Bayesian Meta-Learning CS 330

Homework 3 due Wednesday Friday.

Homework 4 (optional) out today.

Course Reminders

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:

- Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for representing uncertainty over parameters, predictions

Disclaimers

Bayesian meta-learning is an active area of research (like most of the class content)

More questions than answers.

Recap: Properties of Meta-Learning Inner Loops Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

These properties are important for most applications!

Expressive power

Consistency

Recap: Properties of Meta-Learning Inner Loops Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

ability to reason about ambiguity during learning active learning, calibrated uncertainty, RL principled Bayesian approaches Why?

Expressive power

Consistency

Uncertainty awareness

this lecture

Plan for Today

Why be Bayesian?

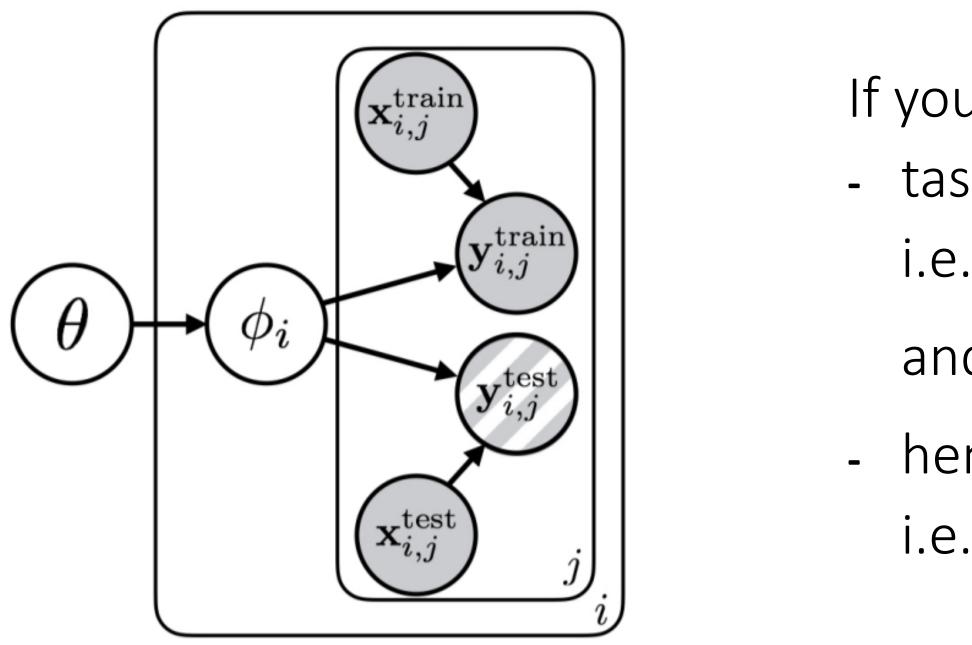
Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

Multi-Task & Meta-Learning Principles

- Training and testing must match.
 - Tasks must share "structure."
- What does "structure" mean? statis

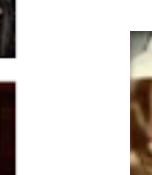


Thought exercise #1: If you can identify θ (i.e. with meta-learning), when should learning ϕ_i be faster than learning from scratch? **Thought exercise #2**: what if $\mathscr{H}(p(\phi_i | \theta)) = 0 \quad \forall i$?

statistical dependence on shared latent information heta

- If you condition on that information,
- task parameters become independent
 - i.e. $\phi_{i_1} \perp \phi_{i_2} \mid \theta$
- and are not otherwise independent $\phi_{i_1} \perp \phi_{i_2}$ - hence, you have a lower entropy i.e. $\mathcal{H}(p(\phi_i \mid \theta)) < \mathcal{H}(p(\phi_i))$

 Smiling, ✓ Wearing Hat, ✓ Young



× Smiling, ✓ Wearing Hat, ✓ Young

✓ Smiling,

× Young

✓ Wearing Hat,

Recall parametric approaches: Use deterministic $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$ (i.e. a point estimate)

Why/when is this a problem?

Few-shot learning problems may be *ambiguous*. (even with prior)

> Can we learn to *generate hypotheses* about the underlying function? i.e. sample from $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

safety-critical few-shot learning (e.g. medical imaging) Important for:

- learning to **actively learn**
- learning to **explore** in meta-RL

Active learning w/ meta-learning: Woodward & Finn '16, Konyushkova et al. '17, Bachman et al. '17

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

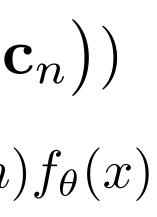
Meta-learning algorithms as computation graphs **Black-box Optimization-based Non-parametric** $y^{\text{ts}} = f_{\theta}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}}) \qquad y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$ $y^{\mathrm{ts}} = f_{\mathrm{PN}}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$ $= \operatorname{softmax}(-d\left(f_{\theta}(x^{\operatorname{ts}}), \mathbf{c}_n\right))$ $= f_{\phi_i}(x^{\mathrm{ts}})$ where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$ where $\mathbf{c}_n = \frac{1}{K} \sum \mathbb{1}(y = n) f_{\theta}(x)$

 $(x_1, y_1) (x_2, y_2) (x_3, y_3)$

- probability values of discrete categorical distribution For example:
 - mean and variance of a Gaussian
 - means, variances, and mixture weights of a mixture of Gaussians
 - for multi-dimensional y^{ts}: parameters of a sequence of **distributions** (i.e. autoregressive model)

Version 0: Let f output the parameters of a distribution over y^{ts} .

- Then, optimize with maximum likelihood.
 - 11



 $(x,y) \in \mathcal{D}_{i}^{\mathrm{tr}}$

For example:

- probability values of discrete categorical distribution
- mean and variance of a Gaussian
- means, variances, and mixture weights of a mixture of Gaussians -
- for multi-dimensional y^{ts}: parameters of a sequence of
 - **distributions** (i.e. autoregressive model)
 - Then, optimize with maximum likelihood.

Pros:

- + simple
- + can combine with variety of methods

Cons:

- can't reason about uncertainty over the underlying function [to determine how uncertainty across datapoints relate]
- limited class of distributions over y^{ts} can be expressed
- tends to produce poorly-calibrated uncertainty estimates

Version 0: Let f output the parameters of a distribution over y^{ts} .

