## Domain Generalization

CS 330

### Logistics

- Project milestone on Wednesday, November 16
- Homework 4 (optional) due Monday, November 14

## Plan for Today

### **Domain Generalization**

- Problem formulation
- Algorithms
  - Adding explicit regularizers
  - Data augmentation

### Goals for this lecture:

- Understand domain generalization: intuition, problem formulation
- Familiarize mainstream DG approaches: regularization-based, augmentation-based

on, problem formulation gularization-based, augmentation-based

### Recap: Domain Adaptation

- Perform well on target domain  $p_T(x, y)$ , using training data from source domain(s)  $p_{s}(x, y)$
- A form of transfer learning, with access to target domain data during training ("transductive" learning)

Common assumptions:

- Source and target domain only differ in domain of the function, i.e.  $p_S(y \mid x) = p_T(y \mid x)$ - There exists a single hypothesis with low error on both source and target domains.

A task: 
$$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} \mid \mathbf{x}), \mathcal{L}\}$$

Unsupervised domain adaptation: access to unlabeled target domain data

- Revisiting: A "domain" is a special case of a "task"
  - A domain:  $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathscr{L}\}$  $\mathcal{P}_i$ 4

### Recap: Domain Adaptation

A form of transfer lear

Unsupervised dor

Can we always access unlabeled data from the target domain?

Common assumptions:

- —

Revisiting: A "domain" is a special case of a "task"

A task: 
$$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} \mid \mathbf{x}), \mathcal{L}\}$$

Perform well on target domain  $p_T(x, y)$ , using training data from source domain(s)  $p_{s}(x, y)$ 

> data during training e"learning)

get domain data

- Source and target domain only differ in domain of the function, i.e.  $p_{S}(y | x) = p_{T}(y | x)$ There exists a single hypothesis with low error on both source and target domains.

> A domain:  $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathscr{L}\}$  $\mathcal{P}_i$

### Recap: Domain Adaptation

Perform well on target domain  $p_T(x, y)$ , using training data from source domain(s)  $p_{s}(x, y)$ 

- Real-time deployment and don't have time to collect target domain data

- Obtaining target data may be restricted by privacy policy

Comn

A tom

- —

Revisiting: A "domain" is a special case of a "task"

A task: 
$$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} \mid \mathbf{x}), \mathcal{L}\}$$

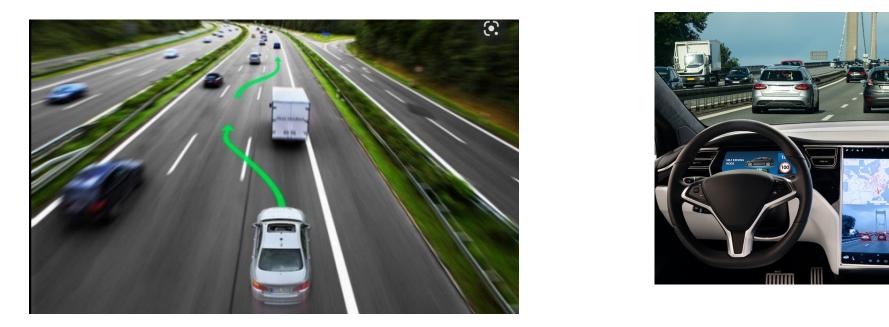
- Source and target domain only differ in domain of the function, i.e.  $p_{S}(y | x) = p_{T}(y | x)$ There exists a single hypothesis with low error on both source and target domains.

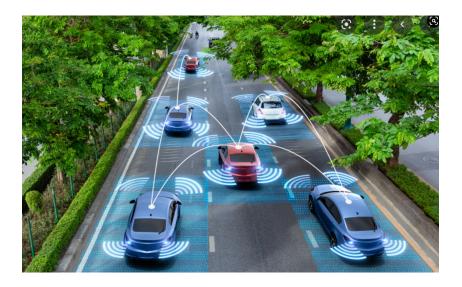
> A domain:  $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathscr{L}\}$  $\mathcal{P}_i$

lucio a training

## Real-Time Deployment

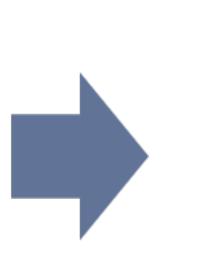
#### Real-time deployment and don't have time to collect data





