Unsupervised Pre-Training: Contrastive Learning

CS 330

Course Reminders

Project proposal due Wednesday.

(graded lightly, for your benefit)

Homework 2 due next Monday 10/24.

Following up on some high-res feedback:

- I will work on making whiteboard writing larger.
- Moving one TA office hours (Garrett) from in-person-> over zoom.
- Will clarify project expectations on Ed.

So Far

Few-shot learning via meta-learning

Problem: Given data from $\mathcal{T}_1,...,\mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably

Methods: black-box, optimization-based, non-parametric

What if you don't have a lot of tasks?

What if you only have one batch of unlabeled data?

This Lecture

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning

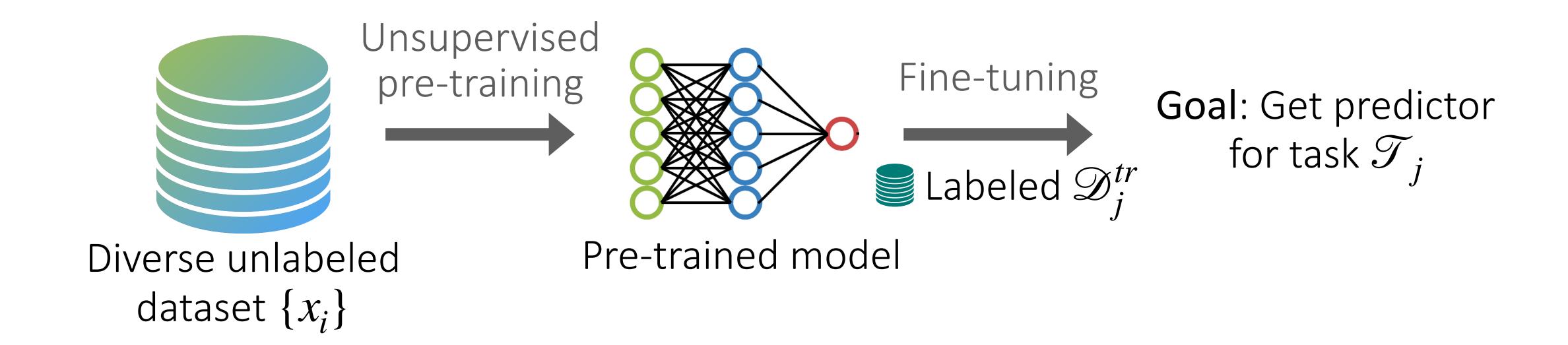
Part II (next time): Reconstruction-based methods

Relation to meta-learning.

Goals for the lecture:

- Understand contrastive learning: intuition, design choices, how to implement
- How contrastive learning relates to meta-learning

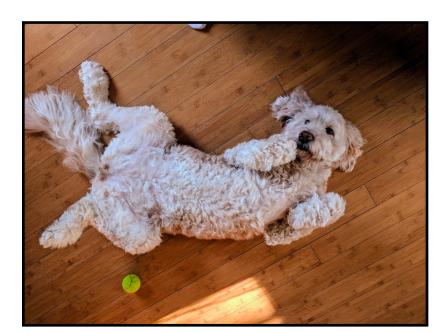
Unsupervised Pre-Training Set-Up



Key Idea of Contrastive Learning

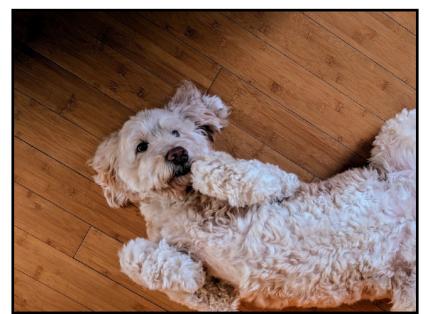
Similar examples should have similar representations

Examples with the same class label



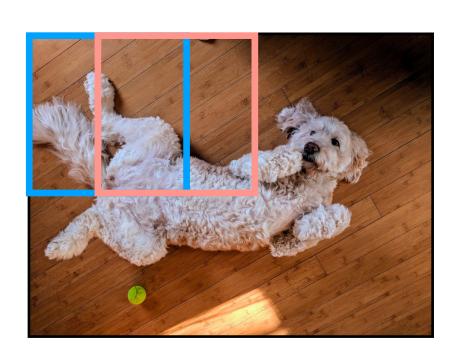
(Requires labels, related to Siamese nets, ProtoNets)

Augmented versions of the example



(flip & crop)

Nearby image patches



Nearby video frames

van den Oord, Li, Vinyals. CPC. 2018 Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Key Idea of Contrastive Learning

Similar examples should have similar representations

Similar representations

Similar representations

Question: Why not simply minimize difference between representations?

