Domain Adaptation CS 330

Optional homework 4 due next Monday.

Project milestone due next Wednesday

Azure: If you are close to running out of credits, proactively request more in private Ed post.

Course Reminders

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment
 - Domain translation

Goal for by the end of lecture: Understand when to use one vs. another

Goal for by the end of lecture: Understand different domain adaptation methods

Problem Settings Recap

Multi-Task Learning

Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once. $\min_{\theta} \sum_{i=1}^{T} \mathscr{L}_i(\theta, \mathscr{D}_i)$

Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably

Transfer Learning

Solve target task \mathcal{T}_b after solving source task(s) \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_{a}

Meta-Learning Problem

Transfer Learning with Many Source Tasks

What is domain adaptation?

Unsupervised domain adaptation: access to unlabeled target domain data Supervised domain adaptation: access to labeled target domain data.

We will focus on *unsupervised domain adaptation*.

- Perform well on target domain $p_T(x, y)$, using training data from source domain(s) $p_{s}(x, y)$
- A form of transfer learning, with access to target domain data during training ("transductive" learning)
- Semi-supervised domain adaptation: access to unlabeled and labeled target domain data

What is domain adaptation?

- Perform well on target domain $p_T(x, y)$, using training data from source domain(s) $p_{s}(x, y)$
- A form of transfer learning, with access to target domain data during training ("transductive" learning)

Common assumptions:

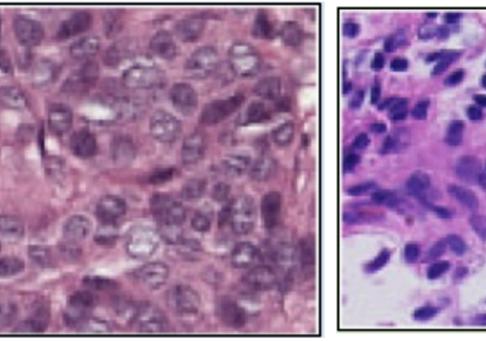
- There exists a single hypothesis with low error.
- Source and target domain only differ in domain of the function, i.e. $p_S(y | x) = p_T(y | x)$ -

Unsupervised domain adaptation: access to unlabeled target domain data

- A "domain" is a special case of a "task"
- A task: $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} | \mathbf{x}), \mathcal{L}_i\}$ A domain: $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathcal{L}\}$

Example domain adaptation problems

Tumor detection & classification Source hospital Target hospital



appearance of buildings, plants; weather conditions, pollution

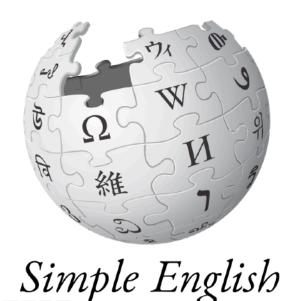
varying imaging techniques, different demographics

Domains can also be:

- people/users
- points in time
- institutions _ (schools, companies, universities)

Land use classification Source region Target region

Text classification, generation Source corpus Target corpus



WikipeőiA differing sentence structure, vocabulary, word use

Revisiting assumptions:

- Access to target domain data during training.
- There exists a single hypothesis f(y | x) with low error.

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment
 - Domain translation

Goal for by the end of lecture: Understand when to use one vs. another

Goal for by the end of lecture: Understand different domain adaptation methods

Toy domain adaptation problem

 $p_{S}(x)$

- **Problem:** Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$

Problem adapted from Blitzer & Daume ICML '10

e.g. sample selection bias

How can we learn a classifier that does well on $p_T(x)$? (using labeled data from $p_{S}(x)$ & unlabeled data from $p_{T}(x)$)

Toy domain adaptation problem

╺╋╸╺╋╸╺╋╸ ╷╷┼┼┼╧╧╧╴╸╶╋╸ ╷╷┼╷┼╪┼╷╴╴╴╴╴╴╴╴

- **Problem**: Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$
- **Solution**: Upweight examples with high $p_T(x)$ but low $p_S(x)$

Problem adapted from Blitzer & Daume ICML '10

e.g. sample selection bias

Why does this make sense mathematically?

Domain adaptation via importance sampling

 $\mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x),y)] = \left[p_T(x,y)L(f_{\theta}(x),y)dxdy\right]$ $= p_T(x, y) \frac{p_S(x, y)}{p_S(x, y)} \frac{p_S(x, y)}{p_S(x, y)}$ $= \mathbb{E}_{p_{S}(x,y)} \left| \frac{p_{T}(x,y)}{p_{S}(x,y)} \right|$

Empirical risk minimization on source data: $\min_{\theta} \mathbb{E}_{p_s(x,y)}[L(f_{\theta}(x), y)]$ **Goal**: ERM on target distribution: $\min_{\theta} \mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x), y)]$

$$\frac{f(y)}{f(y)} L(f_{\theta}(x), y) dx dy$$

$$\frac{x, y)}{x, y} L(f_{\theta}(x), y)$$

Note: p(y | x) cancels out if it is the same for source & target

Solution: Upweight examples with high $p_T(x)$ but low $p_S(x)$

Domain adaptation via importance sampling

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

Option 1: Estimate likelihoods $p_T(x)$ and $p_S(x)$, then divide. But, difficult to estimate accurately.

Can we estimate the ratio *without* training a generative model?

Bayes rule:

$$p(x | \text{target}) = \frac{p(\text{target} | x)p(x)}{p(\text{target})}$$

$$p(x | \text{source}) = \frac{p(\text{source} | x)p(x)}{p(\text{source})}$$

Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR '09

How to estimate the importance weights $\frac{p_T(x)}{p_C(x)}$?