#### Trained on three types of roads







#### Deploy to a new road

### Privacy Concerns







Trained on 3 hospitals

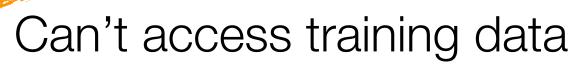








#### Deploy to a new hospital





## Plan for Today

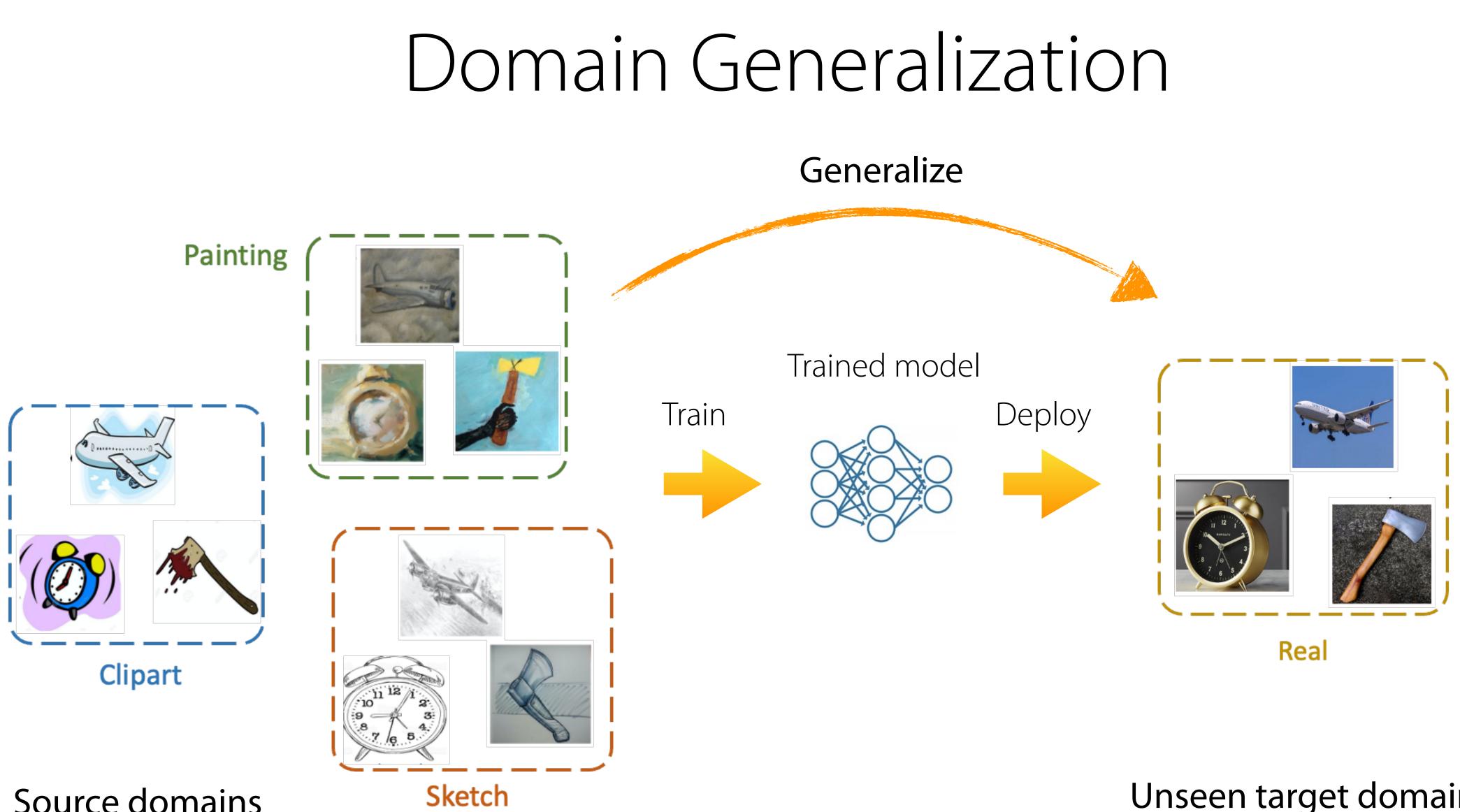
## Domain GeneralizationProblem formulation

- Algorithms
  - Adding explicit regularizers
  - Data augmentation

### Goals for this lecture:

- Understand domain generalization: intuition, problem formulation
- Familiarize mainstream DG approaches: regularization-based, augmentation-based

on, problem formulation gularization-based, augmentation-based



Source domains

#### Unseen target domain

### Domain Generalization Problem

Given source domains  $p_1(x, y), \ldots, p_n(x, y)$ , solve unseen target domain  $p_T(x, y)$ without accessing the data from it.

Common assumptions

- Only p(x) can change
- There exists a single hypothesis with low error in all domains.

Revisiting: A "domain" is a special case of a "task" A task:  $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} | \mathbf{x}), \mathcal{L}_i\}$  A domain:  $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathcal{L}\}$ 

### - All domains only differ in domain of the function, i.e., $p_1(y \mid x) = \ldots = p_n(y \mid x) = p_T(y \mid x)$ .