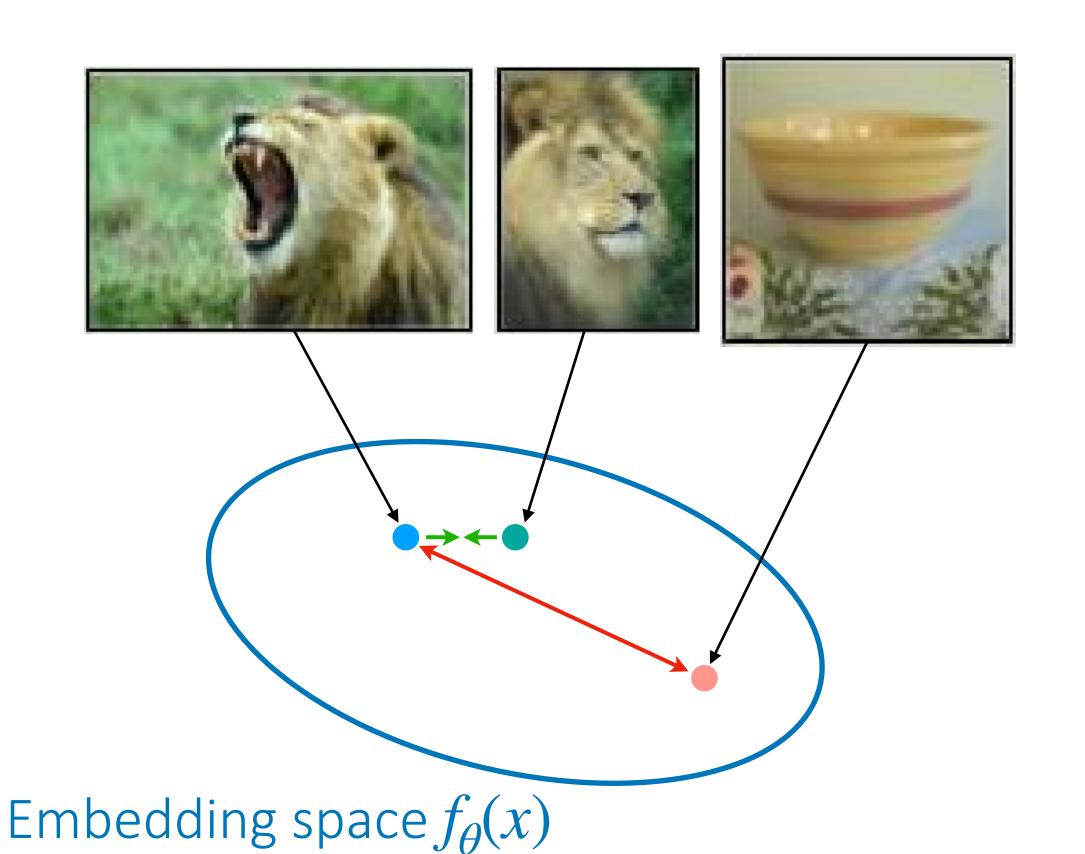
$$\min_{\theta} \sum_{(x_i, x_j)} ||f_{\theta}(x_i) - f_{\theta}(x_j)||^2$$

Need to both compare & contrast!

Key Idea of Contrastive Learning

Similar examples should have similar representations

Need to both compare & contrast!



Bring together representations of similar examples.

Push apart representations of differing examples.