Thought exercise #4: Can you do the same maximum likelihood training for ϕ ?

The Bayesian Deep Learning Toolbox

a broad one-slide overview (CS 236 provides a thorough treatment)

Goal: represent distributions with neural networks

- approximate likelihood of latent variable model with variational lower bound

Bayesian ensembles (Lakshminarayanan et al. '17):

particle-based representation: train separate models on bootstraps of the data —

Bayesian neural networks (Blundell et al. '15):

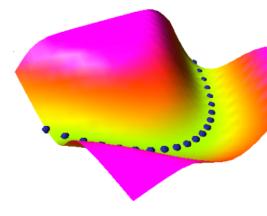
explicit distribution over the space of network parameters

Normalizing Flows (Dinh et al. '16):

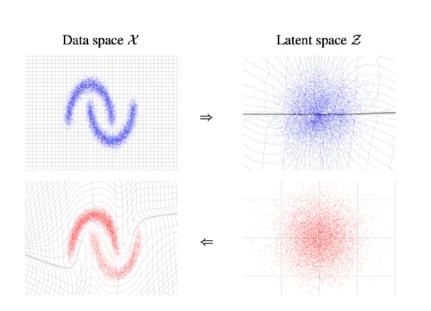
invertible function from latent distribution to data distribution _

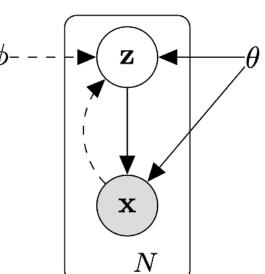
Energy-based models & GANs (LeCun et al. '06, Goodfellow et al. '14):

estimate unnormalized density



Latent variable models + variational inference (Kingma & Welling '13, Rezende et al. '14):





data everything else

We'll see how we can leverage the first two. The others could be useful in developing new methods.

Recap: The Variational Lower Bound

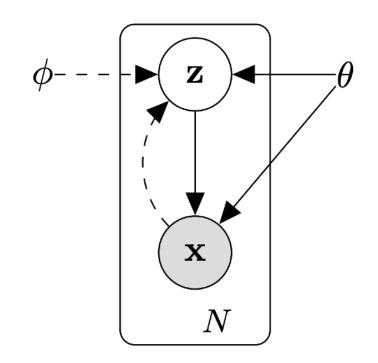
 $\log p(x)$ ELBO:

Can also be written as:

 $p: model \quad \begin{array}{l} p(x \mid z) \text{ represented w/ neural net,} \\ p(z) \text{ represented as } \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{array}$

model parameters θ , variational parameters ϕ q(z | x): inference network, variational distribution

Problem: need to backprop through sampling i.e. compute derivative of \mathbb{E}_q w.r.t. q



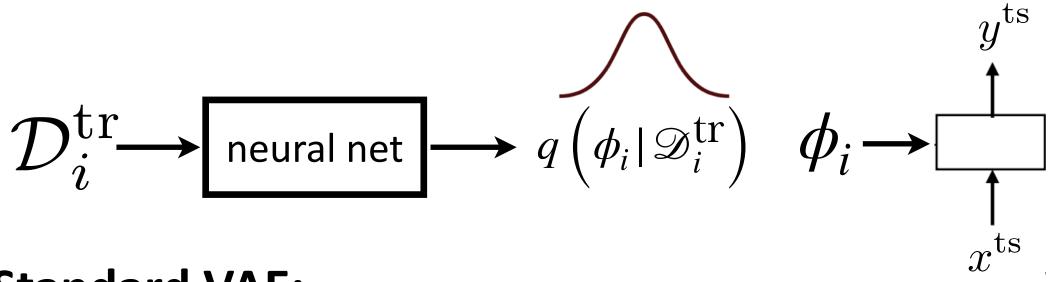
Observed variable *x*, latent variable *z*

$$\geq \mathbb{E}_{q(z|x)} \left[\log p(x, z) \right] + \mathcal{H}(q(z|x))$$
$$= \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL} \left(q(z|x) || p(z) \right)$$

Reparametrization trick For Gaussian q(z | x): $q(z | x) = \mu_q + \sigma_q \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Can we use amortized variational inference for meta-learning?

Bayesian black-box meta-learning with standard, deep variational inference



Standard VAE:

Observed variable *x*, latent variable *z* ELBO: $\mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL} \left(q(z|x) || p(z) \right)$ *p*: model, represented by a neural net *q*: inference network, variational distribution **Meta-learning:** Observed variable \mathcal{D} , latent variable ϕ max $\mathbb{E}_{q(\phi)} \left[\log p(\mathcal{D} | \phi) \right] - D_{KL} \left(q(\phi) || p(\phi) \right)$

Final objective (for completeness): $\max_{\theta} \mathbb{E}_{\mathcal{T}_i} \left[\mathbb{E}_{q} \right]$

What should
$$q$$
 condition on?

$$\max \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right)} \left[\log p(\mathscr{D} \mid \phi)\right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right) \mid \mid p(\phi)\right)$$

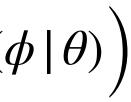
$$\max \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right)} \left[\log p\left(y^{\mathrm{ts}} \mid x^{\mathrm{ts}}, \phi\right)\right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right) \mid p(\phi)\right)$$

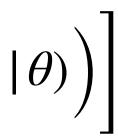
What about the meta-parameters θ ?

$$\max_{\theta} \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\text{tr},\theta}\right)} \left[\log p\left(y^{\text{ts}} \mid x^{\text{ts}}, \phi\right) \right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\text{tr}}, \theta\right) || p(q) \right)$$

Can also condition on θ here

$$\int_{q\left(\phi_{i} \mid \mathscr{D}_{i}^{\text{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\text{ts}} \mid x_{i}^{\text{ts}}, \phi_{i}\right) \right] - D_{KL} \left(q\left(\phi_{i} \mid \mathscr{D}_{i}^{\text{tr}}, \theta\right) \parallel p(\phi_{i} \mid \mathcal{D}_{i}^{\text{tr}}, \theta) \right)$$





