Bayesian Meta-Learning
CS 330



Course Reminders

Homework 3 due Wednesday Friday.

Homework 4 (optional) out today.



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:
Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for over parameters, predictions



Disclaimers

Bayesian meta-learning is an active area of research
(like most of the class content)

More questions than answers.



Recap: Properties of Meta-Learning Inner Loops

Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
EXxpressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

These properties are important for most applications!



Recap: Properties of Meta-Learning Inner Loops

Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
Expressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

ability to reason about ambiguity during learning
active learning, calibrated uncertainty, RL

orincipled Bayesian approaches

Why?

*this lecture®



Plan for Today

Why be Bayesian?
Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.



Multi-Task & Meta-Learning Principles
Training and testing must match.
Tasks must share “structure.”

What does “structure” mean? statistical dependence on shared latent information @

4 )

If you condition on that information,

- task parameters become independent
e, 1L ¢ | O
and are not otherwise independent ¢; WL ¢,

- hence, you have a lower entropy

.e. Z(p(¢;|0)) < Z(p(¢h)))

i)

Thought exercise #1: If you can identify @ (i.e. with meta-learning),

when should learning ¢, be faster than learning from scratch?
Thought exercise #2: what if Z(p(@,|0)) =0 Vi?
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Recall parametric approaches: Use deterministic (¢Z|Dtr #) (i.e.a point estimate)

Why/when is this a problem?

Few-shot learning problems may be ambiguous.
(even with prior)

~ Smiling, Can we learn to generate hypotheses
v Wearing Hat,

X Young about the underlying function?
.e. sample from p(¢;|D;", 0)

re—
t__j - safety-critical few-shot learning

(e.g. medical imaging)

S e Hat Important for:
 VYoung - learning to actively learn
v Smiling, - learning to explore in meta-RL
v/ Wearing Hat, Active learning w/ meta-learning: Woodward & Finn ’16,
v/ Young

Konyushkova et al. '17, Bachman et al. 17



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches

How to evaluate Bayesian meta-learners.
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Black-box

y*= = fo(D;", 2"

—

—

I

I

—

T

(z1,91) (T2,y2) (23,¥3)

For example:

Meta-learning algorithms as computation graphs

ts

)
Y
I
Tt

S

Optimization-based
yts _ fMAML (D?‘?r’ xtS)

— f¢z‘ (xts)

ts

Non-parametric

fPN (D;?rv a;,tS)
softmax(—d (f@ (fts), Cn))

where ¢; = 0 — aVyL(0,D;") where c,, =

1

K

> Ly =n)fe(x)

(x,y)€D}"

Version 0: Let f output the parameters of a distribution over ys.

- mean and variance of a Gaussian

distributions (i.e. autoregressive model)

Then, optimize with maximum likelihood.

11

- probability values of discrete categorical distribution

- for multi-dimensional y': parameters of a sequence of

- means, variances, and mixture weights of a mixture of Gaussians



Version 0: Let f output the parameters of a distribution over v,

probability values of discrete categorical distribution

For example:
mean and variance of a Gaussian
means, variances, and mixture weights of a mixture of Gaussians
- for multi-dimensional y'S: parameters of a sequence of

distributions (i.e. autoregressive model)
Then, optimize with maximum likelihood.

Pros:

+ simple

+ can combine with variety of methods

Cons:

- can't reason about uncertainty over the underlying function
to determine how uncertainty across datapoints relate]

- limited class of distributions over ytS can be expressed
- tends to produce poorly-calibrated uncertainty estimates

Thought exercise #4: Can you do the same maximum likelihood training for ¢?
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The Bayesian Deep Learning Toolbox

a broad one-slide overview
(CS 236 provides a thorough treatment)

Goal: represent distributions with neural networks

Latent variable models + variational inference (Kingma & Welling ‘13, Rezende et al. ‘14):

approximate likelihood of latent variable model with variational lower bound )
: . , o---1o( z Je—0
Bayesian ensembles (Lakshminarayanan et al. ‘17): % /
particle-based representation: train separate models on bootstraps of the data Gj/

Bayesian neural networks (Blundell et al. “15): me N
- explicit distribution over the space of network parameters -

