutually exclusive: single function cannot solve all tasks

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR ‘19

Suggests a potential approach: control information flow.

An entire spectrum of solutions based on how information flows.

(i.e. due to label shuffling, hiding information)

If tasks are non-mutually exclusive: single function can solve all tasks

multiple solutions to the 
meta-learning problem

yts = f✓(Dtr
i , x

ts)

memorize canonical pose info in  & ignore θ 𝒟tr
i

carry no info about canonical pose in , acquire from θ 𝒟tr
i

One solution:

Another solution:



An entire spectrum of solutions based on how information flows.

If tasks are non-mutually exclusive: single function can solve all tasks
multiple solutions to the 
meta-learning problem

yts = f✓(Dtr
i , x

ts)

memorize canonical pose info in  & ignore θ 𝒟tr
i

carry no info about canonical pose in , acquire from θ 𝒟tr
i

One solution:

Another solution:

Meta-regularization

minimize meta-training loss + information in θ
+βDKL(q(θ; θμ, θσ)∥p(θ))ℒ(θ, 𝒟meta−train)

Places precedence on using information from  over storing info in .𝒟tr θ
Can combine with your favorite meta-learning algorithm.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR ‘19

one option: max I(ŷts, 𝒟tr |xts)



Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR ‘19

(and it’s not just as simple as standard regularization)

On pose prediction task:

Omniglot without label shuffling: “non-mutually-exclusive” Omniglot

TAML: Jamal & Qi. Task-Agnostic Meta-Learning for Few-Shot Learning. CVPR ‘19



Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR ‘19

Does meta-regularization lead to better generalization?

Let  be an arbitrary distribution over  that doesn’t depend on the meta-training data.P(θ) θ

For MAML, with probability at least ,1 − δ

(e.g. )P(θ) = 𝒩(θ; 0, I)

∀θμ, θσerror on the 
meta-training set

meta-regularization

With a Taylor expansion of the RHS + a particular value of  —> recover the MR MAML objective.β

Proof: draws heavily on Amit & Meier ‘18

generalization 
error



Summary of Memorization Problem

memorize training datapoints  
in your training dataset

(xi, yi)memorize training functions   
corresponding to tasks in your meta-training dataset

fi
meta overfitting

meta regularization

regularizes description length 
of meta-parameters

control information flow

standard regularization

regularize hypothesis class

(though not always for DNNs)

standard overfitting

standard supervised learningmeta-learning
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Plan for Today

28

Brief Recap of Meta-Learning & Task Construction


Memorization in Meta-Learning

- When it arises

- Potential solutions


Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning

- Semi-Supervised Meta-Learning



Where do tasks come from?

What if we only have unlabeled data? e.g., unlabeled images, unlabeled text

Rußwurm et al. Meta-Learning for Few-
Shot Land Cover Classification. 2020

Requires labeled data 
from other regions

29

Last week: Pre-train representations & fine-tune

Today: Explicit meta-learning with unlabeled data.



A general recipe for unsupervised meta-learning

Propose tasksGiven unlabeled dataset(s) Run meta-learning

Goal of unsupervised meta-learning methods:  
Automatically construct tasks from unlabeled data

Next:
Task construction from unlabeled image data

1. diverse (more likely to cover test tasks)

2. structured (so that few-shot meta-learning is possible) 

Question: What do you want 
the task set to look like?

30Task construction from unlabeled text data



Can we meta-learn with only unlabeled images?

Propose cluster 
discrimination tasks

Unsupervised learning
(to get an embedding space)

Run meta-learning

class 1

class 2

class 1

class 2

x
x

x x
x

x
x

x

x

x
x

x
x

Result: representation suitable for learning downstream tasks

…
Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR ‘19

— — Task construction — —



A few options:

BiGAN — Donahue et al. ’17

DeepCluster — Caron et al. ’18

Clustering to Automatically 
Construct Tasks for Unsupervised 
Meta-Learning (CACTUs)

MAML — Finn et al. ’17

ProtoNets — Snell et al. ’17

method accuracy

MAML with labels 62.13%

BiGAN kNN 31.10%

BiGAN logistic 33.91%

BiGAN MLP + dropout 29.06%

BiGAN cluster matching 29.49%

BiGAN CACTUs MAML 51.28%

DeepCluster CACTUs MAML 53.97%

miniImageNet 5-way 5-shot

Same story for:

- 4 different embedding methods

- 4 datasets (Omniglot, CelebA, 

miniImageNet, MNIST)

- 2 meta-learning methods (*)

- Test tasks with larger datasets

CACTUs MAML
*ProtoNets underperforms in some cases.

