Domain Adaptation
CS 330



Course Reminders

Optional homework 4 due next Monday.

Project milestone due next Wednesday

Azure: If you are close to running out of credits,
poroactively request more in private Ed post.



Plan for Today

Domain Adaptation
- Problem statements
- Algorithms
- Data reweighting
- Feature alignment
- Domain translation

Goal for by the end of lecture: Understand different domain adaptation methods
and when to use one vs. another



Problem Settings Recap

Multi-Task Learning Transfer Learning
Solve multiple tasks I 1, ++-, 7 +-at once. Solve target task J  after solving source task(s)
- by transferring knowledge learned from I,
min Z Z(0,9))
0
i=1

Meta-Learning Problem
Transfer Learning with Many Source Tasks

Given datafrom I 4, ..., T, , solve new task I {aqt More quickly / proficiently / stably



What is domain adaptation?

Perform well on target domain p(x, y),

using training data from source domain(s) p(x, v)

A form of transfer learning, with access to target domain data during training
(“transductive” learning)

Unsupervised domain adaptation: access to unlabeled target domain data

Semi-supervised domain adaptation: access to unlabeled and labeled target domain data

Supervised domain adaptation: access to labeled target domain data.

We will focus on unsupervised domain adaptation.



What is domain adaptation?

Perform well on target domain p(x, y),

using training data from source domain(s) p(x, v)

A form of transfer learning, with access to target domain data during training
(“transductive” learning)

Unsupervised domain adaptation: access to unlabeled target domain data

Common assumptions:
- Source and target domain only differ in domain of the function, i.e. pg(y | x) = py(y | x)
- There exists a single hypothesis with low error.

A “domain” is a special case of a “task”
Atask: T = px),p(y|x),Z;} Adomain: d, = pi(x), p(y | x), £}



Tumor detection & classification

Source hospital Target hospital

Example domain adaptation problems

varying imaging tecnnigues,
different demographics

Domains can also be:

neople/users
noInts In time

institutions
(schools, companies, universities)

Land use classification Text classification, generation
Source region Target region Source corpus Target corpus
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appearance of buildings, plants; differing sentence structure,
weather conditions, pollution vocabulary, word use

Revisiting assumptions:
- Access to target domain data during training.
- There exists a single hypothesis f(y | x) with low error.



Plan for Today

Domain Adaptation
- Problem statements
- Algorithms

- Data reweighting
- Feature alignment
- Domain translation

Goal for by the end of lecture: Understand different domain adaptation methods
and when to use one vs. another



Toy domain adaptation problem

pr(x) ps(x)

e.g. sample selection bias

Q somdt 4+
+ 4 TFRrI==- T +

Problem: Classifier trained on p(x) pays little attention
to examples with high probability under p(s)

How can we learn a classifier that does well on p(x)?
(using labeled data from p(x) & unlabeled data from p(x))

Problem adapted from Blitzer & Daume ICML ‘10 9



Toy domain adaptation problem

ps(x)

e.g. sample selection bias

Problem: Classifier trained on p(x) pays little attention
to examples with high probability under p(s)

Solution: Upweight examples with high p(x) but low pd(x)

Why does this make sense mathematically?

Problem adapted from Blitzer & Daume ICML ‘10 10



Domain adaptation via importance sampling

Empirical risk minimization on source data: mgin =) (e L fp(X), V)]

Goal: ERM on target distribution: m@in =, e LLCfg(X)5 V)]

_PT(x,y)[L(fe(x)aY)] — J'PT(Xa VIL(fo(x), y)dxdy

pS(xa Y)
pS(x9 y)

= JPT(x, y) L(fo(x), y)dxdy

— pT(x9 y) Note: p(y | x) cancels out if it is
Ps(x.y) [pS(X’ )7) L(fg(X), )7)] the same for source & target

Solution: Upweight examples with high p(x) but low pd(x)
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Domain adaptation via importance sampling

. pr(x) . . .
min It L(1(x), How to estimate the importance weights .
p Ps(x,y) Ps(x) (f ‘9( ) b ) PS(X)

Option 1: Estimate likelihoods p(x) and p¢(x), then divide.  But, difficult to estimate accurately.