Normalizing Flows (Dinh et al. ‘16): + )
invertible function from latent distribution to data distribution

Energy-based models & GANSs (LeCun et al. ‘06, Goodfellow et al. ‘14):
We'll see how we can leverage

- estimate unnormalized density aata )
. the first two.
T everything

The others could be useful in
developing new methods.

else



Recap: The Variational Lower Bound

Observed variable x, latent variable Z

EBO: logp(x) > Eyqyy [log p(x, 2)| + #(q(z]|x))

e 1029 [ 2)| = Dy (921 0)Ip(2)

Can also be written as:

p(x|z) represented w/ neural net,

: model del ters 0,
P p(z) represented as A(0, I) MOTE! pardimeten

variational parameters @
q(z| x): inference network, variational distribution

Problem: need to backprop through sampling Reparametrization trick For Gaussian g(z | x):

.e. compute derivative of E_ w.rt. g q(z|x) = p,+ 0., wheree ~ N (0,])

Can we use amortized variational inference for meta-learning?
14



Bayesian black-box meta-learning
with standard, deep variational inference

N\ )
Dt . ( tr .
] o{orsF) -

Standard VAE: S maxE oy [oep@10)] = D (4 (4197) @)

Observed variable x, latent variable Z

ELBO: E, (1 [logp(x|2)| — Dgy (g(z10)1Ip(2))

p: model, represented by a neural net

What should g condition on”?

— —

=t
)]

maxE () oty oep (+515%.4)] - Dis (a (12 1)

g: inference network, variational distribution What about the meta-parameters 9?
Veta-learning: ¥ maxE, i) g2 (V0131 0) | = D (4 (0197.0) 1610))
Observed variable &, latent variable ¢ \
max E_, [1ng(@ | ¢)] — D, (q(qb)llp(gb)) Can also condition on 6 here

Final objective (for completeness): max Eg, l_q(cbil%tr,e) [logp (Y}S\X}S» ¢i>] —DKL< (q/) \tar 9) \\p(gbi\e))]

15



Bayesian black-box meta-learning
with standard, deep variational inference

ts
) JaN @f
D[] o{s1) 4=

ts

X

Yo7 [_4<¢i|@,tr,9> [logp <y"ts‘xits’ ¢i>] ( <¢ 27, 9) Hp(gb"‘e))_

Pros:

+ can represent non-Gaussian distributions over ytS
+ produces distribution over functions

Cons:
- Can only represent Gaussian distributions p(¢; | 0)

16




Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches
How to evaluate Bayesian meta-learners.
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What about Bayesian optimization-based meta-learning?

Recasting Gradient-Based Meta-Learning as Hierarchical Bayes (Grant et al. "18)

task-specific parameters Hax log H p(D;|0)

! b, ! X; N = loglf[/p(Dilqbz’)p(gbiW)d@ (empirical Bayes)
0 ’Q_’O ~ log HP(DH@)Z?(QB@W)

\I\/IAP estimate

. Ti)  How to compute MAP estimate?
Gradient descent with early stopping = MAP inference under

Gaussian prior with mean at initial parameters [Santos "96]
(exact in linear case, approximate in nonlinear case)

meta-parameters

Provides a Bayesian interpretation of MAMIL.
But, we can’t sample from p (qbl- | 6, @}r>!

18



What about Bayesian optimization-based meta-learning?

Recall: Bayesian black-box meta-learning
with standard, deep variational inference

VAN {S
Di—{rmina]— a(#151) =l

.CIZ‘tS

max Eg l_q(qbiI@,tr,H) [logp (yits \xl.ts, 45,-)] — Dy <C] (Cbz‘ | QZ}T, «9) (] 6’))]

N

g: an arbitrary function

g can include a gradient operator!

Amortized Bayesian Meta-Learning g corresponds to SGD on the mean & variance

(Ravi & Beatson '19) of neural network weights (g, 02), w.r.t. @}r

Pro: Running gradient descent at test time. Con: p(¢; | 8) modeled as a Gaussian.

Can we model non-Gaussian posterior? 19



What about Bayesian optimization-based meta-learning?

Can we use ensembles?
Kim et al. Bayesian MAML "18

Ensemble of MAMLs (EMAML)

Train M independent MAML models. Note: Can also use

Won't work well it ensemble ensembles w/ black-box,
members are too similar. non-parametric methods!