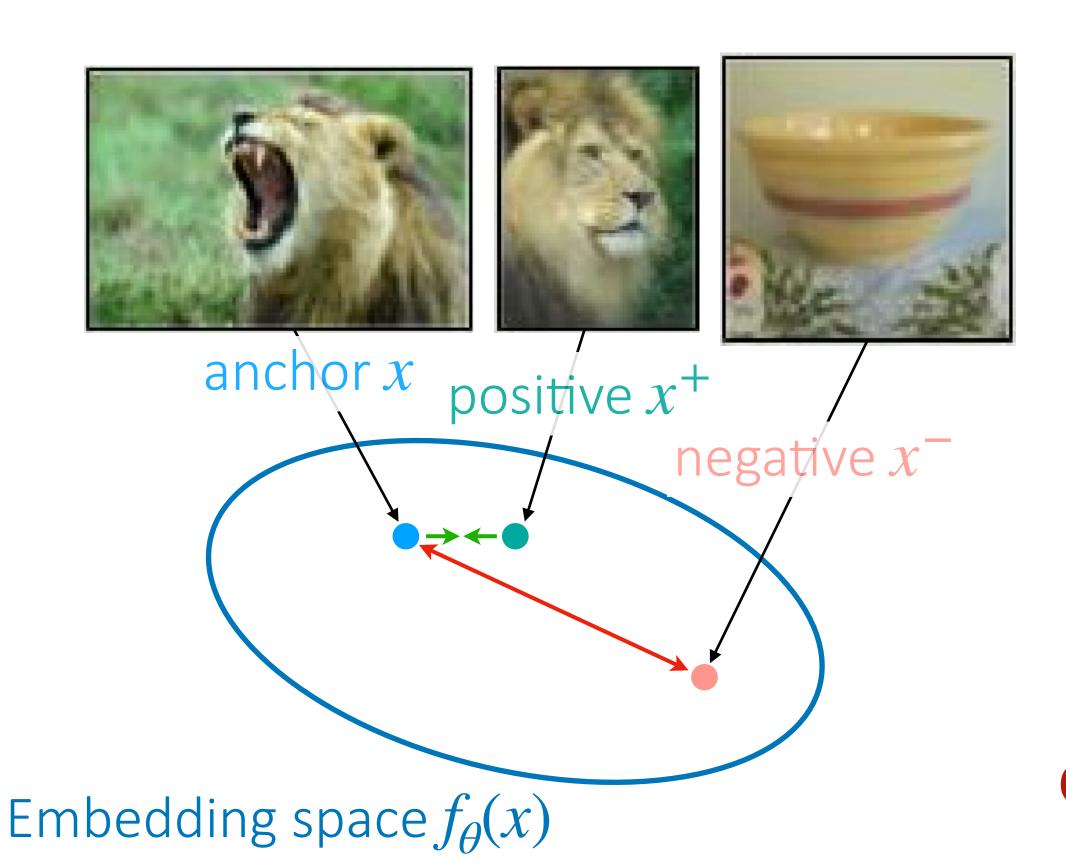
Key design choices:

- 1. Implementation of contrastive loss
- 2. Choosing what to compare/contrast

Contrastive Learning Implementation

Similar examples should have similar representations

Need to both compare & contrast!



V1. Triplet loss:

$$\min_{\theta} \sum_{(x,x^+,x^-)} \max \left(0, \|f_{\theta}(x) - f_{\theta}(x^+)\|^2 - \|f_{\theta}(x) - f_{\theta}(x^-)\|^2 + \epsilon\right)$$

Compare to Siamese networks:

Classify (x, x') as same class if $||f(x) - f(x')||^2$ is small.