Bayesian black-box meta-learning with standard, deep variational inference

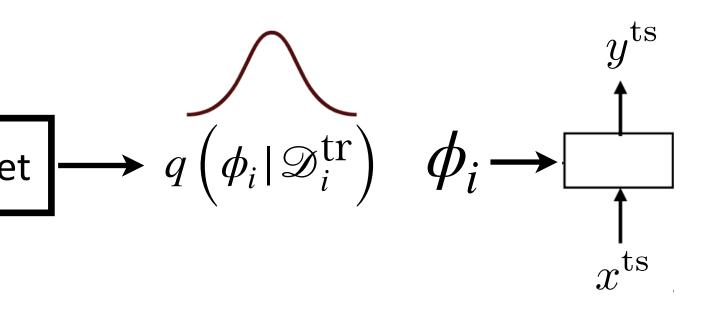
$$\mathcal{D}_i^{\mathrm{tr}} \longrightarrow$$
 neural net

$$\max_{\theta} \mathbb{E}_{\mathcal{T}_{i}} \left[\mathbb{E}_{q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}, \phi_{i}\right) \right] - D_{KL} \left(q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right) \mid \mid p(\phi_{i} \mid \theta) \right) \right]$$

Pros:

+ produces distribution over functions

Cons:



+ can represent non-Gaussian distributions over y^{ts}

- Can only represent Gaussian distributions $p(\phi_i | \theta)$

Plan for Today

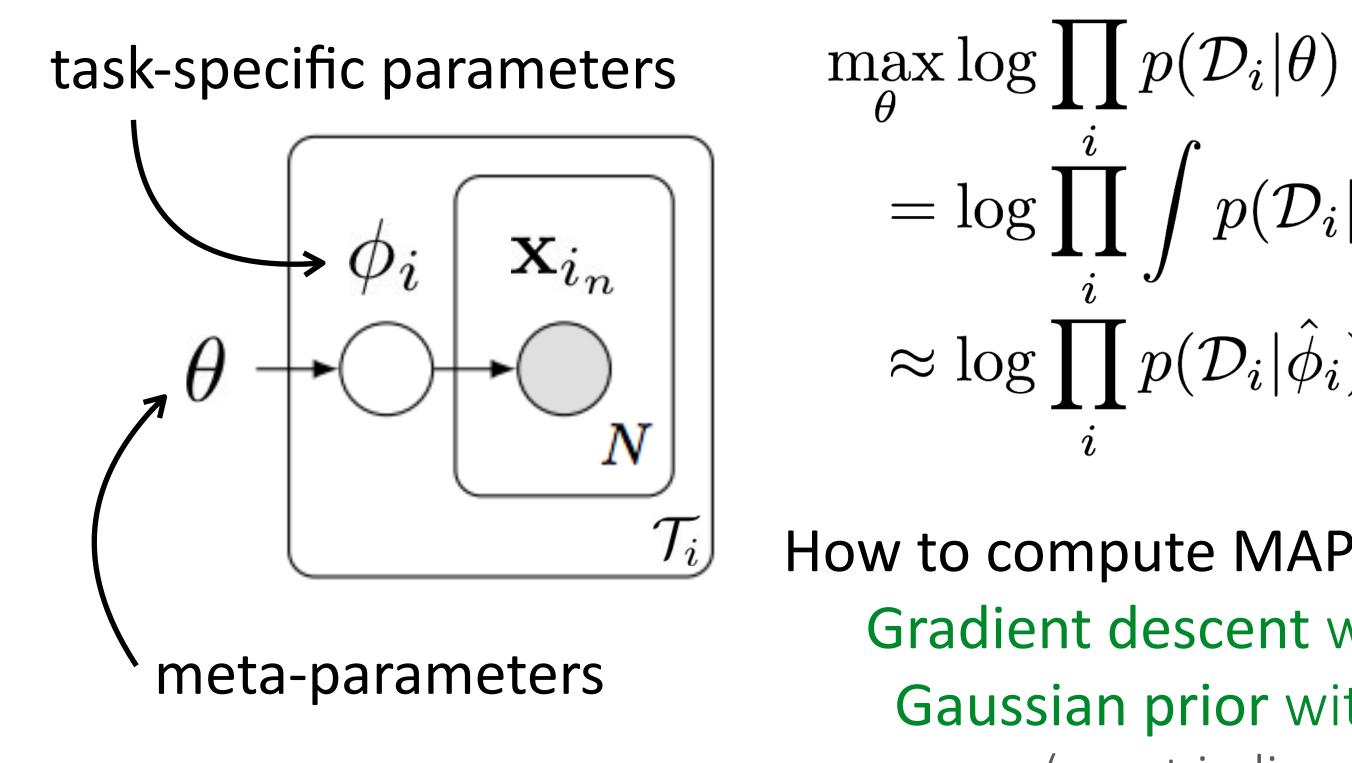
Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

What about Bayesian **optimization-based** meta-learning?



Provides a Bayesian interpretation of MAML. But, we can't **sample** from $p\left(\phi_i | \theta, \mathscr{D}_i^{\mathsf{tr}}\right)!$

Recasting Gradient-Based Meta-Learning as Hierarchical Bayes (Grant et al. '18)

 $= \log \prod_{i=1}^{i} \int p(\mathcal{D}_{i}|\phi_{i}) p(\phi_{i}|\theta) d\phi_{i} \quad \text{(empirical Bayes)}$

 $\approx \log \prod_{i} p(\mathcal{D}_{i} | \hat{\phi}_{i}) p(\hat{\phi}_{i} | \theta)$ MAP estimate

How to compute MAP estimate?

Gradient descent with early stopping = MAP inference under Gaussian prior with mean at initial parameters [Santos '96] (exact in linear case, approximate in nonlinear case)

What about Bayesian optimization-based meta-learning?

 $\mathcal{D}_{i}^{\mathrm{tr}} \longrightarrow \mathrm{neural} \mathrm{net} \max_{\theta} \mathbb{E}_{\mathcal{T}_{i}} \left| \mathbb{E}_{q\left(\phi_{i} \mid \mathcal{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}\right) \right] \right|$

Amortized Bayesian Meta-Learning (Ravi & Beatson '19)

Recall: Bayesian black-box meta-learning with standard, deep variational inference

$$\rightarrow q\left(\phi_{i}|\mathscr{D}_{i}^{\mathrm{tr}}\right) \quad \phi_{i} \rightarrow \begin{array}{c} & & & \\ & \uparrow \\ & & & \\ &$$

q: an arbitrary function

- q can include a gradient operator!
 - q corresponds to SGD on the mean & variance of neural network weights ($\mu_{\phi}, \sigma_{\phi}^2$), w.r.t. $\mathscr{D}_i^{\mathrm{tr}}$
- **Pro:** Running gradient descent at test time. Con: $p(\phi_i | \theta)$ modeled as a Gaussian.
 - Can we model **non-Gaussian** posterior?