 $\frac{p_T(x)}{p_S(x)} = \frac{p(x \mid \text{target})}{p(x \mid \text{source})} = \frac{p(\text{target} \mid x)p(\text{source})}{p(\text{source} \mid x)p(\text{target})}$ a constant can estimate with binary classifier!



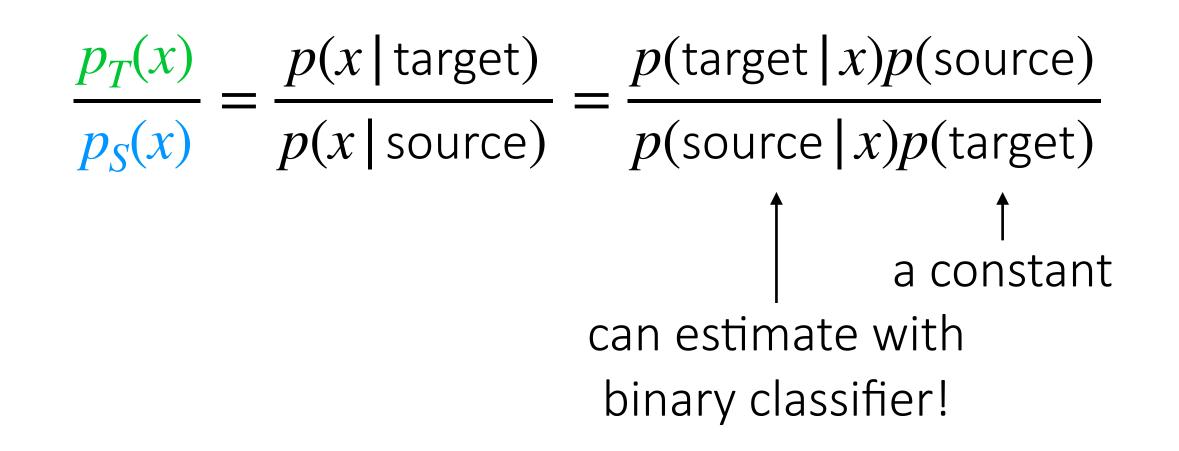
Domain adaptation via importance sampling

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

Full algorithm:

- 1.
- 2. Reweight or resample data \mathscr{D}_S according to $\frac{1-c(\text{source}|x)}{c(\text{source}|x)}$.
- 3. Optimize loss $L(f_{\theta}(x), y)$ on reweighted or resampled data.

Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR '09



Train binary classifier c(source | x) to discriminate between source and target data.

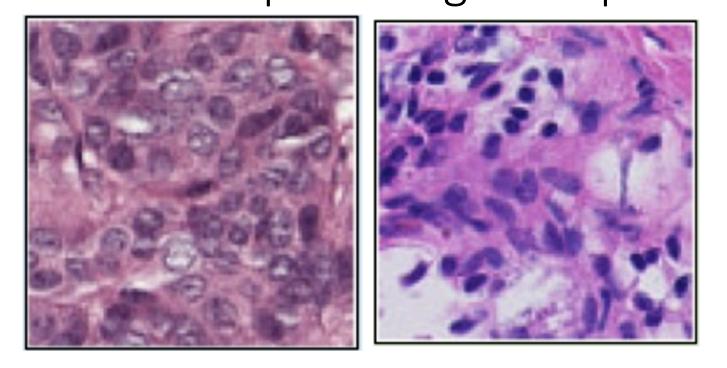
What assumption does this make?

Text classification, generation Source corpus Target corpus

—> May have enough coverage of distr.

 $\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left\{ \frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right\}$ Source $p_{S}(x)$ needs to cover the target $p_{T}(x)$. Formally: if $p_{T}(x) \neq 0$, then $p_{S}(x) \neq 0$.

Tumor detection & classification Source hospital Target hospital



-> Source probably won't cover target distr!

Plan for Today

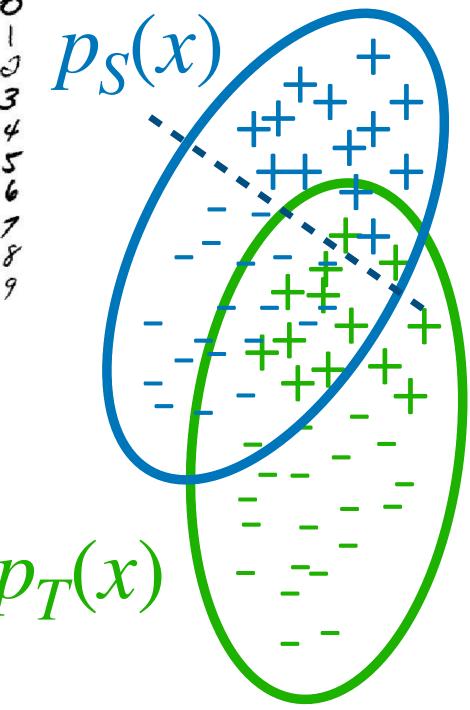
Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment
 - Domain translation

Goal for by the end of lecture: Understand when to use one vs. another

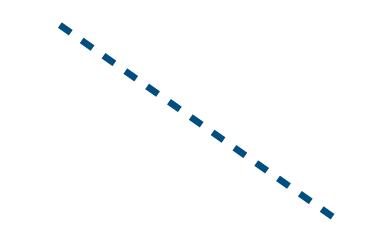
Goal for by the end of lecture: Understand different domain adaptation methods

Domain adaptation if support is not shared?



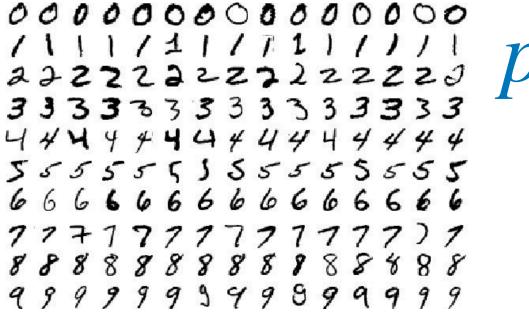
How to align the features?

