
CS 330

Bayesian Meta-Learning
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Course Reminders

Homework 3 due Wednesday Friday.
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Homework 4 (op8onal) out today.



Plan for Today

Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- op8miza8on-based approaches 

How to evaluate Bayesian meta-learners.
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Goals	for	by	the	end	of	lecture:	
- Understand the interpreta8on of meta-learning	as	Bayesian	inference 
- Understand techniques for represen:ng	uncertainty over parameters, predic8ons



Disclaimers

Bayesian meta-learning is an ac:ve	area	of	research 
(like most of the class content)

4

More ques:ons than answers.



Recap: Proper8es of Meta-Learning Inner Loops
Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Why?	 scalability, applicability to a range of domains

Consistency
learned learning procedure will solve task with enough data

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

These	proper:es	are	important	for	most	applica:ons!



Recap: Proper8es of Meta-Learning Inner Loops
Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Consistency

Uncertainty	awareness

learned learning procedure will solve task with enough data

ability to reason about ambiguity during learning

Why?	 scalability, applicability to a range of domains

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

Why?	

*this	lecture*

ac8ve learning, calibrated uncertainty, RL 
principled Bayesian approaches



Plan for Today
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Why	be	Bayesian?	
Bayesian meta-learning approaches 
- black-box approaches 
- op8miza8on-based approaches 

How to evaluate Bayesian meta-learners.



Training and tes8ng must match.
Tasks must share “structure.”

What does “structure” mean? sta8s8cal dependence on shared latent informa8on θ

Mul&-Task	&	Meta-Learning	Principles

If you condi8on on that informa8on,  
- task parameters become independent 

i.e.  

and are not otherwise independent  

- hence, you have a lower entropy 
i.e. 

ϕi1 ⊥⊥ ϕi2 ∣ θ
ϕi1 ⊥⊥/ ϕi2

ℋ(p(ϕi |θ)) < ℋ(p(ϕi))

Thought	exercise	#2: what if ?ℋ(p(ϕi |θ)) = 0 ∀i

Thought	exercise	#1: If you can iden8fy  (i.e. with meta-learning),  
when should learning  be faster than learning from scratch?

θ
ϕi
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Why/when	is	this	a	problem?+ -
Few-shot learning problems may be ambiguous. 

(even with prior)

Recall parametric approaches: Use determinis:c (i.e. a point es8mate)p(�i|Dtr
i , ✓)

Can we learn to generate	hypotheses 
about the underlying func8on?

p(�i|Dtr
i , ✓)i.e. sample from

Important	for:

- safety-cri&cal few-shot learning 
(e.g. medical imaging) 

- learning to ac&vely	learn 

- learning to explore in meta-RL

Ac:ve	learning	w/	meta-learning: Woodward & Finn ’16, 
Konyushkova et al. ’17, Bachman et al. ’17
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Plan for Today
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Why be Bayesian? 

Bayesian	meta-learning	approaches	
- black-box approaches 
- op8miza8on-based approaches 

How to evaluate Bayesian meta-learners.



Black-box

yts

xts

yts = f✓(Dtr
i , x

ts)

Op&miza&on-based

Meta-learning	algorithms	as	computa.on	graphs
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Non-parametric

= softmax(�d
�
f✓(x

ts), cn
�
)

where cn =
1

K

X

(x,y)2Dtr
i

(y = n)f✓(x)

Version	0:	Let  output the parameters of a distribu8on over .f yts

For example:

Then, op8mize with maximum likelihood.

- probability values of discrete categorical	distribu/on	
- mean and variance of a Gaussian 
- means, variances, and mixture weights of a mixture	of	Gaussians	
- for mul8-dimensional : parameters of a sequence	of	
distribu/ons (i.e. autoregressive model)

yts
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Version	0:	Let  output the parameters of a distribu8on over .f yts

For example:
- probability values of discrete categorical	distribu/on	
- mean and variance of a Gaussian 
- means, variances, and mixture weights of a mixture	of	Gaussians	
- for mul8-dimensional : parameters of a sequence	of	
distribu/ons (i.e. autoregressive model)

yts

Then, op8mize with maximum	likelihood.
Pros: 
+ simple 
+ can combine with variety of methods 

Cons: 
- can’t reason about uncertainty over the underlying func8on 

[to determine how uncertainty across datapoints relate] 
- limited class of distribu8ons over  can be expressed 
- tends to produce poorly-calibrated uncertainty es8mates

yts

Thought	exercise	#4: Can you do the same maximum likelihood training for ?ϕ



The	Bayesian	Deep	Learning	Toolbox
a	broad	one-slide	overview

Goal: represent distribu8ons with neural networks

data
everything 

else

(CS 236 provides a thorough treatment)
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Latent	variable	models	+	varia:onal	inference (Kingma & Welling ‘13, Rezende et al. ‘14): 
- approximate likelihood of latent variable model with varia8onal lower bound 

Bayesian	ensembles (Lakshminarayanan et al. ‘17): 
- par8cle-based representa8on: train separate models on bootstraps of the data 

Bayesian	neural	networks (Blundell et al. ‘15): 
- explicit distribu8on over the space of network parameters 

Normalizing	Flows (Dinh et al. ‘16): 
- inver8ble func8on from latent distribu8on to data distribu8on 

Energy-based	models	&	GANs (LeCun et al. ’06, Goodfellow et al. ‘14): 
- es8mate unnormalized density We’ll see how we can leverage 

the first two.  
The others could be useful in 
developing new methods.