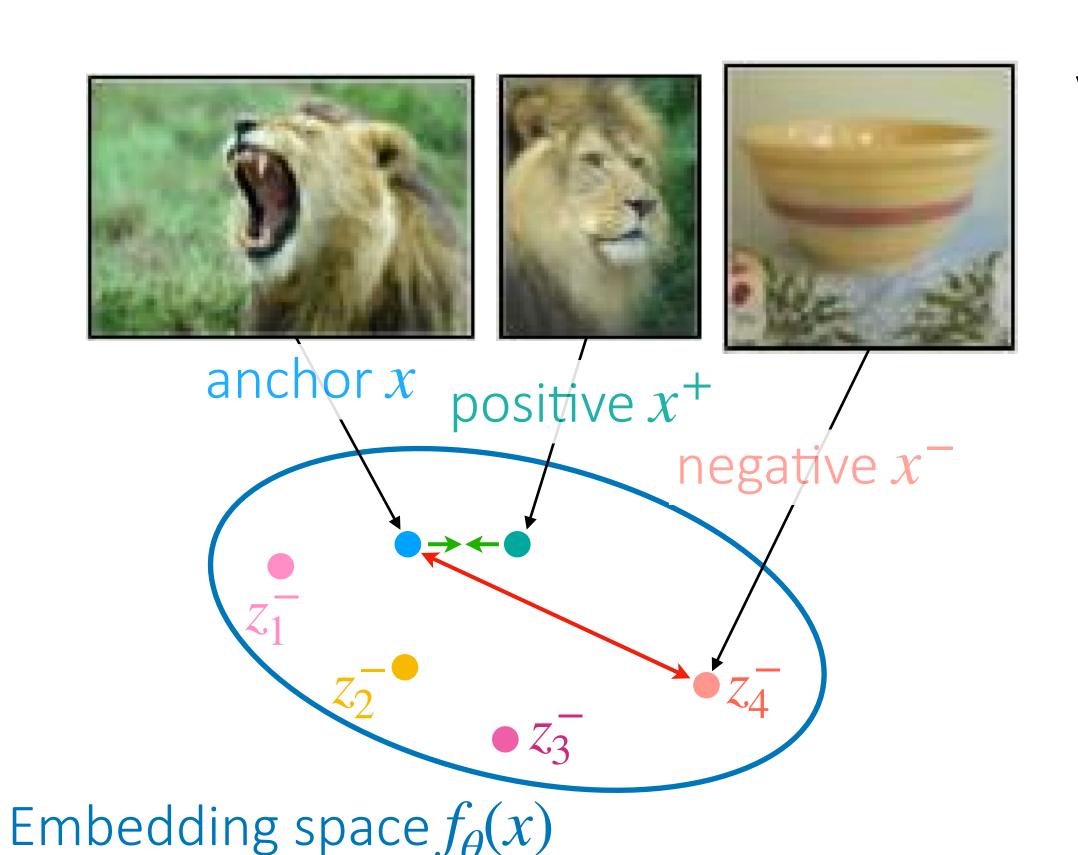
Key difference: learns a metric space, not just a classifier

Challenge: need to find difficult negatives.

Contrastive Learning Implementation

Similar examples should have similar representations

Need to both compare & contrast!



V2. From binary to N-way classification:

$$\mathcal{L}_{\text{N-way}}(\theta) = -\sum_{z} \log \frac{\exp(-d(z, z^+))}{\sum_{i} \exp(-d(z, z_i^-))}$$

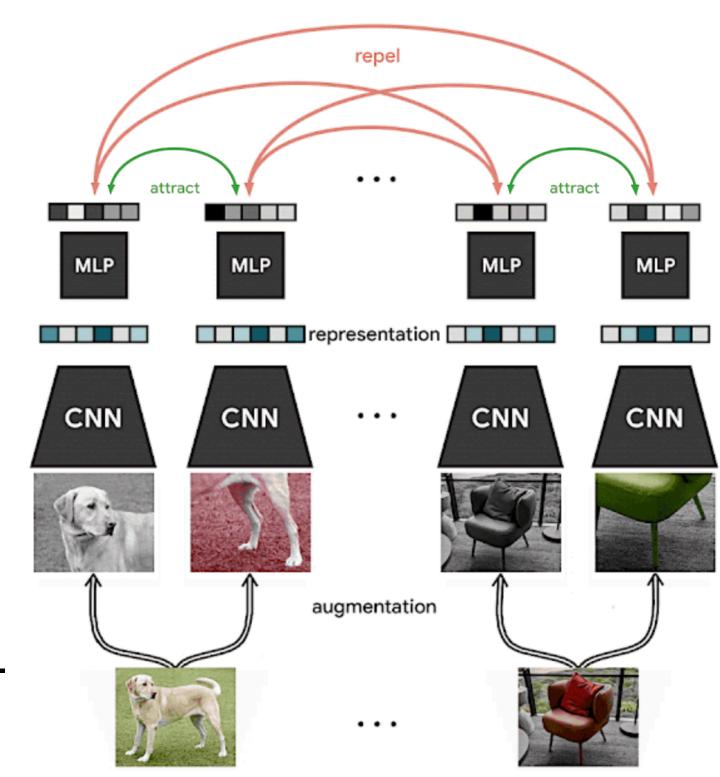
- generalization of triplet loss to multiple negatives

Contrastive Learning Implementation

SimCLR Algorithm

Unsupervised Pre-Training

- 1. Sample minibatch of examples x_1, \ldots, x_N
- 2. Augment each example twice to get $\tilde{x}_1, \ldots, \tilde{x}_N, \tilde{x}_1', \ldots, \tilde{x}_N'$
- 3. Embed examples with f_{θ} to get $\tilde{z}_1, \dots, \tilde{z}_N, \tilde{z}'_1, \dots, \tilde{z}'_N$
- 4. Compute all pairwise distances $d(z_i, z_j) = -\frac{z_i^T z_j}{\|z_i\| \|z_j\|}$
- 5. Update θ w.r.t. loss $\mathcal{L}_{\text{N-way}}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_i, \tilde{z}_i'))}{\sum_{j \neq i} \exp(-d(\tilde{z}_i, \tilde{z}_j))}$



After Pre-Training: train classifier on top of representation or fine-tune entire network.