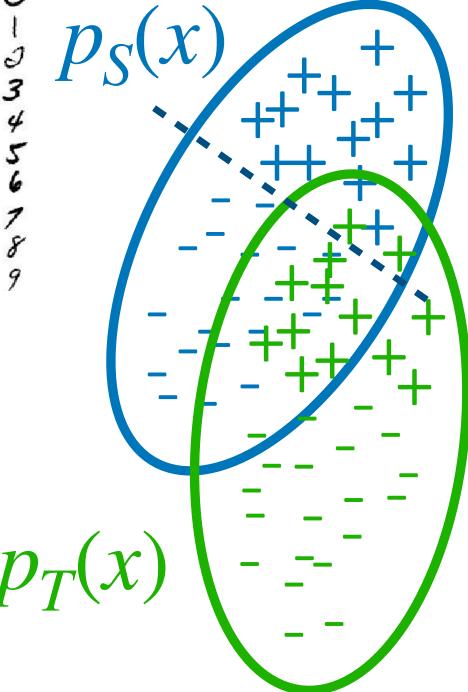
Can we align the features?



Source classifier in *aligned feature space* is more accurate in target domain.

Domain adaptation if support is not shared?





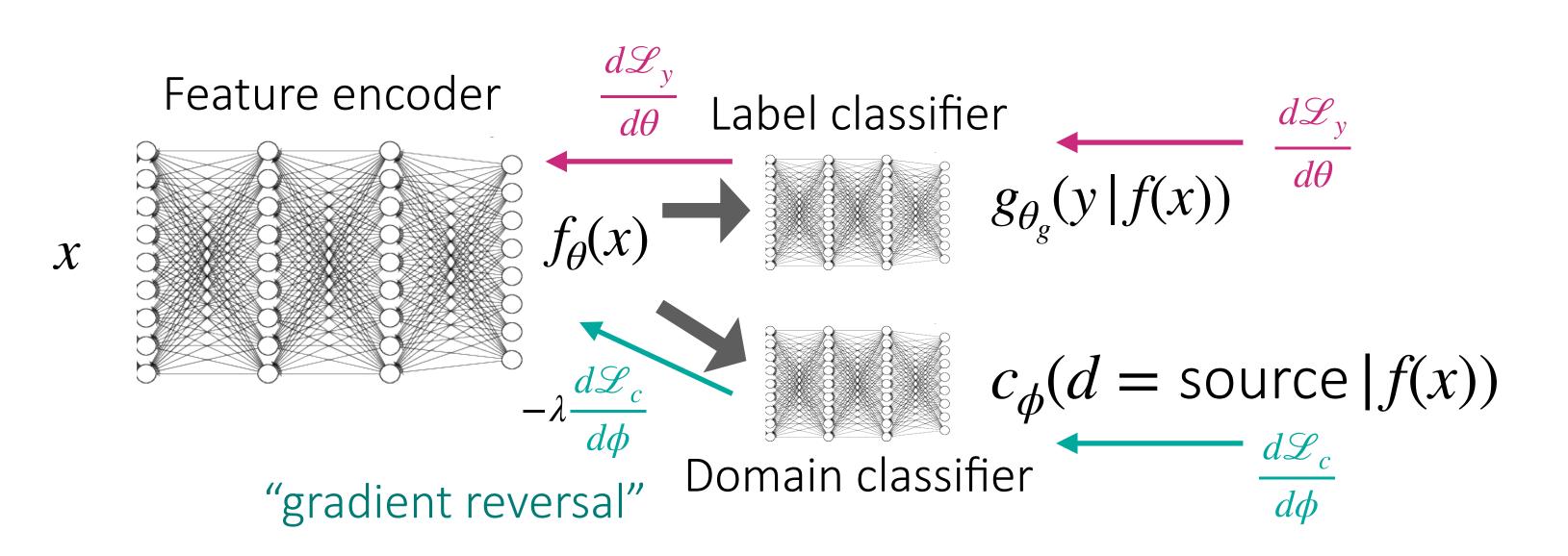
If samples are indistinguishable to discriminator, then distributions are the same.

How to align the features? Source encoder $f_{\theta_{\mathbf{C}}}$ Target encoder $f_{\theta_{\mathbf{T}}}$ Need to match features at *population-level*.

i.e. make encoded samples $f_{\theta_S}(x), x \sim p_S(\cdot)$ indistinguishable from $f_{\theta_T}(x), x \sim p_T(\cdot)$

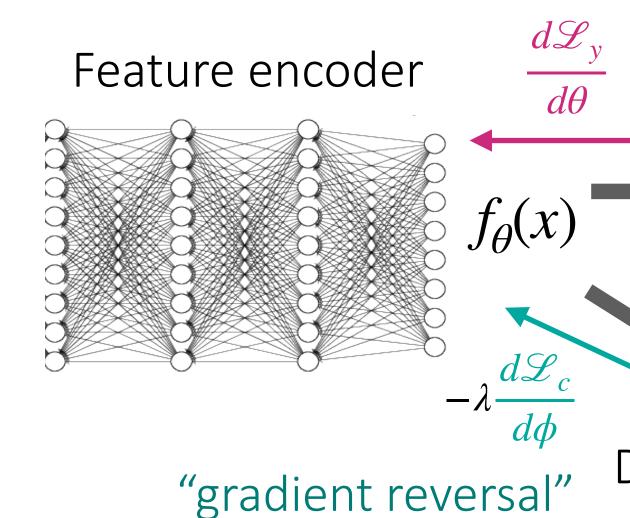
Key idea: Try to fool a domain classifier c(d = source | f(x)).