What about Bayesian optimization-based meta-learning? Can we use **ensembles**? Kim et al. Bayesian MAML '18

Ensemble of MAMLs (EMAML) Train M independent MAML models. Won't work well if ensemble members are too similar.

An ensemble of mammals

A more diverse ensemble of mammals

Stein Variational Gradient (BMAML)

Use stein variational gradient (SVGD) to push particles away from one another $\phi(\theta_t) = \frac{1}{M} \sum_{i=1}^{M} \left[k(\theta_t^j, \theta_t) \nabla_{\theta_t^j} \log p(\theta_t^j) + \nabla_{\theta_t^j} k(\theta_t^j, \theta_t) \right]$

Pros: Simple, tends to work well, non-Gaussian distributions.

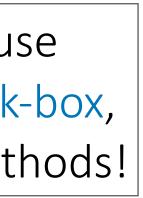
Can we model **non-Gaussian** posterior over **all parameters**?

Note: Can also use ensembles w/ black-box, non-parametric methods!

Optimize for distribution of M particles to produce high likelihood.

$$\mathcal{L}_{ ext{BFA}}(\Theta_{ au}(\Theta_{0}); \mathcal{D}_{ au}^{ ext{val}}) = \log\left[rac{1}{M}\sum_{m=1}^{M}p(\mathcal{D}_{ au}^{ ext{val}}| heta_{ au}^{m})
ight]$$

Con: Need to maintain M model instances. (or do gradient-based inference on last layer only)

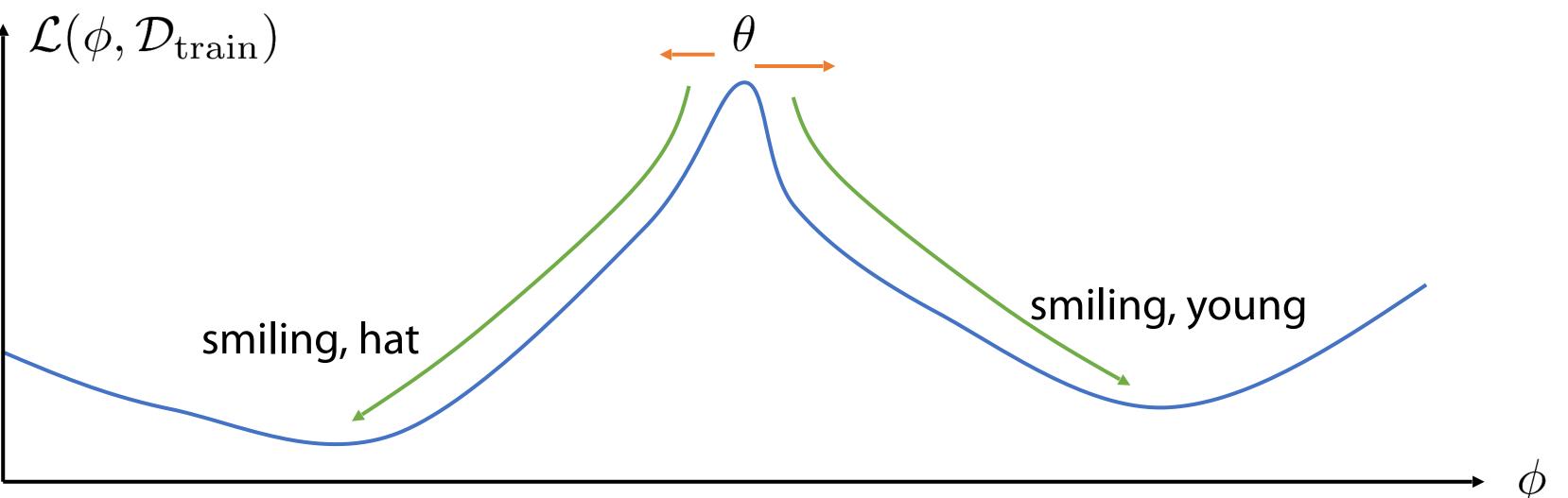


What about Bayesian **optimization-based** meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18

✓ Young

Intuition: Learn a prior where a random kick can put us in different modes

 $\mathcal{L}(\phi, \mathcal{D}_{ ext{train}})$



 $\phi \leftarrow \theta + \epsilon$ $\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}(\phi, \mathcal{D}_{\text{train}})$

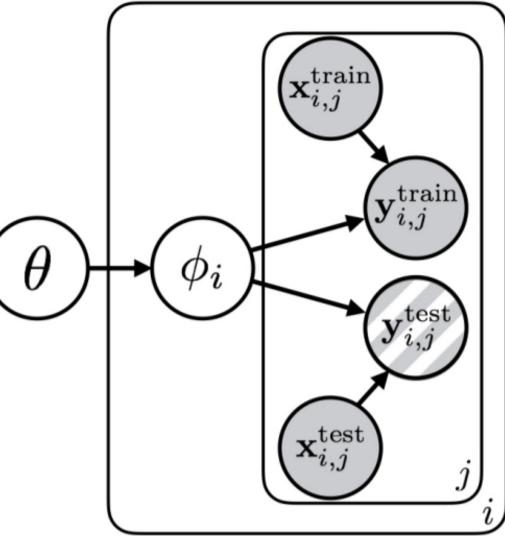
What about Bayesian optimization-based meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18 $\theta \sim p(\theta) = \mathcal{N}(\mu_{\theta}, \Sigma_{\theta}) \qquad \phi_i \sim p(\phi_i | \theta)$ (not single parameter vector anymore) Goal: sample $\phi_i \sim p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}})$ $p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}) \propto \int p(\theta) p(\phi_i | \theta) p$ \Rightarrow this is completely intractable! what if we knew $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}})?$