Can we estimate the ratio without training a generative model?

Bayes rule: pr(x)  p(x|target)  p(target|x)p(source)
p(x|target) = p(target [ )p(x) ps(x)  p(x|source)  p(source|x)p(target)
p(target) N T
a constant
p(x|source) = p(source | X)p(x) can estimate with
p(source) binary classifier!

Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR ‘09

pr(x) ,
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Domain adaptation via importance sampling

: pT(x) pT(X) _ p(X\target) _ p(target|x)p(source)
mgln =ps(x.y) po(x) L(fe(x)’y ) po(x)  p(x|source)  p(source|x)p(target)
‘ T
a constant

can estimate with
binary classifier!

Full algorithm:
1. Train binary classifier c(source | x) to discriminate between source and target data.

1 — c(source | x)

2. Reweight or resample data & ¢ according to
c(source | x)

3. Optimize loss L(fy(x), y) on reweighted or resampled data.

13
Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR ‘09



What assumption does this make?

| p(x) Source pq(x) needs to cover the target p,(x).
111111 _pS(x,y) L(fé’(x)a y) ,
0 Po(X) Formally: if p(x) # 0, then py(x) # 0.
Text classification, generation Tumor detection & classification
Source corpus Target corpus Source hospital Target hospital

arXiv
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—> May have enough coverage of distr. —> Source probably won’t cover target distr!
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Plan for Today

Domain Adaptation
- Problem statements
- Algorithms

- Data reweighting

- Feature alignment
- Domain translation

Goal for by the end of lecture: Understand different domain adaptation methods
and when to use one vs. another

15
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Domain adaptation if support is not shared?

Can we align the features?
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Source classifier in aligned feature space
IS more accurate in target domain.

How to align the features?
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Domain adaptation if support is not shared?

70009897047799% (x) How to align the features?
Axr222azzprz222J pS

SEREEEEH A

Srs5rcsSsssssss Source encoder f, Target encoder f,
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Need to match features at population-level.

.e. make encoded samples f; (x), x ~ pg( - )

indistinguishable fromng(x),x ~ pr( )

CAEE] [T I9
DOERD . RN 2

Key idea: Try to fool a domain classifier c(d = source | f(x)).

It samples are indistinguishable to discriminator, then distributions are the same.
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Domain adaptation via feature alignment

Key idea: Try to fool a domain classifier c(d = source | f(x)).

Label Classifier dZ,

g 1 f)

cy(d = source | (%))

d¢ . . = . . dgc
p . , Domain classitier -
gradient reversal d¢

Minimize label prediction error & maximize “domain confusion”

Tzeng et al. Deep Domain Confusion. arXiv ‘14

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16 18



Domain adaptation via feature alignment

A
Y
Feature encoder 49 Label classifier dZ,
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c4(d = source [ f(x))

dL

C

dep

" . g Domam cIa55|ﬁer
gradient reversal

Full algorithm:

1. Randomly initialize encoder(s) f,, label classifier 8, domain classifier ¢,

2. Update domain classifier: min &£, = — —XNDS[log c¢(f(x))] — -XNDT[I — log c¢(f(x))].
¢

3. Update label classifier & encoder: min E, ) p [L ( &9 (fo(x)), y || = AL,
0.0,

4. Repeat steps 2 & 3.

Tzeng et al. Deep Domain Confusion. arXiv ‘14

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16 19



Domain adaptation via feature alignment

dL

classifier d<Z,

2 1f)

c4(d = source [ f(x))
A<,
dep

» . , Domain classifier
gradient reversal

Can learn separate source and target encoder  Different forms of domain adversarial training.