Key idea: Try to fool a domain classifier c(d = source | f(x)).



Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

Minimize label prediction error & maximize "domain confusion"



Full algorithm:

- Randomly initialize encoder(s) f_{θ} , label classifier $g_{\theta_{q'}}$, domain classifier c_{ϕ} 1.
- 3. θ, θ_g
- Repeat steps 2 & 3. 4.

Tzeng et al. Deep Domain Confusion. arXiv '14

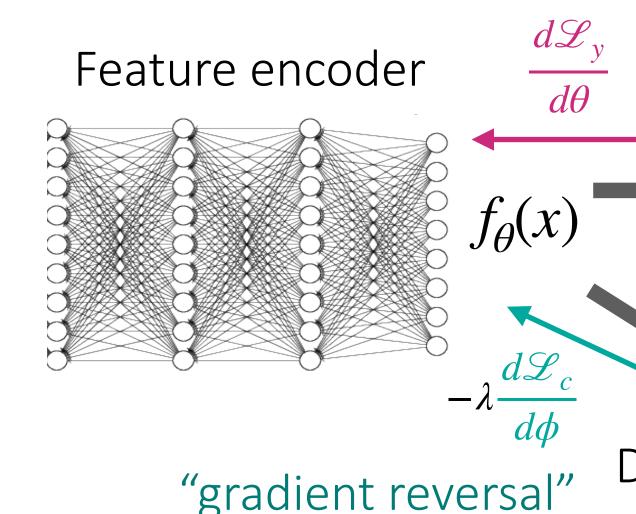
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

 ${\mathcal X}$

 $\frac{d\mathscr{L}_{y}}{d\theta}$ Label classifier $g_{\theta_g}(y | f(x))$

Domain classifier

Update domain classifier: $\min_{\phi} \mathscr{L}_c = -\mathbb{E}_{x \sim D_s}[\log c_{\phi}(f(x))] - \mathbb{E}_{x \sim D_T}[1 - \log c_{\phi}(f(x))].$ Update label classifier & encoder: $\min_{\Delta \phi} \mathbb{E}_{(x,y) \sim D_S}[L\left(g_{\theta_g}(f_{\theta}(x)), y\right)] - \lambda \mathscr{L}_c$



Can learn separate source and target encoder Source encoder f_{θ_s} Target encoder f_{θ_T} Make encoded samples $f_{\theta_S}(x), x \sim p_S(\cdot)$ indistinguishable from $f_{\theta_T}(x), x \sim p_T(\cdot)$ -> can give model more flexibility

 ${\mathcal X}$

Tzeng et al. Deep Domain Confusion. arXiv '14

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

Label classifier $g_{\theta_g}(y \mid f(x))$

 $c_{\phi}(d = \text{source} | f(x))$ $\frac{d\mathscr{L}_c}{d\phi}$ Domain classifier

Different forms of domain adversarial training.

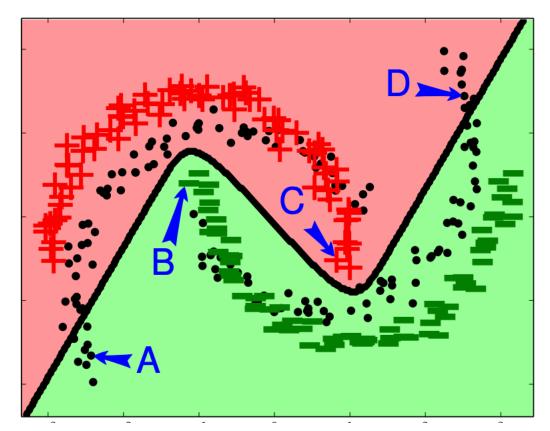
Option 1: Maximize domain classifier loss (gradient reversal, same as GANs)