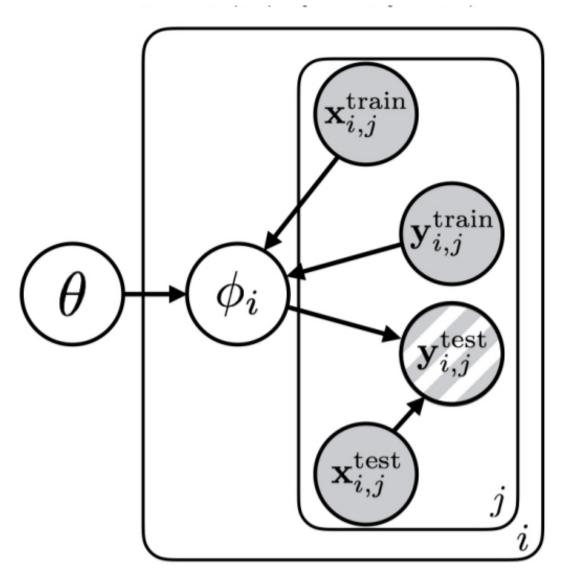
 \Rightarrow now sampling is easy! just use ancestral sampling!

key idea: $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i)$ approximate with MAP this is **extremely** crude $\hat{\phi}_i \approx \theta + \alpha \nabla_\theta \log p(y_i^{\text{train}} | x_i^{\text{train}}, \theta)$ but **extremely** convenient! (Santos '92, Grant et al. ICLR '18)

Training can be done with **amortized variational inference**.

$$p(y_i^{\text{train}}|x_i^{\text{train}},\phi_i)d\theta$$





22

What about Bayesian optimization-based meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18 $\theta \sim p(\theta) = \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$

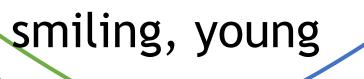
key idea: $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i) \qquad \hat{\phi}_i \approx \theta + \alpha \nabla_\theta \log p(y_i^{\text{train}} | x_i^{\text{train}}, \theta)$

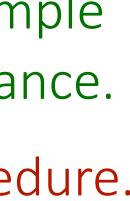
What does ancestral sampling look like? 1. $\theta \sim \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$ 2. $\phi_i \sim p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \hat{\phi}_i = \theta + \alpha \nabla_{\theta} \log_{\theta}$ $\mathcal{L}(\phi, \mathcal{D}_{ ext{train}})$ smiling, hat

$$p(y_i^{\text{train}}|x_i^{\text{train}}, \theta)$$

Pros: Non-Gaussian posterior, simple at test time, only one model instance.

Con: More complex training procedure.





Methods Summary

Version 0: f outputs a distribution over y^{ts} . **Pros:** simple, can combine with variety of methods **Cons:** can't reason about uncertainty over the underlying function, limited class of distributions over y^{ts} can be expressed

Black box approaches: Use latent variable models + amortized variational inference

$$\mathcal{D}_{i}^{\mathrm{tr}} \longrightarrow \mathrm{neural\,net} \longrightarrow q\left(\phi_{i} | \mathcal{D}_{i}^{\mathrm{tr}}\right) \quad \phi_{i} \longrightarrow \underset{x^{\mathrm{ts}}}{\overset{y^{\mathrm{ts}}}{\uparrow}}$$

Optimization-based approaches:

Amortized inference

Pro: Simple.

Con: $p(\phi_i | \theta)$ modeled as a Gaussian.

Pros: can represent non-Gaussian distributions over y^{ts} **Cons:** Can only represent Gaussian distributions $p(\phi_i | \theta)$ (okay when ϕ_i is latent vector)

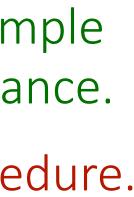
Ensembles

Pros: Simple, tends to work well, non-Gaussian distributions. **Con**: maintain M model instances. (or do inference on last layer only)

Hybrid inference

Pros: Non-Gaussian posterior, simple at test time, only one model instance.

Con: More complex training procedure.



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

How to evaluate a Bayesian meta-learner?

- + standardized
- + real images
- metrics like accuracy don't evaluate uncertainty
- tasks may not exhibit ambiguity
- uncertainty may not be useful on this dataset!

It depends on the problem you care about!

Use the standard benchmarks?

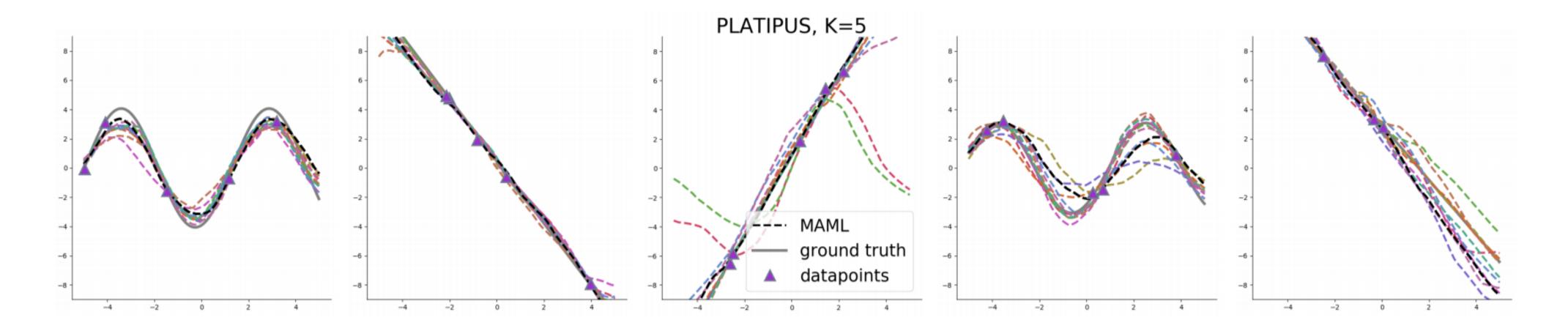
(i.e. Minilmagenet accuracy)