Performance of Contrastive Learning

ImageNet Classification Results

		Label fraction						
Method	Architecture	1%	10%					
		Top 5						
Supervised baseline	ResNet-50	48.4	80.4					
Methods using other label-propagation:								
Pseudo-label	ResNet-50	51.6	82.4					
VAT+Entropy Min.	ResNet-50	47.0	83.4					
UDA (w. RandAug)	ResNet-50	-	88.5					
FixMatch (w. RandAug)	ResNet-50	-	89.1					
S4L (Rot+VAT+En. M.)	ResNet-50 $(4\times)$	-	91.2					
Methods using representation learning only:								
InstDisc	ResNet-50	39.2	77.4					
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8					
PIRL	ResNet-50	57.2	83.8					
CPC v2	ResNet-161(*)	77.9	91.2					
SimCLR (ours)	ResNet-50	75.5	87.8					
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2					
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6					

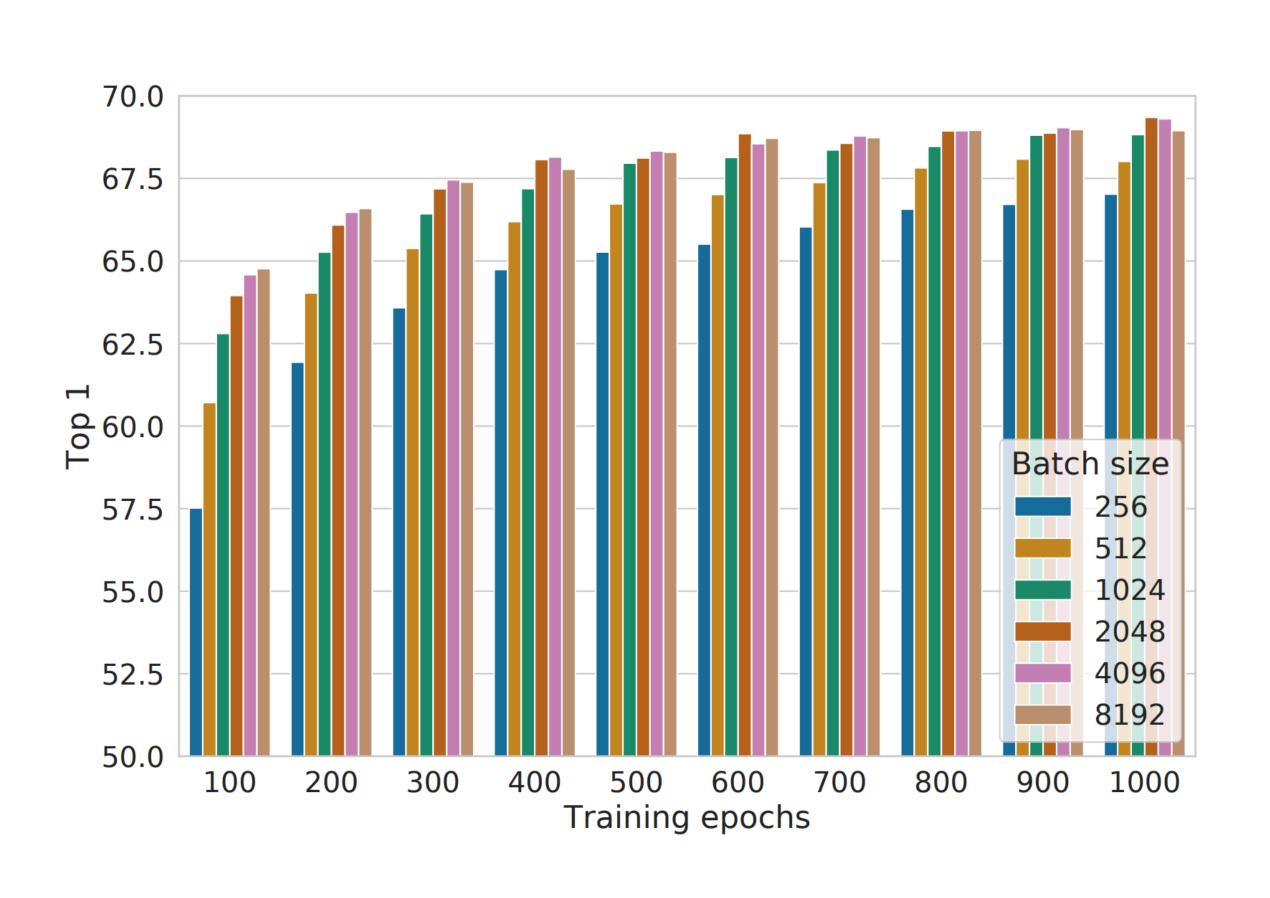
1% labels: ~12.8 images/class

- Substantial improvements over training from scratch
- Improvements over other methods, especially in 1% label setting

Table 7. ImageNet accuracy of models trained with few labels.

Performance of Contrastive Learning

Effect of Batch Size & Number of Training Epochs



- Important to train for longer (~600+ epochs)