Option 2: Optimize for 50/50 guessing

Toy example

source domain: +, --

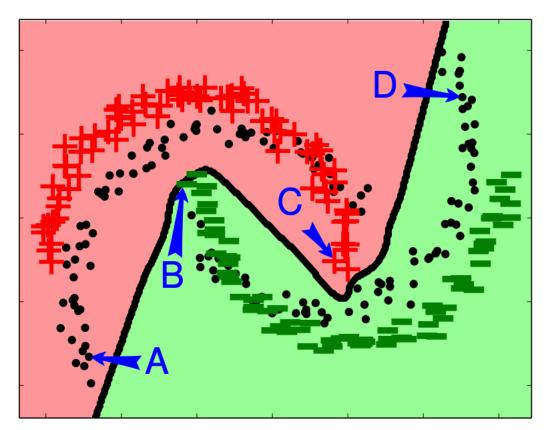
target domain data: •



standard NN training

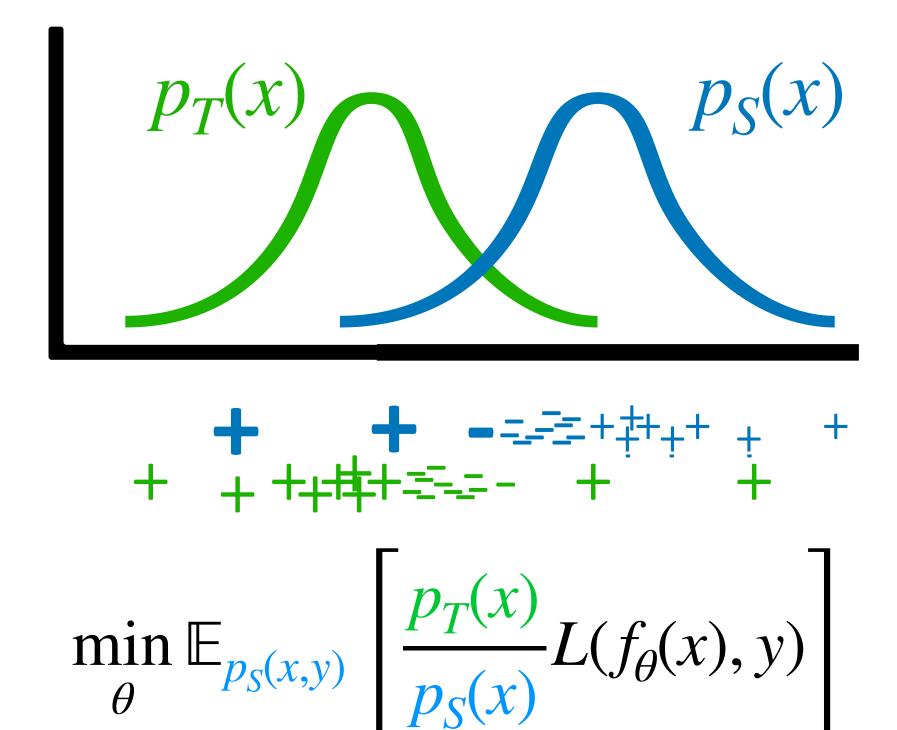
	Source	401	9 388	73010		
	TARGET	216	418 25	242	70 70	
Method	Source	MNIST	Syn Numbers	SVHN	Syn Signs	
	TARGET	MNIST-M	SVHN	MNIST	GTSRB	
Source only		.5225	.8674	.5490	.7900	
DANN		.7666~(52.9%)	. 9109 (79.7%)	. 7385 (42.6%)	.8865 (46.4%)	
TRAIN ON TARC	GET	.9596	.9220	.9942	.9980	

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



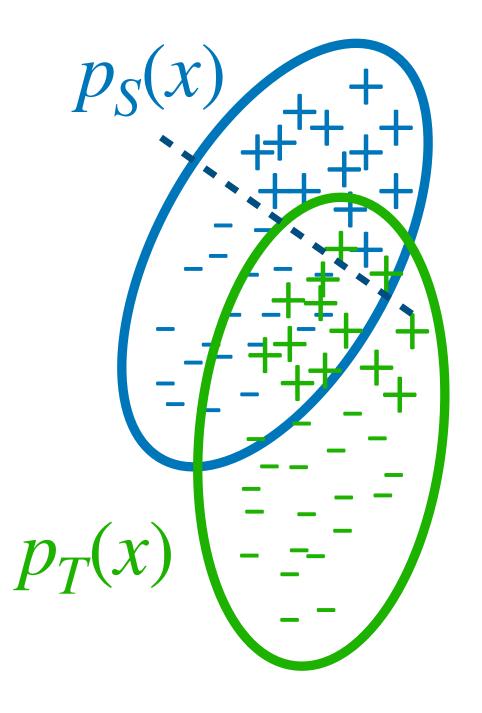
domain adversarial training

Importance weighting



- + simple, can work well
- requires source distr. to cover target

Feature alignment



- + fairly simple to implement, can work quite well
- + doesn't require source data coverage
- involves adversarial optimization
- requires clear alignment in data

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment
 - Domain translation

Goal for by the end of lecture: Undersand when to use one vs. another

Goal for by the end of lecture: Understand different domain adaptation methods

What if it is hard to align features? Idea: translate between domains i.e. $F: X_S \to X_T$ or $G: X_T \to X_S$

If you could translate source examples to target examples:

- 1.
- Train predictor on translated dataset. 2.
- Deploy predictor. 3.

Alternatively, if you could translate from target to source: Train predictor on source dataset.

- 1.
- 2.
- 3.

Key question: How to translate between domains?

Translate labeled source dataset to target domain with F.

Translate target example to source domain with G.

Evaluate predictor on translated example.

Domain Translation with CycleGAN

- Idea: translate between domains
- - **Step 1**: Train F to generate images from $p_T(x)$ and G to generate images from $p_{s}(x)$
- Using GAN objective: $\mathscr{L}_{GAN} = \mathbb{E}_{x \sim p_T(\cdot)}[\log D_T(x)] + \mathbb{E}_{x \sim p_S(\cdot)}[1 \log D_T(F(x))]$
 - **Challenge**: The mapping is underconstrained, can be arbitrary.
 - Can we encourage models to learn a consistent, bijective mapping?
 - **Step 2**: Train F and G to be cyclically consistent. $F(G(x)) \approx x$ and $G(F(x)) \approx x$

Zhu, Park, Isola, Efros. CycleGAN. ICCV 2017

i.e. $F: X_S \to X_T$ or $G: X_T \to X_S$

Key question: How to translate between domains?

Domain Translation with CycleGAN

- Idea: translate between domains
- **Step 1**: Train F to generate images from $p_T(x)$ and G to generate images from $p_{S}(x)$

- **Step 2**: Train *F* and *G* to be cyclically consistent. $F(G(x)) \approx x$ and $G(F(x)) \approx x$
- i.e. $\mathbb{E}_{x \sim p_{c}(\cdot)} \| G(F(x)) x \|_{1} + \mathbb{E}_{x \sim p_{T}(\cdot)} \| F(G(x)) x \|_{1}$