Source encoderfes Target encoderng Option 1: Maximize domain classifier loss
(gradient reversal, same as GANSs)

Make encoded samples fj, (x), x ~ pg( )

indistinguishable from f, (x),x ~ p;( - ) Option 2: Optimize for 50/50 guessing

—> can give model more flexibility

Tzeng et al. Deep Domain Confusion. arXiv ‘14

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16 20



Domain adaptation via feature alignment

Toy example

source domain: +, —
target domain data: -

s&ta nlﬂdarl"d NN ltraiininﬂg

SE}s: (70| ENGY
TARGET | 1 ‘18?5' t] L ‘;2 :

SOURCE

SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS

METHOD

TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY 0225 8674 .5490 .7900
DANN 7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)
TRAIN ON TARGET 9596 9220 9942 9980

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16 21



Importance weighting Feature alighment

pr(x) Ps(x)

_|_
. pr(x)
10 —ps(x,y) L(fg(X), Y )
0 ps(x)
+ simple, can work wel + fairly simple to implement, can work quite well

. . + doesn’t require source data coverage
— requires source distr. to cover target
— involves adversarial optimization

— requires clear alignment in data

22



Plan for Today

Domain Adaptation
- Problem statements
- Algorithms
- Data reweighting
- Feature alignment

- Domain translation

Goal for by the end of lecture: Understand different domain adaptation methods
and when to use one vs. another
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What if it is hard to align features?

ldea: translate between domains
e F: X=Xy orG: Xp— X

If yvou could translate source examples to target examples:

1.
2.
3.

ranslate labeled source dataset to target domain with F.

rain predictor on translated dataset.

Deploy predictor.

Alternatively, if you could translate from target to source:

1. Train predictor on source dataset.

2. Translate target example to source domain with G.

3.

Evaluate predictor on translated example.

Key question: How to translate between domains?

24



Domain Translation with CycleGAN

ldea: translate between domains
e X¢—=> Xy orG: Xp— X
Key question: How to translate between domains?

Step 1: Train F to generate images from p(x)

and G to generate images from pq(x)
= o (o HOg D)) + E, ), )[1 — log Dp(F(x))]

Using GAN objective: LgaN =

Challenge: The mapping is underconstrained, can be arbitrary.
Can we encourage models to learn a consistent, bijective mapping?

Step 2: Train F and G to be cyclically consistent.
F(G(x)) ~ xand G(F(x)) ~ x

/Zhu, Park, Isola, Efros. CycleGAN. ICCV 2017 5



Domain Translation with CycleGAN

ldea: translate between domains
e X¢—=> Xy orG: Xp— X

Step 1: Train F to generate images from p(x)
and G to generate images from p(x)

Using GAN objective: LcaN = -prT(,)[log D(x)] + -prS(,)[l — log D(F(x))]

Step 2: Train FF and G to be cyclically consistent.
F(G(x)) ~ xand G(F(x)) ~ x

l.e. _prS(.)HG(F(X)) — x”l + _prT(.)HF(G(x)) T x”l

Full objective: L aN(F, D7) + L caN(G, D) + lgcyC(Fa G)

/Zhu, Park, Isola, Efros. CycleGAN. ICCV 2017 26



Domain Translation with CycleGAN

ldea: translate between domains
e F:X¢—> Xy orG: Xp— X

Monet T_ Photos Summer _ Winter

Banns = 3 o Shany |

'-—~J S

edge

shoes — hors —) zebra

photo —>Monet

/hu, Park, Isola, Efros. CycleGAN. ICCV 2017 07



CycleGAN for Domain Adaptation

Robotics sim2real policy adaptation

Test (Real)

cycle consistency

Train (Sim) [

|| simZreal
[ 7| generator

il real2sim
— | generator

choose action a

train with RL in simulator

Simulation-to-Real Model Robot 1 Grasp Success

S1im-Only [19] 21%
Randomized Sim [ 9] 37%
GAN 29%
CycleGAN 61%
GraspGAN 63%
RL-CycleGAN 70 %