- Requires large batch size

Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

$$\mathcal{L}_{\text{N-way}}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_{i}, \tilde{z}_{i}'))}{\sum_{j \neq i} \exp(-d(\tilde{z}_{i}, \tilde{z}_{j}))} < -\text{summation over entire dataset}$$

Intuition: Closest *z* will dominate the denominator, can be missed when subsampling **Mathematically**?

Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

$$\mathcal{L}_{\text{N-way}}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_{i}, \tilde{z}_{i}'))}{\sum_{j \neq i} \exp(-d(\tilde{z}_{i}, \tilde{z}_{j}))} < --\text{summation over entire dataset}$$

Intuition: Closest z will dominate the denominator, can be missed when subsampling

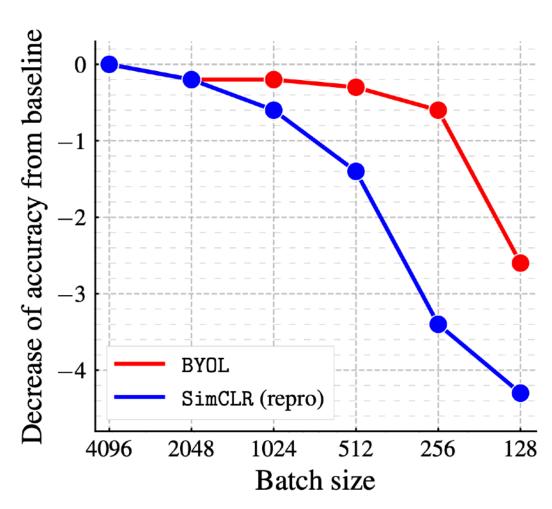
Mathematically: Minimizing a lower-bound. 🚱

Solutions to requiring a large batch size

- 1. Store representations from previous batches ("momentum contrast")
 He, Fan, Wu, Xie, Girshick. MoCo. CVPR 2020
 - Good results with mini batch size of 256
- 2. Predict representation of same image under different augmentation ("BYOL")

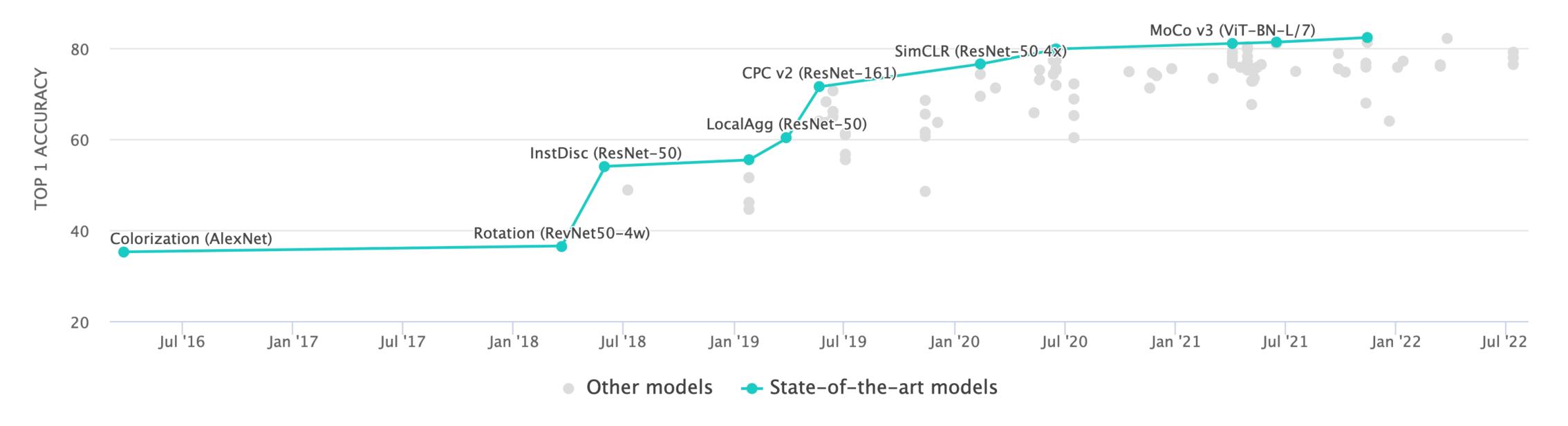
Grill*, Strub*, Altché*, Tallec* Richemond*, et al. BYOL. NeurIPS 2020