Zhu, Park, Isola, Efros. CycleGAN. ICCV 2017

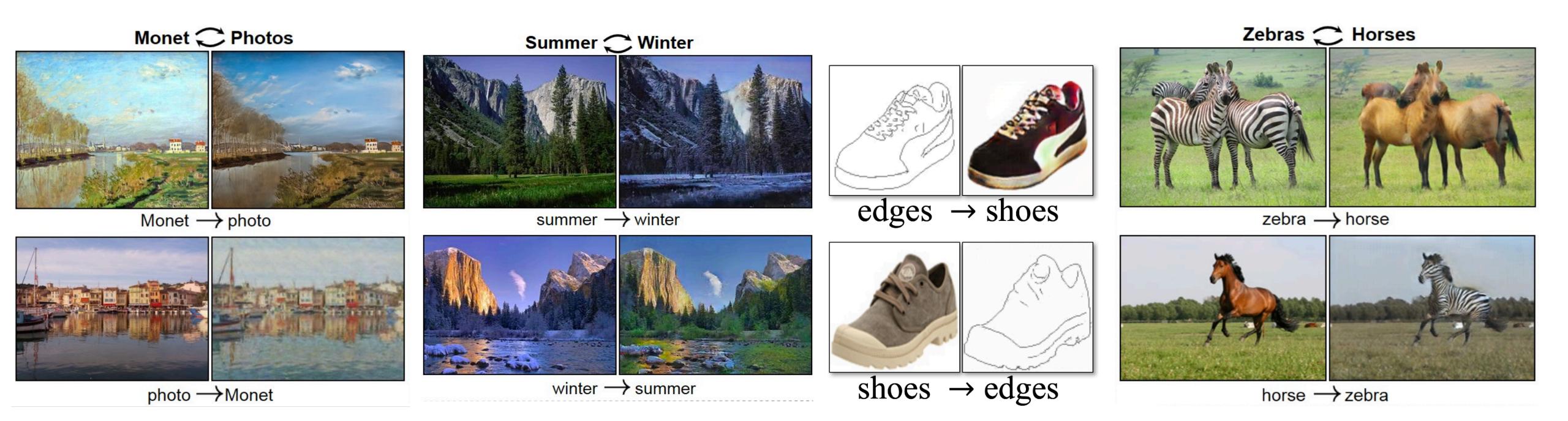
i.e. $F: X_S \to X_T$ or $G: X_T \to X_S$

Using GAN objective: $\mathscr{L}_{GAN} = \mathbb{E}_{x \sim p_T(\cdot)}[\log D_T(x)] + \mathbb{E}_{x \sim p_S(\cdot)}[1 - \log D_T(F(x))]$

Full objective: $\mathscr{L}_{GAN}(F, D_T) + \mathscr{L}_{GAN}(G, D_S) + \lambda \mathscr{L}_{CVC}(F, G)$