+ good check that the approach didn't break anything

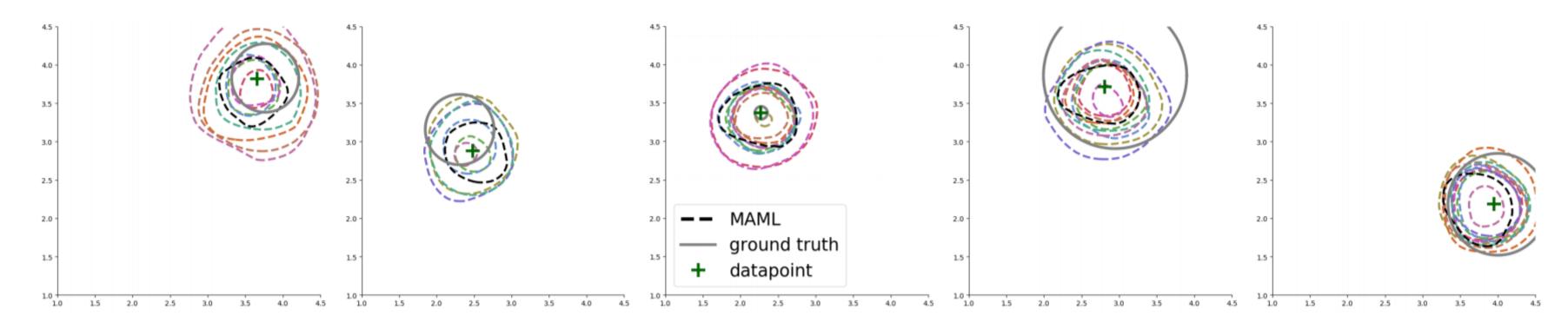
What are better problems & metrics?

Qualitative Evaluation on Toy Problems with Ambiguity (Finn*, Xu*, Levine, NeurIPS '18)

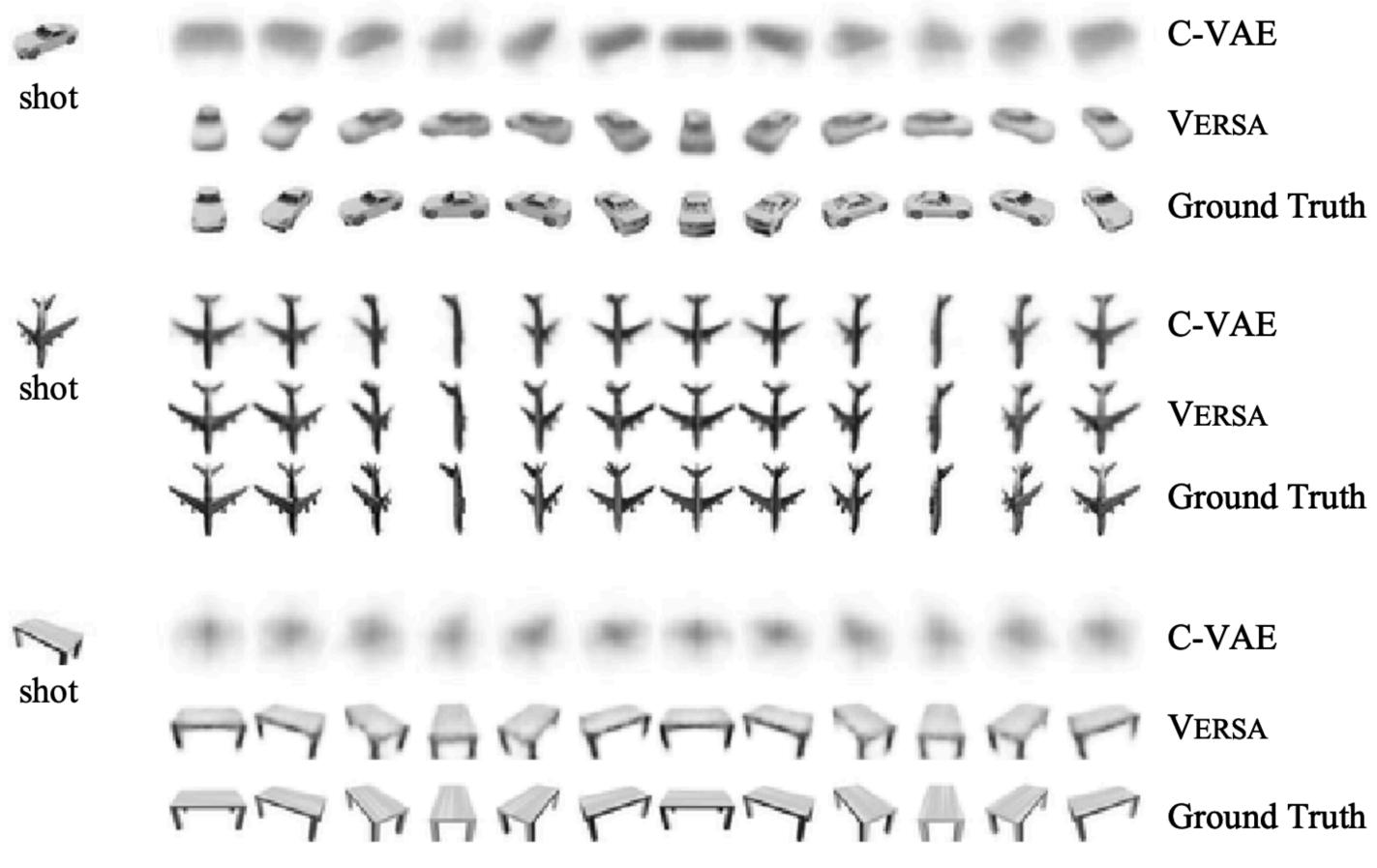
Ambiguous regression:



Ambiguous classification:



Evaluation on Ambiguous Generation Tasks (Gordon et al., ICLR '19)