- No negatives required!
- More resilient to batch size



Performance of contrastive learning

ImageNet Top 1 Accuracy w/ Self-Supervised Pre-Training

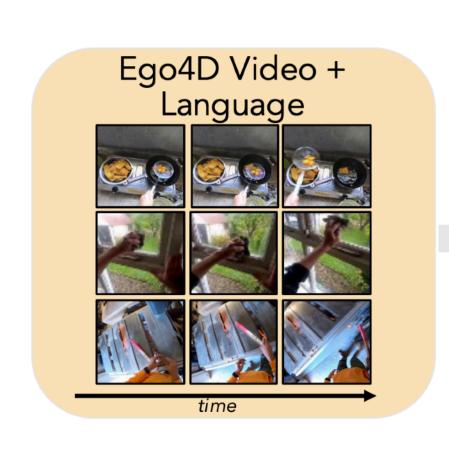


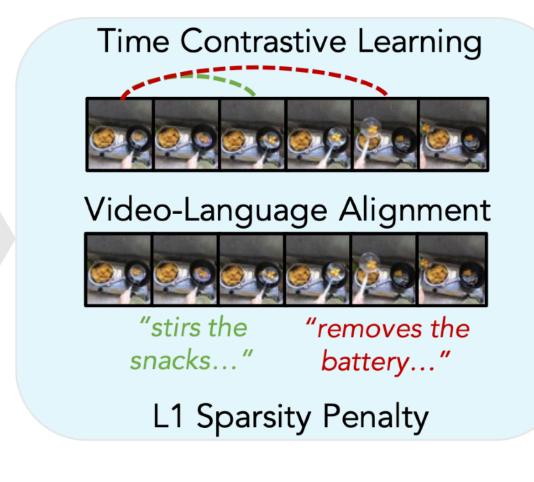
Contrastive methods are near state-of-the-art in self-supervised pre-training for visual data.

Contrastive learning beyond augmentations

We don't have good engineered augmentations for many applications!

- 1. Learn the augmentations in adversarial manner (but perturbations bounded to ℓ_1 sphere) Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021
 - —> competitive with SimCLR on image data
 - -> good results on speech & sensor data
- 2. *Time-contrastive learning* on *videos* effective for robotics pre-training Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.





60% success

Given 20 demos (<10 min of supervision)

40% success

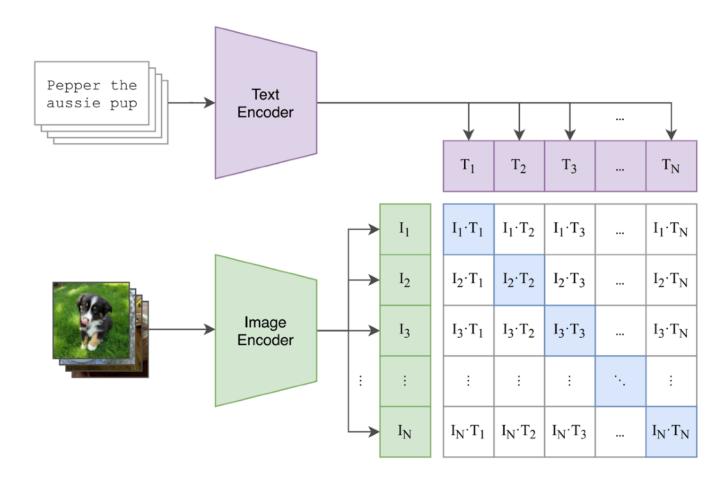
Contrastive learning beyond augmentations