Rao, Harris, Irpan, Levine, Ibarz, Khansari. RL-CycleGAN. CVPR 2020 28



CycleGAN for Domain Adaptation

Human-robot domain adaptation

Input human images
\ )
J 2

Generated images in robot domain

Smith, Dhawan, Zhang, Abbeel, Levine. RSS 2020 29



Importance weighting

pr(x)

min [ De(X,y) L(f H(x)a Y )

+ simple, can work well

— requires source distr.
to cover target

Feature alighment

+ fairly simple to implement, can work
quite well

+ doesn’t require source coverage

— involves adversarial optimization

— requires clear alignment in data

30

Domain translation

pg() I pr(x)

G

conceptually neat, can work
guite well

interpretable (easier to debug,
cool pictures)

involves generative modeling &
adversarial optimization
requires clear alignment in data




Character recognition

CycleGAN & DANN for Domain Adaptation

CyCADA: incorporates both cycle consistency & domain adversarial training

test Image

T
Wi 1
.. It

: S -~

o
~
-

source-only

CyCADA model ground truth

Model USPS — MNIST SVHN — MNIST
Source only 69.6 + 3.8 67.1 £0.6
DANN (Ganin et al., 2016) - 73.6
DTN (Taigman et al., 2017a) - 34.4 :
CoGAN (Liu & Tuzel, 2016b) 89.1 - GTAS — Cityscapes
ADDA (Tzeng et al., 2017) 90.1 + 0.8 76.0 + 1.8 = 2 5 = o 5
. . 13} ooed Q
PixelDA (Bousmalis et al., 2017b) - - 8 § ;%0 ) =75 . 'fa 8 o o E
- . — QO g
UNIT (Liu et al., 2017) 93.6 90.5* 5% 3% 3 2 38 &% £ % E oo L 5 . g s g *é > 2 5 E
CyCADA (Ours) 96.5 + 0.1 90.4 + 0.4 -2 i S ° ° ~ =
: Source only A]26.0 149 65.1 55 129 89 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9 41.9 54.0
Target Fully Supervised 99.2 £ 0.1 99.2 +0.1 FCN-wld (Hoffman et al., 2016)|A[70.4 32.4 62.1 149 54 10.9 142 2.7 79.2 213 64.6 44.1 42 704 80 73 0.0 35 0.0 27.1 -
CDA (Zhang et al., 2017b) A[26.4 220747 60 119 84 163 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 27.8 - -
FCTN (Zhang et al., 2017a)  |A|72.2 28.4 74.9 18.3 10.8 24.0 25.3 17.9 80.1 36.7 61.1 44.7 0.0 745 89 1.5 0.0 00 00 305 - -
CyCADA (Ours) A|85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4 73.8 83.6
Oracle - Target Supervised A|96.4 74.5 87.1 35.3 37.8 36.4 46.9 60.1 89.0 54.3 89.8 65.6 35.9 89.4 38.6 64.1 38.6 40.5 65.1 60.3 87.6 93.1
Source only B|42.7 263 51.7 5.5 6.8 13.823.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 34 50 0.0 50 1.4 21.7 47.4 625
CyCADA (Ours) B|79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5 72.4 82.3
Oracle - Target Supervised B|97.3 79.8 88.6 32.5 48.2 56.3 63.6 73.3 89.0 58.9 93.0 78.2 55.2 92.2 45.0 67.3 39.6 49.9 73.6 67.4 89.6 94.3

Table 4: Adaptation between GTAS and Cityscapes, showing IoU for each class and mean IoU, freq-weighted IoU and pixel
accuracy. CyCADA significantly outperforms baselines, nearly closing the gap to the target-trained oracle on pixel accuracy.

Hoffman et al. ICML 2018 31



Plan for Today

Domain Adaptation
- Problem statements
- Algorithms
- Data reweighting
- Feature alignment
- Domain translation

Goal for by the end of lecture: Understand different domain adaptation methods
and when to use one vs. another
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Course Reminders

Optional homework 4 due next Monday.

Project milestone due next Wednesday

Azure: If you are close to running out of credits,
poroactively request more in private Ed post.
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Next time: Domain generalization i‘*%ﬂ

by Huaxiu Yao
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