Domain Generalization

CS 330



LOgistics

Project milestone on Wednesday, November 16

Homework 4 (optional) due Monday, November 14



Plan for Today

Domain Generalization

- Problem formulation

- Algorithms
- Adding explicit regularizers
- Data augmentation

Goals for this lecture:
Understand domain generalization: intuition, problem formulation
-amiliarize mainstream DG approaches: regularization-based, augmentation-based
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Recap: Domain Adaptation

Perform well on target domain p(x, v),
using training data from source domain(s) p<(x, y)

A form of transfer learning, with access to target domain data during training
(“transductive” learning)

Unsupervised domain adaptation: access to unlabeled target domain data

Common assumptions:
- Source and target domain only differ in domain of the function, i.e. pg(y | x) = p(y | x)
- There exists a single hypothesis with low error on both source and target domains.

Revisiting: A“domain”is a special case of a “task”

Atask: ;2 {px).p(y|x),Z;} Adomain: d. 2 {p(x),p(y|x), L}
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Recap: Domain Adaptation

Perform well on target domain p,(x, v),

using training data from source domain(s) p(x, v)

A form of transfer leag

data during training
e” learning)

Can we always access unlabeled data
from the target domain? get domain data

Unsupervised do

Common assumptions:

- Source and target domain only dif

er in domain of the function, i.e. po(y | x) = pr(y | x)

- There exists a single hypo

‘hesis wi

h low error on both source and target domains.

Revisiting: A“domain”is a special case of a “task”

Atask: T, 2 {p(x),p(y|x), &;} Adomain: d. 2 {p(x),p(y|x), L)
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Recap: Domain Adaptation

Perform well on target domain p,(x, v),

using training data from source domain(s) p(x, v)

A TOLaime NG

- Real-time deployment and don’t have time to collect target domain data

- Obtaining target data may be restricted by privacy policy

com
- Source and target domain only differ in domain of the function, i.e. po(y | x) = pp(y | x)
- There exists a single hypothesis with low error on both source and target domains.

Revisiting: A“domain”is a special case of a “task”

Atask: T, 2 {p(x),p(y|x), &;} Adomain: d. 2 {p(x),p(y|x), L)

6



Real-Time Deployment

Real-time deployment and don’t have time to collect data

Trained on three types of roads Deploy to a new road



Privacy Concerns
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Plan for Today

Domain Generalization

- Problem formulation

- Algorithms
- Adding explicit regularizers
- Data augmentation

Goals for this lecture:
Understand domain generalization: intuition, problem formulation
-amiliarize mainstream DG approaches: regularization-based, augmentation-based
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Domain Generalization

Generalize

Trained model|
Train Deploy

Clipart

Source domains Unseen target domain
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Domain Generalization Problem

Given source domains p;(x,y), ..., p,(x,¥), solve unseen target domain p(x, y)
without accessing the data from it.

Common assumptions

- All domains only differ in domain of the function, ie, p;(y|x) = ... = p, (¥ | x) = pr(y | x).

- Only p(x) can change
- There exists a single hypothesis with low error in all domains.

Revisiting: A‘domain”is a special case of a “task”

Atask: 7, 2 (p(x),p(y|x), Z;}  Adomain: d; £ {p,(x), p(y | %), Z}
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Meta-Learning v.s. Domain Generalization

Revisiting: A‘domain”is a special case of a“task”

Atask: T, 2 {p(x),p(y|x),Z;} Adomain: d, £ {p(x),p(y|X), L)

Meta-Learning Problem
Transfer learning with many source tasks

Given data from I 4, ..., I, , solve new task J , more quickly / proficiently / stably

Domain Generalization
A special case of meta-learning

Given data from domains dj, ..., d, , perform well on new domain d,

- Only p.(x) changes across tasks - direct generalization/no adaptation
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Domain Adaptation v.s. Domain Generalization

“transductive” setting

Given labeled data from source domain p¢(x, y) and unlabeled data
from target domain p,(x, y), preform well on this target domain