C-VAE

VERSA

Ground Truth

C-VAE

VERSA

Ground Truth

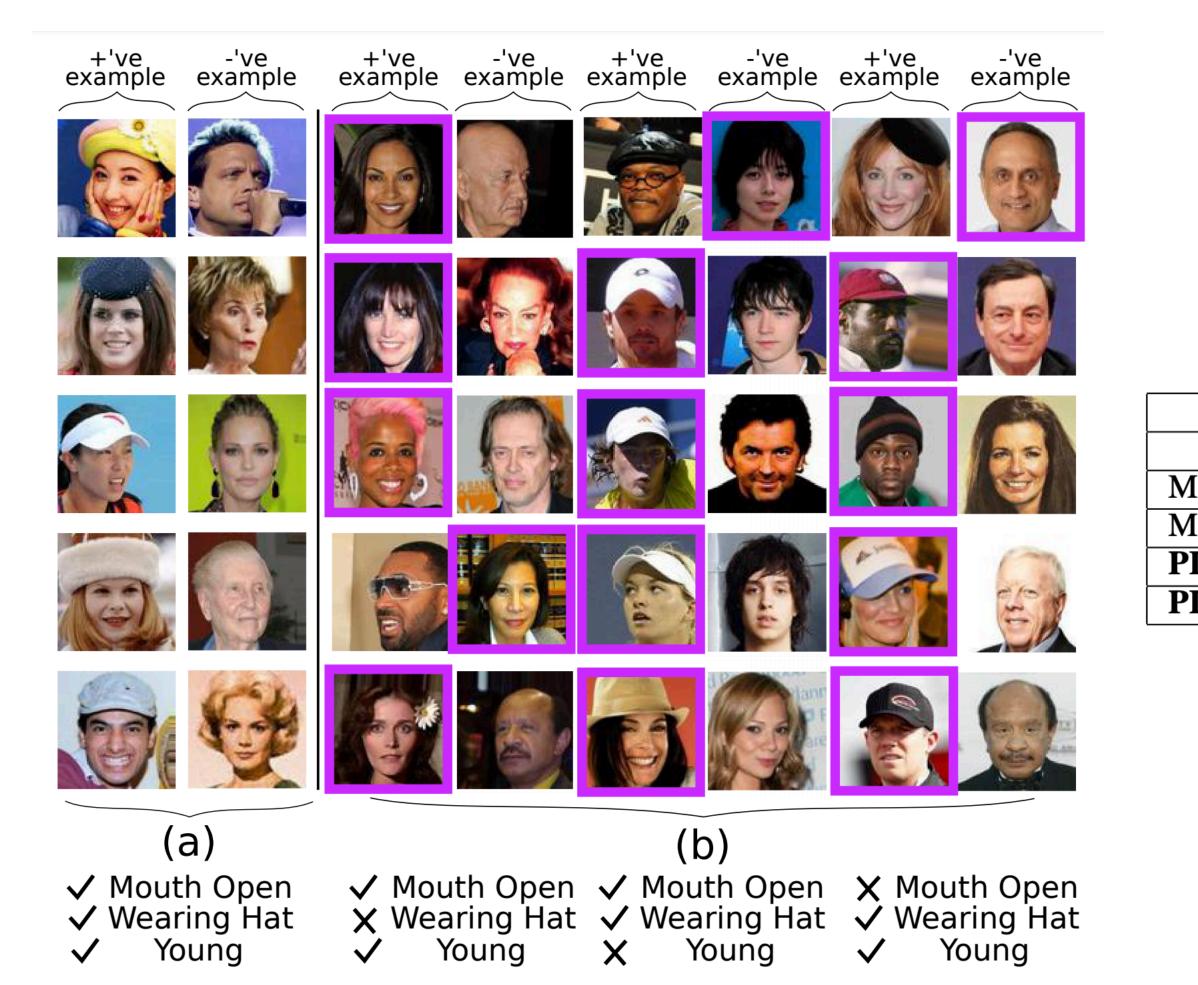
Model	MSE	SSIM
C-VAE 1-shot	0.0269	0.5705
VERSA 1-shot	0.0108	0.7893
VERSA 5-shot	0.0069	0.8483

Table 2: View reconstruction test results.

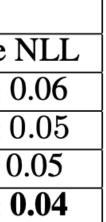
C-VAE

VERSA

Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks (Finn*, Xu*, Levine, NeurIPS '18)

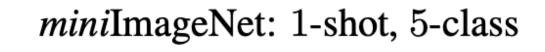


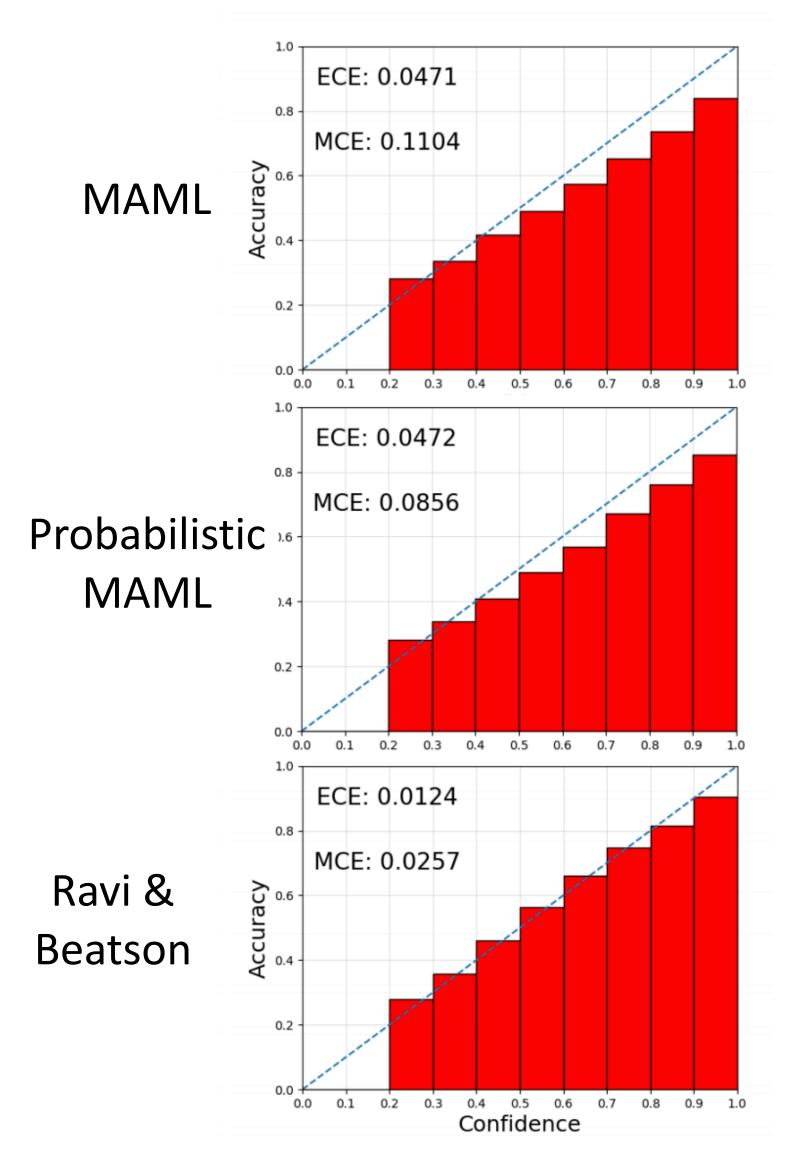
Ambiguous celebA (5-shot)				
	Accuracy	Coverage (max=3)	Average	
MAML	$\textbf{89.00} \pm \textbf{1.78\%}$	1.00 ± 0.0	0.73 ± 0	
MAML + noise	84.3 ± 1.60 %	1.89 ± 0.04	0.68 ± 0	
PLATIPUS (ours) (KL weight = 0.05)	$\textbf{88.34} \pm \textbf{1.06}~\%$	1.59 ± 0.03	0.67 ± 0	
PLATIPUS (ours) (KL weight = 0.15)	$\textbf{87.8} \pm \textbf{1.03}~\%$	$\textbf{1.94} \pm \textbf{0.04}$	0.56 ± 0	