An ensemble of mammals

Stein Variational Gradient (BMAML)

Use stein variational gradient (SVGD) to ~ Optimize for distribution of M particles
push parﬁcles away from one another to produce high likelihood.

~. - M -
A more diverse ensemble Z [ (67,60:)V g3 og p(67) + Vs k(67 Ht)] Lora (O, (80); D) = log | - > (D316
of mammals =1 " '

Pros: Simple, tends to work well, Con: Need to maintain M model instances.
non-Gaussian distributions. (or do gradient-based inference on last layer only)

Can we model non-Gaussian posterior over all parameters? #0



v/ Smiling,
v Wearing Hat,
v/ Young

What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?
Finn* Xu*, Levine. Probabilistic MAML ‘18

Intuition: Learn a prior where a random kick can put us in different modes

| £(¢7 Dtrain)

smiling, hat

\ :

smiling, young

O+ 0+ €

Q¢

av(b£(¢a 2)train)
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What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?
Finn* Xu*, Levine. Probabilistic MAML ‘18

0 ~p(0) =N(ug,X0) @i ~ p(¢:|0)
(not single parameter vector anymore)

train ,train _est)

Goal: sample ¢; ~ p(¢;|zfan, yirain 2}
p(qbilx‘;rain’ y;prain) x /p(e)p(¢i|0)p(y§rain‘x‘grain7 ¢z)d0

= this is completely intractable!

train ,train ) ?

what if we knew p(¢;|0, T, 7Y,

— now sampling is easy! just use ancestral sampling!

A

key idea: p(¢;|0, xian, ¢train) ~ §(g;)
this is extremely crude

but extremely convenient! b; ~ 0+ aVg logp(y;;:rain|x‘;rain7 9)
(Santos '92, Grant et al. ICLR "18)

T approximate with MAP

Training can be done with amortized variational inference.




What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?

Finn* Xu*, Levine. Probabilistic MAML ‘18
0 ~ p(0) = N(ua, Xo)

AN

key idea: p(¢;|60, 2™ ytai™) =~ §(d;) ¢ ~ 0 + aV log p(ytFain|zain g)

1

What does ancestral sampling look like?
1. 6 ~ N(,LLQ, 29)
) ¢z ~ p(¢z|9, xl;rainj y;?rain) ~ ¢Ez — 0 1 OZVQ 1ng(y}:rain|$£rain’ (9)

1 L(gbaptrain) o _ _ ,
Pros: Non-Gaussian posterior, simple

at test time, only one model instance.

Con: More complex training procedure.
miling, young

\Snﬁ“ng, ha
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Methods Summary

Version 0: f outputs a distribution over y'.

Pros: simple, can combine with variety of methods

Cons: can’t reason about uncertainty over the underlying function,

imited class of distributions over yts can be expressed

Black box approaches: Use latent variable models + amortized variational inference

ts
Y
/\ 1 Pros: can represent non-Gaussian distributions over yts
Dl;r > 4 <¢i|9}r) ¢i_’ | Cons: Can only represent Gaussian distributions p(¢; | 6)
:Jts . (okay when ¢, is latent vector)

Optimization-based approaches:

Amortized inference Ensembles Hybrid inference
Pro: Simple Pros: Simple, tends to work well, Pros: Non-Gaussian posterior, simple
| | non-Gaussian distributions. at test time, only one model instance.

Con: p(¢;| ) modeled as a Gaussian. Con: maintain M model instances.

- Con: More complex training procedure.
(or do inference on last layer only) P 5P

24



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches

How to evaluate Bayesian meta-learners.
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How to evaluate a Bayesian meta-learner?

Use the standard benchmarks?
(i.e. Minilmagenet accuracy)

+ standardized

+ real images

+ good check that the approach didn’t break anything
- metrics like accuracy don't evaluate uncertainty

- tasks may not exhibit ambiguity
- uncertainty may not be useful on this dataset!

What are better problems & metrics?
't depends on the problem you care about!