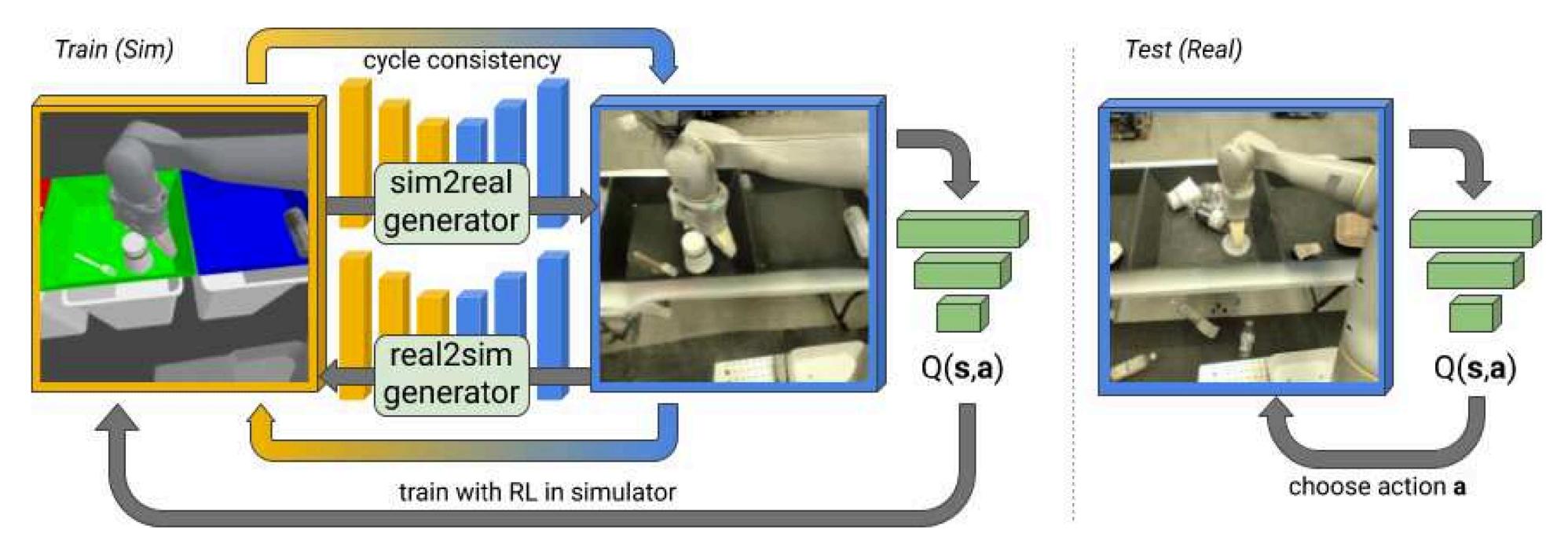
Domain Translation with CycleGAN

Idea: translate between domains i.e. $F: X_S \to X_T$ or $G: X_T \to X_S$



Zhu, Park, Isola, Efros. CycleGAN. ICCV 2017

CycleGAN for Domain Adaptation Robotics sim2real policy adaptation

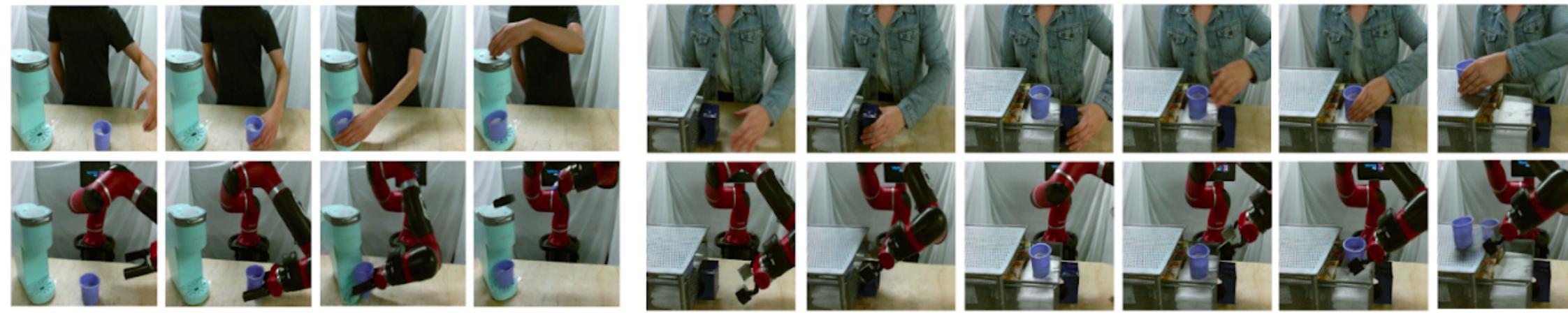


Rao, Harris, Irpan, Levine, Ibarz, Khansari. RL-CycleGAN. CVPR 2020

Simulation-to-Real Model	Robot 1 Grasp Success
Sim-Only [19]	21%
Randomized Sim [19]	37%
GAN	29%
CycleGAN	61%
GraspGAN	63%
RL-CycleGAN	70%

CycleGAN for Domain Adaptation Human-robot domain adaptation

Input human images



Generated images in robot domain

Smith, Dhawan, Zhang, Abbeel, Levine. RSS 2020

Importance weighting

 $p_{S}(x)$ $\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$

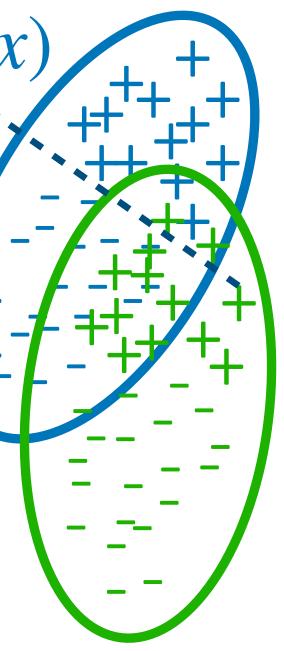
$p_{S}(x)$

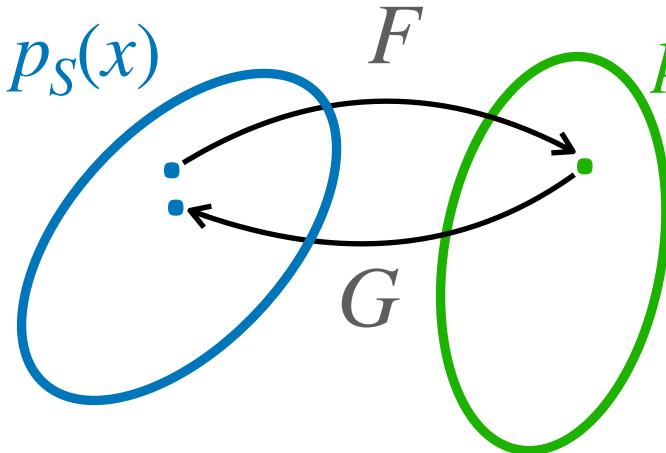
- -
- $p_T(x)$

- + simple, can work well
 requires source distr.
 to cover target
- + fairly simple to implement, can work quite well
- + doesn't require source coverage
- involves adversarial optimization
- requires clear alignment in data