Reliability Diagrams & Accuracy

(Ravi & Beatson, ICLR '19)





 m

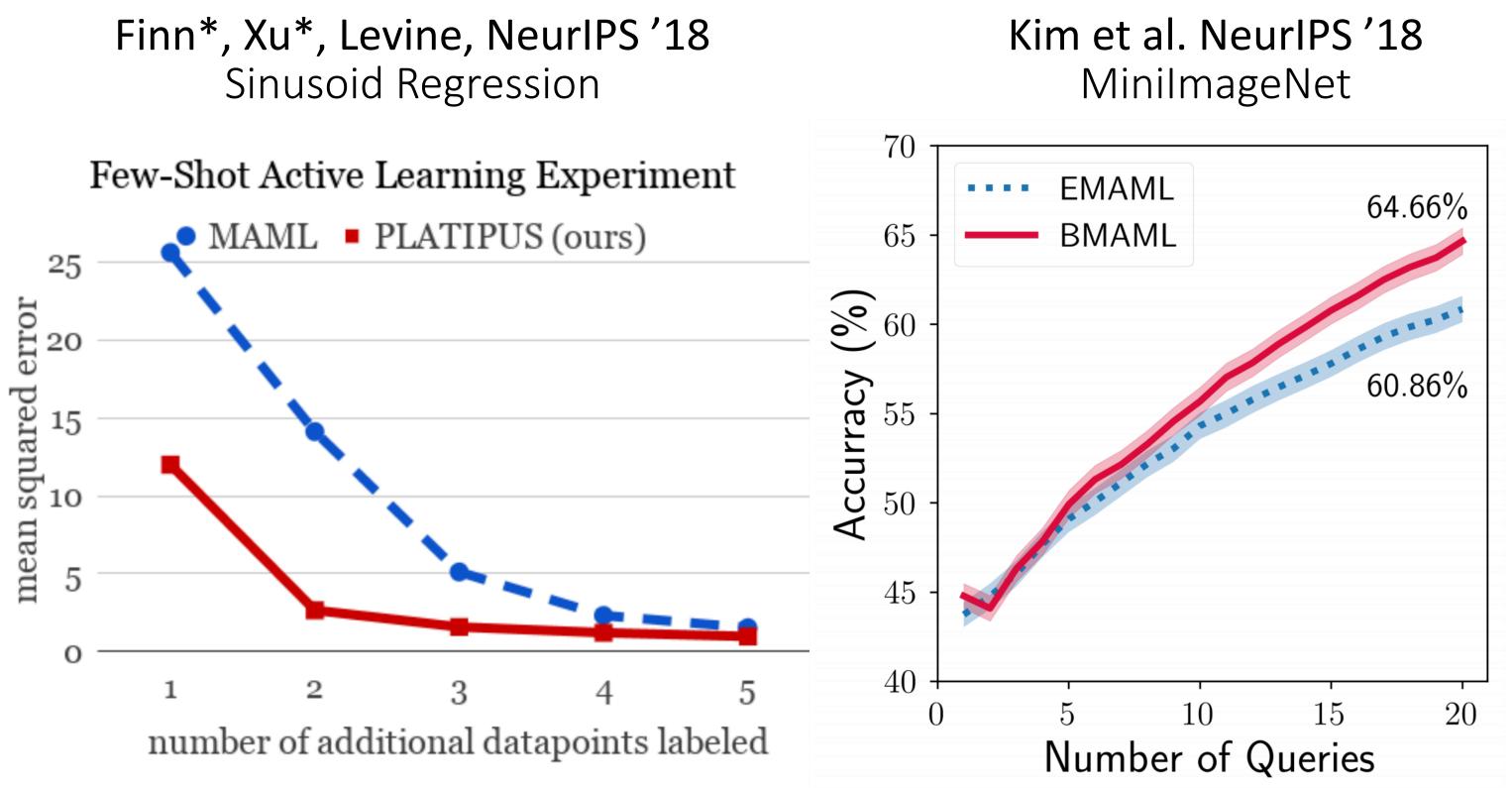
 M

 P1

 O

<i>iini</i> ImageNet	1-shot, 5-class
AML (ours)	47.0 ± 0.59
rob. MAML (ours)	47.8 ± 0.61
Our Model	45.0 ± 0.60

Active Learning Evaluation



Both experiments:

- Sequentially choose datapoint with maximum predictive entropy to be labeled
- Choose datapoint at random for non-Bayesian methods

Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

Uncertainty awareness

Expressive power

Consistency

ability to reason about ambiguity during learning active learning, calibrated uncertainty, RL Why? principled Bayesian approaches

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:

- Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for representing uncertainty over parameters, predictions

Next Time

- **Next week**: Domain adaptation & domain generalization
- **Following week**: Lifelong learning & Hanie Sedghi guest lecture
 - Following week: Thanksgiving

Course Reminders

- Homework 3 due Wednesday Friday.
 - Homework 4 (optional) out today.