Target data access during training (unlabeled data)

Only one source domain The model is specialized for the target domain

Domain Generalization  “inductive” setting

Given labeled data from a set of source domains p;(x, y), ..., p,(X, y),
perform well on target domain p(x, y)

Test data access during training X

Need more than one source domain The model can be applied to all domains
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Domain Generalization: Applications

Wildlife recognition

d = Location 2 d = Location 245

d = Location 1
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Code completion

Repository ID (d) Source code context (x) Next tokens (y)

Train Repository 1 . from easyrec.gateway import EasyRec <EOL> gateway = get_item_type
EasyRec('tenant', 'key') <EOL> item_type = gateway.
. response = gateway.get_other_users() <EOL> last_request
get_params = HTTPretty.
Repository 2 import numpy as np ... <EOL> if np.linalg.norm(target - linalg
prev_target) > far_threshold: <EOL> norm = np.
. new_trans = np.zeros((n_beats + max_beats, n_beats) max
<EOL> new_trans[:n_beats,:n_beats] = np.
Test Repository 6,001 . if e.errno == errno.ENOENT: <EOL> continue <EOL> p = communicate
subprocess.Popen () <EOL> stdout = p.
. command = shlex.split(command) <EOL> command = environ

map(str, command) <EOL> env = os.




Plan for Today

Domain Generalization

- Problem formulation

- Algorithms
- Adding explicit regularizers
- Data augmentation

Goals for this lecture:
Understand domain generalization: intuition, problem formulation
-amiliarize mainstream DG approaches: regularization-based, augmentation-based
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How to Learn Generalizable Representations?

Why do machine learning models fail to generalize?

Goal: classify dog vs. cat

Domain 1:
water

Is this a dog?

Domain 2:
grass

= . Train
45% of train data 5% of train data % 8

Prediction: No

Groundtruth: Yes

5% of train data 459% of train data

Source Domains Target Domain
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How to Learn Generalizable Representations?

To overcome spurious correlation —> train a neural network to learn domain invariance

Domain invariance: we want to learn features that don’t change across domains

Domain-invariant information

Domain 1: Animal

water Trained mode|

- : Train Deploy
45% of train data 5% of train data O
O |
Is this a dog?

Domain 2: o

grass Prediction: Yes

Groundtruth: Yes

5% of train data 459% of train data

Source Domains Target Domain
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Regularization-pased Methoo

Key idea: Use a regularizer to align representations across domains

—> get domain-invariant representation

Animal Water

Domain 1:
waer I
: s . Align representations
45% of train data 5% of train data &
| O Animal Grass
Domain 2:
grass I

Animal

5% of train data 459% of train data

Source Domains Representations ___
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Regularization-pased Methoo

Animal Water

Domain 1;: i ¢
et I
o er . . Align representations
45% of train data 59 of train data O 3
” O Animal Grass

Voo

Domain 2:
grass I
Animal
5% of train data 45% of train data l
Source Domains Representations ___

| abel classification loss

'

min E r X), 4+ )L Explicit regularizer to learn
g L2 o0, )] reg " domain-invariant representation

Average over training examples ;4




Recap: Domain Adversarial Training in DA

Key idea: predictions must be made based on features that cannot be discriminated

between the domains
label predictor g, (y | f(x)) Only source domain

make accuracy label prediction

\_N \_N .i
* 'I * 'I *H- Class label y

\

N N L
g B
-
D
~
Input x Domain label d
feature extractor f,(x)
uestion: Does anyone have ideas on how to use . -
Q , | y L | domain classifier ¢ ,(d = source | f(x)) |
domain adversarial training in the domain Source + target domain
generalization setting? , 1.e. domain invariant
Tzeng et al. Deep Domain Confusion. arXiv ‘14 50

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16



Domain Adversarial Training in DG

Key idea: predictions must be made based on features that cannot be discriminated

between the domains
label predictor ggg(y | f(x)) All source domains

make accuracy label prediction

\_N \_N .i
* 'I * 'I *H- Class label y

\

..