Recap:	The	Varia&onal	Lower	Bound

Observed variable , latent variable x z

ELBO:  log p(x) ≥ 𝔼q(z|x) [log p(x, z)] + ℋ(q(z |x))

model parameters , 
varia8onal parameters 

θ
ϕ

Can also be wrifen as: = 𝔼q(z|x) [log p(x |z)] − DKL (q(z |x)∥p(z))

: inference network, varia8onal distribu8onq(z |x)

 represented w/ neural net, 

 represented as 

p(x |z)
p(z) 𝒩(0, I)

Reparametriza&on	trickProblem: need to backprop through sampling 
i.e. compute deriva8ve of   w.r.t. 𝔼q q

: modelp

q(z |x) = μq + σqϵ where ϵ ∼ 𝒩(0, I)
For Gaussian :q(z |x)

Can	we	use	amor&zed	varia&onal	inference	for	meta-learning?
14



Bayesian	black-box	meta-learning		
with standard, deep varia8onal inference

Observed variable , latent variable 𝒟 ϕ

Observed variable , latent variable x z
ELBO: 𝔼q(z|x) [log p(x |z)] − DKL (q(z |x)∥p(z))

: inference network, varia8onal distribu8onq
: model, represented by a neural netp

max 𝔼q(ϕ) [log p(𝒟 |ϕ)] − DKL (q(ϕ)∥p(ϕ))

What about the meta-parameters ?θ

What should  condi8on on?q

max 𝔼
q(ϕ |𝒟tr) [log p(𝒟 |ϕ)] − DKL (q (ϕ |𝒟tr) ∥p(ϕ))

max 𝔼
q(ϕ |𝒟tr) [log p (yts |xts, ϕ)] − DKL (q (ϕ |𝒟tr) ∥p(ϕ))

max
θ

𝔼
q(ϕ |𝒟tr, θ) [log p (yts |xts, ϕ)] − DKL (q (ϕ |𝒟tr, θ) ∥p(ϕ |θ))

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Can also condi8on on  hereθ

Standard	VAE:

Meta-learning:

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]Final objec8ve (for completeness): 
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Bayesian	black-box	meta-learning		
with standard, deep varia8onal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Pros: 

+ can represent non-Gaussian distribu8ons over  
+ produces distribu8on over func8ons 
Cons: 
- Can only represent Gaussian distribu8ons 

yts

p(ϕi |θ)

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]
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Plan for Today
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Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- op&miza&on-based	approaches	
How to evaluate Bayesian meta-learners.



Hybrid	Varia:onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

meta-parameters

task-specific	parameters

(empirical Bayes)

MAP es8mate

How	to	compute	MAP	es:mate?
Gradient	descent	with	early	stopping = MAP	inference under 
Gaussian	prior with mean at ini8al parameters [Santos ’96]

(exact in linear case, approximate in nonlinear case)

Provides	a	Bayesian	interpreta:on	of	MAML.

Recas&ng	Gradient-Based	Meta-Learning	as	Hierarchical	Bayes (Grant et al. ’18)

But, we can’t sample from !p (ϕi |θ, 𝒟tr
i ) 18



Recall:	Bayesian	black-box	meta-learning		
with standard, deep varia8onal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]

Hybrid	Varia:onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

Amor:zed	Bayesian	Meta-Learning  
(Ravi & Beatson ’19)

Model													as	Gaussian

: an arbitrary func8onq

Can we model non-Gaussian	posterior?

 can include a gradient operator!q
 corresponds to SGD on the mean & variance 

of neural network weights ( ), w.r.t. 
q

μϕ, σ2
ϕ 𝒟tr

i

Con:  modeled as a Gaussian.p(ϕi |θ)Pro: Running gradient descent at test 8me.
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Ensemble	of	MAMLs	(EMAML)

Hybrid	Varia:onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

(or do gradient-based inference on last	layer	only)

Kim et al. Bayesian MAML ’18

Can we model non-Gaussian	posterior over all	parameters?

Train M independent MAML models.

Pros: Simple, tends to work well, 
non-Gaussian distribu8ons.