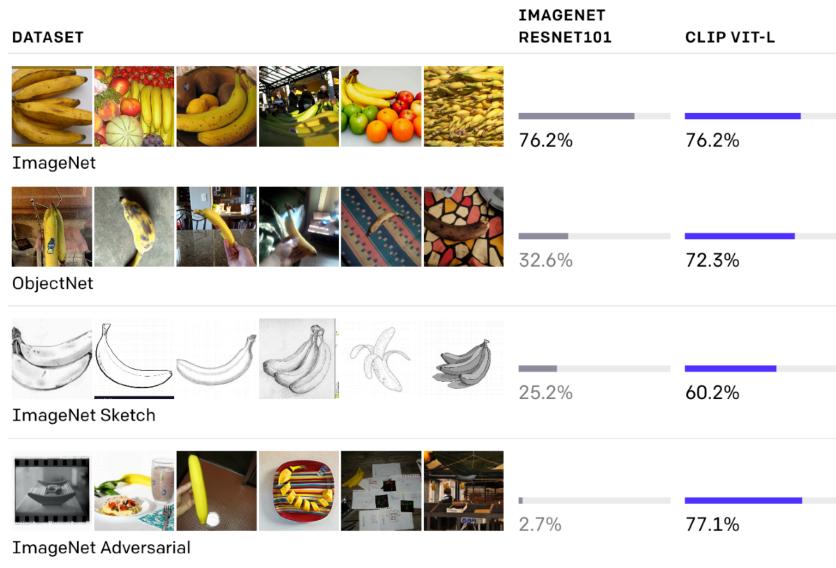
We don't have good engineered augmentations for many applications!

- 1. Learn the augmentations in adversarial manner (but perturbations bounded to \mathcal{C}_1 sphere) Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021
- 2. *Time-contrastive learning* on *videos* effective for robotics pre-training Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.

3. Image-text contrastive pre-training produces robust zero-shot models

Radford*, Kim*, et al. CLIP. 2021.





Summary of Contrastive Learning

Pros:

- + General, effective framework
- + No generative modeling required
- + Can incorporate domain knowledge through augmentations

Challenges:

- Negatives can be hard to select
- Often requires *large batch size*
- Most successful with augmentations

This Lecture

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning

Part II (next time): Reconstruction-based methods

Relation to meta-learning.

Contrastive Learning as Meta-Learning

Meta-learning algorithm

- 1. Given unlabeled dataset $\{x_i\}$.
- 2. Create image class y_i from each datapoint via data augmentation $\mathcal{D}_i := \{\tilde{x}_i, \tilde{x}_i', \dots\}$
- 3. Run your favorite meta-learning algorithm.

Differences:

- SimCLR samples one task per minibatch; meta-learning usually samples multiple
- SimCLR compares all pairs of samples; meta-learning compares query examples only to support examples & not to other query examples.

Contrastive Learning as Meta-Learning

Meta-learning algorithm

- 1. Given unlabeled dataset $\{x_i\}$.
- 2. Create image class y_i from each datapoint via data augmentation $\mathcal{D}_i := \{\tilde{x}_i, \tilde{x}_i', \dots\}$
- 3. Run your favorite meta-learning algorithm.

Contrastive vs. meta-learning representations, transfer from ImageNet

	Flowers 102	DTD	VOC2007	Aircraft	Food101	SUN397	CIFAR-10	CIFAR-100
SimCLR	92.4	72.7	66.0	83.7	86.3	57.4	94.8	79.1
ProtoNet	92.7	71.5	64.7	83.9	86.2	56.4	96.0	79.1
R2-D2	94.5	73.8	69.9	86.2	86.9	59.7	96.7	82.8

Representations transfer similarly well.

Lecture Outline

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning

Part II (next time): Reconstruction-based methods

^ next lecture by **TA Eric Mitchell** (NLP PhD student)

Relation to meta-learning.

Goals for the lecture:

- Understand contrastive learning: intuition, design choices, how to implement
- How contrastive learning relates to meta-learning

Course Reminders

Project proposal due Wednesday.

(graded lightly, for your benefit)

Homework 2 due next Monday 10/24.