Feature alignment

Domain translation





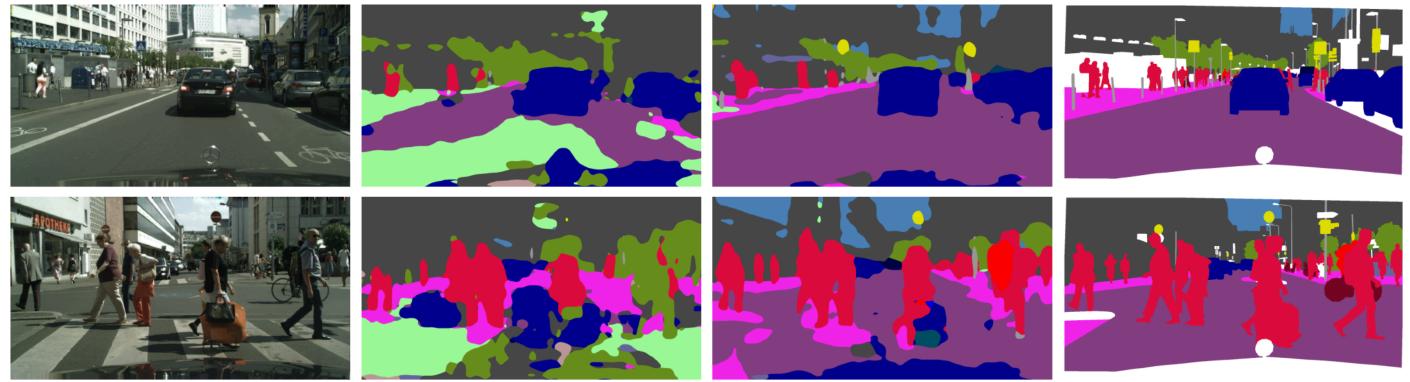
 conceptually neat, can work quite well

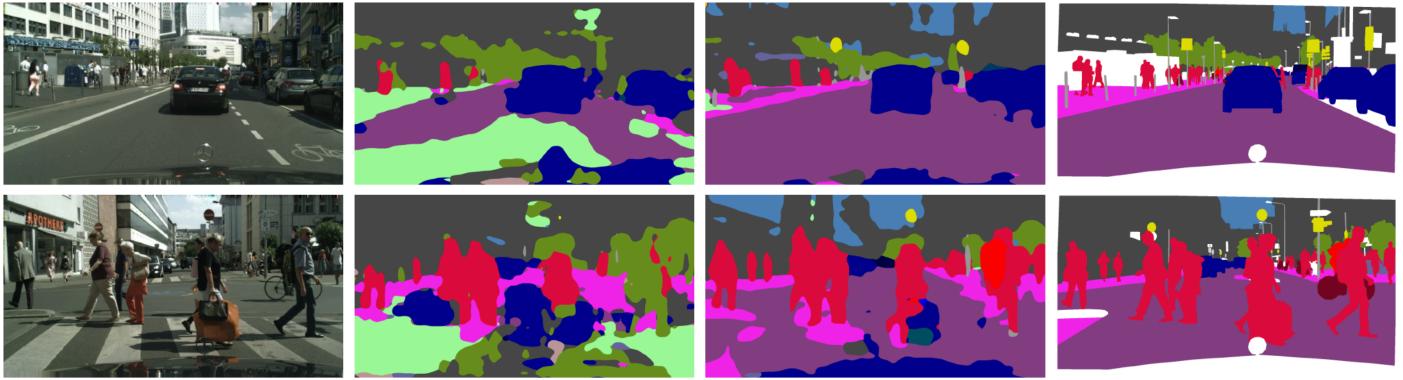
+

- interpretable (easier to debug, cool pictures)
- involves generative modeling & adversarial optimization
- -- requires clear alignment in data

CycleGAN & DANN for Domain Adaptation CyCADA: incorporates both cycle consistency & domain adversarial training

test image





Character recognition

Model	$USPS \rightarrow MNIST$	$SVHN \rightarrow MNIST$
Source only	69.6 ± 3.8	67.1 ± 0.6
DANN (Ganin et al., 2016)	-	73.6
DTN (Taigman et al., 2017a)	-	84.4
CoGAN (Liu & Tuzel, 2016b)	89.1	-
ADDA (Tzeng et al., 2017)	90.1 ± 0.8	76.0 ± 1.8
PixelDA (Bousmalis et al., 2017b)) -	-
UNIT (Liu et al., 2017)	93.6	90.5 *
CyCADA (Ours)	$\textbf{96.5} \pm \textbf{0.1}$	$\textbf{90.4} \pm \textbf{0.4}$
Target Fully Supervised	99.2 ± 0.1	99.2 ±0.1

Source only FCN-wld (Hoffman et a CDA (Zhang et al., 201 FCTN (Zhang et al., 20) CyCADA (Ours)

Oracle - Target Supervi

Source only CyCADA (Ours)

Oracle - Target Supervi

Table 4: Adaptation between GTA5 and Cityscapes, showing IoU for each class and mean IoU, freq-weighted IoU and pixel accuracy. CyCADA significantly outperforms baselines, nearly closing the gap to the target-trained oracle on pixel accuracy.

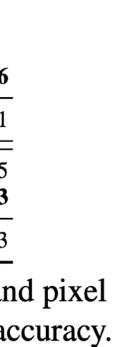
Hoffman et al. ICML 2018

source-only

CyCADA model

ground truth

$\mathbf{GTA5} ightarrow \mathbf{Cityscapes}$																							
	Architecture	road	sidewalk	building	wall	fence	pole	traffic light	traffic sign	vegetation	terrain	sky	person	rider	car	truck	bus	train	motorbike	bicycle	mloU	fwIoU	Pixel acc.
t al., 2016) 017b) 017a)	A A A	70.4 26.4 72.2	32.4 22.0 28.4	62.1 74.7 74.9	14.9 6.0 18.3	5.4 11.9 10.8	10.9 8.4 24.0	14.2 16.3 25.3	2.7 11.1 17.9	79.2 75.7 80.1	21.3 13.3 36.7	64.6 66.5 61.1	44.1 38.0 44.7	4.2 9.3 0.0	40.0 70.4 55.2 74.5 76.9	8.0 18.8 8.9	7.3 18.9 1.5	0.0	0.0 3.5 16.8 0.0 9.8	0.0 14.6 0.0	27.1	- - -	54.0 - - 83.6
vised	A	96.4	74.5	87.1	35.3	37.8	36.4	46.9	60.1	89.0	54.3	89.8	65.6	35.9	89.4	38.6	64.1	38.6	40.5	65.1	60.3	87.6	93.1
		1													46.7 74.5						21.7 39.5		
vised	B	97.3	79.8	88.6	32.5	48.2	56.3	63.6	73.3	89.0	58.9	93.0	78.2	55.2	92.2	45.0	67.3	39.6	49.9	73.6	67.4	89.6	94.3



Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment
 - Domain translation

Goal for by the end of lecture: Understand when to use one vs. another

Goal for by the end of lecture: Understand different domain adaptation methods

Optional homework 4 due next Monday.

Project milestone due next Wednesday

Azure: If you are close to running out of credits, proactively request more in private Ed post.

Next time: Domain generalization

Course Reminders

by Huaxiu Yao