Unsupervised learning
(to get an embedding space) Run meta-learning

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR ‘19

Propose cluster 
discrimination tasks

Can we meta-learn with only unlabeled images?



Can we use domain knowledge when constructing tasks?

Khodadadeh, Bölöni, Shah. Unsupervised Meta-Learning for Few-Shot Image Classification. NeurIPS ‘19

—> Store in 𝒟tr
i

i. Randomly sample  images & assign labels 


ii. For each datapoint in , augment image using domain 
knowledge

N 1,…, N

𝒟tr
i

—> Store in 𝒟ts
i

For each 
task :𝒯i

e.g. image’s label often won’t change when you:
- drop out some pixels
- translate the image
- reflect the image

1 2 3

1 2 3

Task construction:



Can we use domain knowledge when constructing tasks?

Khodadadeh, Bölöni, Shah. Unsupervised Meta-Learning for Few-Shot Image Classification. NeurIPS ‘19

—> Store in 𝒟tr
ii. Randomly sample  images & assign labels 


ii. For each datapoint in , augment image using domain 
knowledge

N 1,…, N
𝒟tr

i —> Store in 𝒟ts
i

For each 
task :𝒯i

- outstanding Omniglot 
performance

Omniglot: translation & random pixel dropout MiniImagenet: AutoAugment* (translation, rotation, shear)
How to augment in practice?

* Cubuk et al. 2018

(where we have good 
domain knowledge!)

- MiniImageNet: slightly 
underperforms CACTUs



Can we meta-learn with only unlabeled text?
Option A: Formulate it as a language modeling problem.

Recall: GPT-3

: sequence of characters𝒟tr
i

: following sequence of characters𝒟ts
i

spelling correctionsimple math problems translating between languages

- harder to combine w/ optimization-
based meta-learning


- harder to apply to classification tasks 
(e.g. sentiment, political bias, etc)

When might we not use this option?

Brown, Mann, Ryder, Subbiah et al. Language Models are Few-Shot Learners. arXiv ‘20



Can we meta-learn with only unlabeled text?
Option B: Construct tasks by masking out words

Bansal, Jha, Munkhdalai, McCallum. Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks. EMNLP ‘20

i. Sample subset of  unique words & assign unique ID.


ii. Sample  sentences with that word, masking the word out

iii. Construct  and  with masked sentences & corresponding word IDs

N

K + Q
𝒟tr

i 𝒟ts
i

For each 
task :𝒯i

𝒟ts
i𝒟tr

i

Task: Classify the masked word.



Bansal, Jha, Munkhdalai, McCallum. Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks. EMNLP ‘20

BERT	 - standard self-supervised 
learning + fine-tuning

LEOPARD  - optimization-based 
meta-learner (only on supervised tasks)

entirely unsupervised 
pre-training

supervised or semi-
supervised pre-training

SMLMT	 - proposed unsupervised 
meta-learning

MT-BERT	 - multi-task learning + 
fine-tuning (on supervised tasks)

Hybrid-SMLMT	 - meta-learning 
on proposed tasks + supervised 
tasks

More results & analysis in the paper!



Summary of Unsupervised Meta-Training

38

Propose tasksGiven unlabeled dataset(s) Run meta-learning

Existing task proposal techniques:

- Classify between clusters of images

- Classify augmented image vs. different image instance

- Generate text from a particular context

- Classify a masked word



Plan for Today
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Brief Recap of Meta-Learning & Task Construction


Memorization in Meta-Learning

- When it arises

- Potential solutions


Meta-Learning without Tasks Provided

- Unsupervised Meta-Learning

- Semi-Supervised Meta-Learning

} Part of (optional) Homework 4

Goals for by the end of lecture:

- Understand when & how memorization in meta-learning may occur

- Understand techniques for constructing tasks automatically



Course Reminders
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Homework 2 due today.

Homework 3 out today, due next	Wednesday.

Wednesday’s lecture: large-scale meta-optimization

by Yoonho Lee
(ML PhD student)