feature extractor f,(x)

J@injes

Domain label d

Input x

domain classifier ¢ .(d | f(x
¢( ‘f( ) All source domains

, 1.e. domain invariant

Tzeng et al. Deep Domain Confusion. arXiv ‘14
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16
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Domain Adversarial Training in DG

Smaller is better (more

Label prediction accurate prediction)
o NV
(0,,0) < arg Iéliél Z A y(geg(fe(xj)), ), label predictor 89g(}’ | £(x))
8’ j=1

Class label y

R > -8

NN § T
. EI-
@
~
Domain label d
Input x
feature extractor f,(x)
Larger is better (harder domain classifier ¢,(d | f(x))

Domain prediction to distinguish domains)

N
¢ — arg max Y L, (fix)). d)
=1

Tzeng et al. Deep Domain Confusion. arXiv ‘14
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16
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Domain Adversarial Training in DG

| abel classification loss

min E A X), 4+ 1L Explicit regularizer to learn
g L2 o), )] '8 domain-invariant representation

DANN loss in DG

N
L= Y L (8 o)) y) = AL fc,(fo(x)), d)
Full algorithm j=1

1. Randomly initialize encoder f,, label classifier 80, domain classifier ¢,

2. Update domain classifier: ngngf = Z Z (e (fo(x)), dy)
=1

3. Update label classifier & encoder: min & = D 2L (80 ffx)), ) = AL (X)), d)
8 =1

4. Repeat steps 2 & 3 Are there any other ways to learn domain-
invariant features without adversarial optim??

Tzeng et al. Deep Domain Confusion. arXiv ‘14
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16
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Alternative Approach — CORAL

Key idea: directly aligning representations between different domains with some
similarity metrics

CORAL: Correlation Alignment for Domain Adaptation (usually also used in DG)

cov1 cov5 fC\G fc\7 Notations Xl S Rank X2 S anXk
fc8
| IN|IX . classification k: num of features Uy = ilTX = RIXk — LITX = RIXk
loss 1 1 Ho 2
ny ny
A
4 t NN 1 n
Domain 1 g B OBEE C, = 2 X, — u)TX, — py)
@, G| BYBYG CORAL Calculate nyp — 1 —1
\ v feefcr | loss . . 1=
| s covi covs NN v covariance matrices 1 1,
iy A fc8
. Iy _ B T B
% = - QNN SN IN[IN , Classification C2 T 9 — 1 Z (X2 qu) (X2 //lz)
- loss 2 i—1
& ) 'Y
s A NIAN 1 ,
Domain 2 CORAL loss Z coral = _4k2 1€, = Gl

Classification loss

ny+n, Explicit regularizer to learn

L = Z L c(sz(xi)ayi) + AL oral domain-invariant representation
i=1

Sun et al. Correlation Alignment for Deep Domain Adaptation. arXiv ‘16



Results

ERM CORAL DANN
| 66.5% 68.7% 65.9%
OfficeHome

DomainNet i 8PS 40.9% 41.5% 38.3%
%%mtlel
%@iﬁ%&é@ﬁ
5 w i

iWildCam 30.8% 32.7% n/a
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Pros and Cons of Regularization-based Methods

Domain 1:
+ General to all kinds of data and networks water
+ Some theoretical guarantee 45% of train data 5% of train data
- The regularizer being too harsh / too Sormain o
constraining on the representation grass

5% of train data 459% of train data

. Explicit regularizer encourages
min '(x,y)[bﬂ (fox), V)] + AL reg <+ internal representation to contain
0 no info about the background

20



Pros and Cons of Regularization-based Methods

These methods can help the performance,

+ General to all kinds of data and networks but do not always works

Empirical Risk  Regularization-

+ Some theoretical guarantee Minimization  based methods
O o
- The regularizer being too harsh / too i 30.8% 32.77%
constraining on the representation - CORAL
29.9% 28.4%
CORAL