Con: Need to maintain M model instances.

Can	we	use	ensembles?

Stein	Varia:onal	Gradient	(BMAML)
Use stein	varia:onal	gradient	(SVGD) to 
push par8cles away from one another

Op8mize for distribu8on of M par8cles 
to produce high likelihood. 

Note: Can also use 
ensembles w/ black-box, 

non-parametric methods!An ensemble of mammals

Won’t work well if ensemble 
members are too	similar.

A more diverse ensemble 
of mammals
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Finn*, Xu*, Levine. Probabilistic MAML ‘18

What	about	Bayesian	op&miza&on-based	meta-learning?
Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?

Intuition:	Learn a prior where a random kick can put us in different modes

smiling, hat
smiling, young
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approximate	with	MAPthis	is	extremely	crude

but	extremely	convenient!

Training	can	be	done	with	amortized	variational	inference.

(Santos	’92,	Grant	et	al.	ICLR	’18)

What	about	Bayesian	op&miza&on-based	meta-learning?

Finn*, Xu*, Levine. Probabilistic MAML ‘18

(not single parameter vector anymore)
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Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?



What	does	ancestral	sampling	look	like?

smiling, hat
smiling, young

What	about	Bayesian	op&miza&on-based	meta-learning?

Finn*, Xu*, Levine. Probabilistic MAML ‘18

Pros: Non-Gaussian posterior, simple 
at test 8me, only one model instance.

Con: More complex training procedure.
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Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?



Methods Summary

Version	0:	  outputs a distribu8on over .f yts

Pros:	simple, can combine with variety of methods 

Cons:	can’t reason about uncertainty over the underlying func8on, 

limited class of distribu8ons over  can be expressedyts

Black	box	approaches:	Use latent variable models + amor8zed varia8onal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Op&miza&on-based	approaches:

Pros: can represent non-Gaussian distribu8ons over  
Cons:	Can only represent Gaussian distribu8ons  
(okay when  is latent vector)

yts

p(ϕi |θ)
ϕi

Ensembles

(or do inference on last	layer	only)

Pros: Simple, tends to work well, 
non-Gaussian distribu8ons.

Con: maintain M model instances.

Pros: Non-Gaussian posterior, simple 
at test 8me, only one model instance.

Con: More complex training procedure.Con:  modeled as a Gaussian.p(ϕi |θ)

Pro: Simple.

Amor8zed inference Hybrid inference

24



Plan for Today
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Why be Bayesian? 

Bayesian	meta-learning	approaches	
- black-box approaches 
- op8miza8on-based approaches 

How	to	evaluate	Bayesian	meta-learners.



How to evaluate a Bayesian meta-learner?
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Use	the	standard	benchmarks?	
(i.e. MiniImagenet accuracy)

+ standardized 
+ real images 
+ good check that the approach didn’t break anything 
- metrics like accuracy don't evaluate uncertainty 
- tasks may not exhibit ambiguity 
- uncertainty may not be useful on this dataset!

What	are	beSer	problems	&	metrics?	
It depends on the problem you care about!



Qualitative Evaluation on Toy Problems with Ambiguity
(Finn*,	Xu*,	Levine,	NeurIPS	’18)

Ambiguous regression:

Ambiguous classification:
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Evaluation on Ambiguous Generation Tasks
(Gordon	et	al.,	ICLR	’19)
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Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks
(Finn*,	Xu*,	Levine,	NeurIPS	’18)
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Reliability Diagrams & Accuracy
(Ravi	&	Beatson,	ICLR	’19)
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MAML

Ravi	&	
Beatson

Probabilistic	
MAML



Active Learning Evaluation

Finn*,	Xu*,	Levine,	NeurIPS	’18	
Sinusoid Regression
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Kim	et	al.	NeurIPS	’18	
MiniImageNet

Both experiments: 

- Sequentially choose datapoint with 
maximum	predictive	entropy to be labeled 

- Choose datapoint at random for non-
Bayesian methods



Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Consistency

Uncertainty	awareness

learned learning procedure will solve task with enough data

ability to reason about ambiguity during learning

Why?	 scalability, applicability to a range of domains

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

Why?	
ac8ve learning, calibrated uncertainty, RL 

principled Bayesian approaches



Plan for Today

Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- op8miza8on-based approaches 

How to evaluate Bayesian meta-learners.
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Goals	for	by	the	end	of	lecture:	
- Understand the interpreta8on of meta-learning	as	Bayesian	inference 
- Understand techniques for represen:ng	uncertainty over parameters, predic8ons
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Course Reminders
Homework 3 due Wednesday Friday.

Homework 4 (op8onal) out today.

Next Time
Next	week: Domain adapta8on & domain generaliza8on

Following	week: Lifelong learning & Hanie Sedghi guest lecture

Following	week: Thanksgiving 🦃🦃