20



Qualitative Evaluation on Toy Problems with Ambiguity

(Finn*, Xu*, Levine, NeurlPS '18)
Ambiguous regression:

PLATIPUS, K=5

-2 1

—-- MAML N
- ground truth
A datapoints

-8 4 -8 4
T L4 Al v v T T T T
0 2 “ -4 -2 0 2 “ 4
4.5 4 4.5 4
4.0 4.0
35 5
30 30
2.5 2.5

2.0 2.0 20{ w=w= MAML 2.0 1 2.0
- ground truth

151 15 L5 151 151

+ datapoint

10 T T v v v v V 10 T v v T v v v 10 v T v v v V 10 T v v v v v V 10 v T v v v v \
1.0 15 2.0 25 a0 is 4.0 45 1.0 15 2.0 25 30 as 4.0 45 1.0 15 2.0 2.5 30 is 4.0 45 1.0 15 2.0 25 a0 is 4.0 45 1.0 15 2.0 2.5 a0 is 4.0 45




Evaluation on Ambiguous Generation Tasks
(Gordon et al., ICLR ’19)

o - F S s . B C-VAE
shot ST g B A & & = o VERSA
S My g g g &=y T Ground Truth
Model MSE  SSIM
Y +¥ Yl ¥¥Ft f “ C-VAE l-shot  0.0269 0.5705
iii } iiiii { H: VERSA Sshot | 0.0069 08483
Ground Truth

Table 2: View reconstruction test results.

‘.\' p ‘ ” . 4 - . C'VAE
shot |
L / L .
™ Yy YOIy Y Y VERSA

VIt N o v YOV 1™ Ny o v v Ground Truth
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Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks

(Finn*, Xu*, Levine, NeurlPS '18)

+'ve -'ve +'ve -'ve +'ve -'ve +'ve -'ve
example example example example example example example example

Ambiguous celebA (5-shot)
Accuracy Coverage (max=3) | Average NLL
MAML 89.00 + 1.78% 1.00 £ 0.0 0.73 £ 0.06
MAML + noise 84.3 +1.60 % 1.89 = 0.04 0.68 £ 0.05
PLATIPUS (ours) (KL weight =0.05) | 88.34 + 1.06 % 1.59 £ 0.03 0.67% 0.05
PLATIPUS (ours) (KL weight =0.15) | 87.8 + 1.03 % 1.94 £ 0.04 0.56 = 0.04

v/ Mouth Open  Mouth Open + Mouth Open ¥ Mouth Open
v/ Wearing Hat X Wearing Hat + Wearing Hat + Wearing Hat
v Young v/ Young X Young v Young

29



minilmageNet: 1-shot, 5-class

1.0

Reliability Diagrams & Accuracy

MAML

Accuracy

"o

1.0

ECE: 0.0471

MCE: 0.1104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.8 A

Probabilistic
MAML ...

0.2

’
’
0.0 -

0.
1.0

ECE: 0.0472

MCE: 0.0856

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ECE: 0.0124

MCE: 0.0257

0.0 4=
0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence

(Ravi & Beatson, ICLR "19)

minilmageNet 1-shot, 5-class
MAML (ours) 47.0 £ 0.59
Prob. MAML (ours) 47.8 +0.61
Our Model 45.0 £ 0.60
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Imeall squared eITor

Active Learning Evaluation

Finn*, Xu®, Levine, NeurlIPS '18 Kim et al. NeurlPS '18
Sinusoid Regression MinilmageNet
Few-Shot Active Learning Experiment " ==+ EMAML 64.66%
. < MAML = PLATIPUS (ours) 65 { === BMAML Both experiments:
50 gGO : - Sequentially choose datapoint with
- § - maximum predictive entropy to be labeled
. % . : Choos.e datapoint at random for non-
< Bayesian methods
5 45
0
o2 3 4 s BT B o

number of additional datapoints labeled Number of Queries
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Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
Expressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

ability to reason about ambiguity during learning
active learning, calibrated uncertainty, RL

orincipled Bayesian approaches

Why?
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Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:
Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for over parameters, predictions
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Next Time

Next week: Domain adaptation & domain generalization

Following week: Lifelong learning & Hanie Sedghi guest lecture

Following week: Thanksgiving @@

Course Reminders

Homework 3 due Wednesday Friday.

Homework 4 (optional) out today.

34