RxRx1

Are there any other approaches to relax the
dependency of the regularizer?
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Plan for Today

Domain Generalization

- Problem formulation

- Algorithms
- Adding explicit regularizers
- Data augmentation

Goals for this lecture:
Understand domain generalization: intuition, problem formulation
-amiliarize mainstream DG approaches: regularization-based, augmentation-based
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Recap: Spurious Correlation

Recap: spurious correlation between domains and labels

Goal: classify dog vs. cat

Domain 1:
water Trained model
. £ Train Deploy
45% of train data 5% of train data O
, O
Is this a dog?
Domain 2: o
grass Prediction: No

Groundtruth: Yes

5% of train data 45% of train data

Source Domains Target Domain
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Data Augmentation

Question: Will the network still associate dogs with
water background in source domains?

NO! There are many more backgrounds. We can’t
recognize dogs only with grass background.

If we can collect more data

Is this a dog?
Prediction: Yes

Groundtruth: Yes

Keyboard
Source Domains Challenge

Target Domain

We can not collect morg data —> Let’s generate data!



Data Augmentation

Generating data with simple operators

ey

‘%M Flipping
a Rotating

Original
5 Cropping Fancy PCA

English
e
French
original I have no time \f‘ il
je n'ai pas le temps ReqUIreS kn()Wledge of the
womenes | T do mot have timel € . problem domain
Eé”&ih english

Any general approaches?

https://amitness.com/2020/02/back-translation-in-google-sheets/

Figure: Back Translation
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Data Augmentation — Mixup

Interpolating training examples

A learning model D¢ = {x;,y; -, — Classifier,
Mixup D,, = {%;, V;}1., — Classifier,
where

Xi=Ax;+ (1 —=NDx;,5; =Ay; + (1 = A)y;
A~Beta(a, )

Generating some virtual
examples between two
classes

[1.0, 0.0] [0.0, 1.0] [0.7, 0.3]

Zhang et al. mixup: Beyond Empirical Risk Minimization. ICLR ‘18 cat dog 32 cat dog cat dog



Data Augmentation — Mixup

Mixup can improve the performance on domain generalization

FMoW

But it iIs not always good!

RxRx1

Empirical Risk Minimization

70.3%

32.8%

29.9%

33

mixup

71.2%

34.2%

26.5%

Origir

O

O

N da

'3 aug

"learning ¢

h

al mixup o

Nen

nly focuses

tation instead
omain invariance.

How to Improve it?



Data Augmentation — Mixup

A simpler example with spurious correlation

yq1: digit <5
”
Source Domains .
40% of train data 10% of train data 10% of train data 40% of train data

Spurious Correlation:
color
Predlctlon digit <5
Target Domain % # True digit > 5
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Can we Improve Mixup? — LISA

Key idea: selective interpolate examples to emphasize invariant information

y,: digit<5 y,:digit =5

c .
O MIXUP: X = A% + (1 — )}, Yimix = Ay + (1 — 1)y,
O A~Beta(a, §)
23]
40% of train data ~ 10% of train data Intra-label LISA — Interpolates samples with the same

Domain

d,: Red

label but different domains (d; # d Y = yJ
. . 3
)

10% of train data 40% of train data

A=0.0 A=0.25 A=05 A=0.75

Colored MNIST Ally = [0,1]
Different background, same label

Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML ‘22 35



Can we Improve Mixup? — LISA

Key idea: selective interpolate examples to emphasize invariant information

y,:digit<5 y,:digit=5

= E2

40% of train data 10% of train data

MiXUp: Xmix = Ax; + (1 — A)xj:}’mix =Ay;+ (1 — /1)}7]'
A~Beta(a, )

d,: Green

Intra-domain LISA — Interpolates samples with the
different label but same domains (d; = d;, y; # ¥;)

10% of train data  40% of train data = 0.0 — 0.25 =05 = 0.75 = 1.0
y=[1,0] y= [0.25,0.75] y = [0.5,0.5] [0.75, 0.25] y=[0,1]

Domain

d,: Red

Colored MNIST

Domain information is not the reason for the label change

Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML ‘22 36



Can we Improve Mixup? — LISA

+ more domains
Intra-label | |
LISA + spurious correlations
A=0.0 = 0.25 = 0.5 1=0.75 =10 are not very strong
AUy—WJ]
+ domain information is highly
Intra-domain spuriously correlated with the

LISA label

A=10.0 A =0.25 A=0.5 A=0.75 A=1.0
y=1[1,0] y=1[0.25,0.75] y=1[0.5,0.5] y=[0.75,0.25] y = [0, 1]

P,.;: Determine intra-label LISA or intra-domain LISA at each iteration

Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML ‘22 37



Full Algorithm of LISA

1. Randomly initialize the model parameter &

2. Sample strategy s ~ Bernoulli(p,,)
3. Sample a batch of examples &

(i) If s=0, for each example (x;, y.) in 9%, sample

o Intra-label LISA
(x;, ;) that satisfies (y; = y;) and (d; # d))

(ii) If s=1, for each example (x;, y;) in 9B, sample
(x;, ;) that satisfies (y; # y;) and (d; = d))

Intra-domain LISA

4. Use interpolated examples to update the model

5. Repeat steps 3 & 4

Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML ‘22 38



Results

Regularization-based Augmentation-based

=RM (CORAL) (LISA)
Camelyonl7 70.3% 74.7% 77.1%
FMoW 32.3% 34.6% 35.5%
RxRx1 29.9% 28.4% 31.9%
Amazon "C;e 53.8% 53.8% 54.7%
\WildCAM 30.8% 32.7% 27.6%
OGB-MolPCBA | 7° &® 28.3% 17.9% 27.5%
o || gl
LISA can also work on text

39 data, how to apply mixup?



Manifold Mixup

Original Mixup \ \
— g
Apply mixup on * * =
the input i
feature extractor f,(x)
Apply mixup on
O
= 8 the feature
—n V, <
Manifold Mixup L 5
. o}
o} @
Q ~

Input x feature extractor f,(x)

Zhang et al. mixup: Beyond Empirical Risk Minimization. ICLR '18
Verma et al. Manifold Mixup: Better Representations by Interpolating Hidden States. ICML '19 40



Invariance Analysis

Metrics: Accuracy of domain prediction  Divergence of predictions among domains
IPaap | P |
CMNIST | Waterbirds | Camelyon17 | MetaShift | CMNIST | Waterbirds | Camelyon17 | MetaShift
ERM 82.85% | 94.99% 49.43% 67.98% | 6.286 1.888 1.536 1.205
Vanilla mixup | 92.34% | 94.49% 52.79% 69.36% | 4.737 2.912 0.790 1.171
IRM 69.42% | 95.12% 47.96% 67.59% | 7.755 1.122 0.875 1.148
IB-IRM 74.72% | 94.78% 48.37% 67.39% | 1.004 3.563 0.756 1.115
V-REx 63.58% | 93.32% 61.38% 68.38% | 3.190 3.791 1.281 1.094
LISA (ours) | 58.42% | 90.28% 4515% | 66.01% | 0.567 0.134 0.723 1.001

LISA leads to greater domain invariance than prior methods with explicit regularizers
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Regularization-based v.s. Augmentation-based Methods

Regularization-based Method Augmentation-based Method

+ Easy to understand and simple to
+ General to all kinds of data and networks implement

+ Some theoretical guarantee + No need to worry about how to design
regularizers

- Rely on the design of regularizers
- Largely limited to classification
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Plan for Today

Domain Generalization

- Problem formulation

- Algorithms
- Adding explicit regularizers
- Data augmentation

Goals for this lecture:
Understand domain generalization: intuition, problem formulation
-amiliarize mainstream DG approaches: regularization-based, augmentation-based
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Reminders

Project milestone on Wednesday, November 16

Homework 4 (optional) due Monday, November 14

Next time: Lifelong learning
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