### Meta-Learning v.s. Domain Generalization

Revisiting: A "domain" is a special case of a "task"

**Meta-Learning Problem** Transfer learning with many source tasks

Given data from  $\mathcal{T}_1, \ldots, \mathcal{T}_n$ , solve new task  $\mathcal{T}_t$  more quickly / proficiently / stably

### **Domain Generalization**

A special case of meta-learning

A task:  $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} | \mathbf{x}), \mathcal{L}_i\}$  A domain:  $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathcal{L}\}$ 

### Given data from domains $d_1, \ldots, d_n$ , perform well on new domain $d_t$

- Only  $p_i(x)$  changes across tasks - direct generalization/no adaptation

# Domain Adaptation v.s. Domain Generalization

- Given labeled data from source domain  $p_{S}(x, y)$  and unlabeled data from target domain  $p_T(x, y)$ , preform well on this target domain Target data access during training 🧹 (unlabeled data)
- Only one source domain

- **Domain Generalization** "inductive" setting Given labeled data from a set of source domains  $p_1(x, y), \ldots, p_n(x, y), \ldots$ perform well on target domain  $p_T(x, y)$
- - Test data access during training
- Need more than one source domain

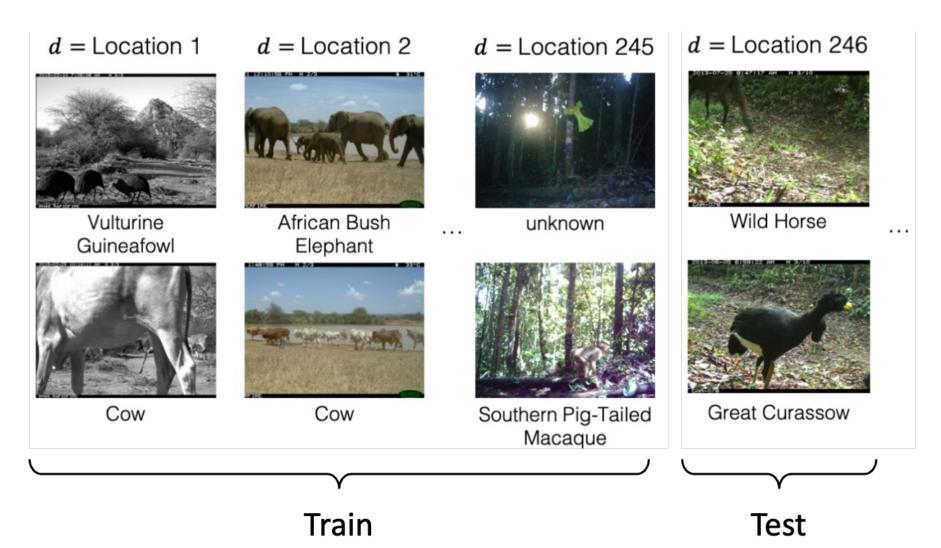
**Domain Adaptation** "transductive" setting

The model is specialized for the target domain

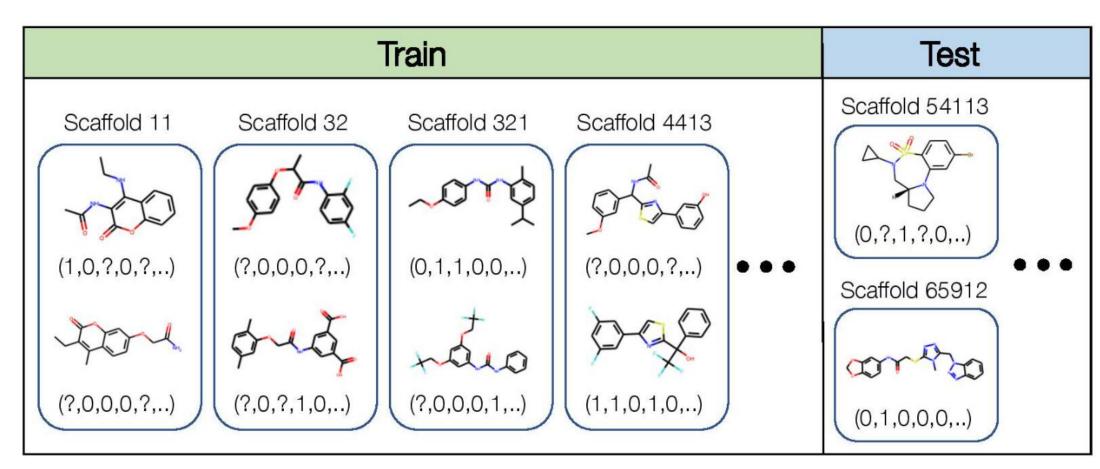
The model can be applied to all domains

### Domain Generalization: Applications

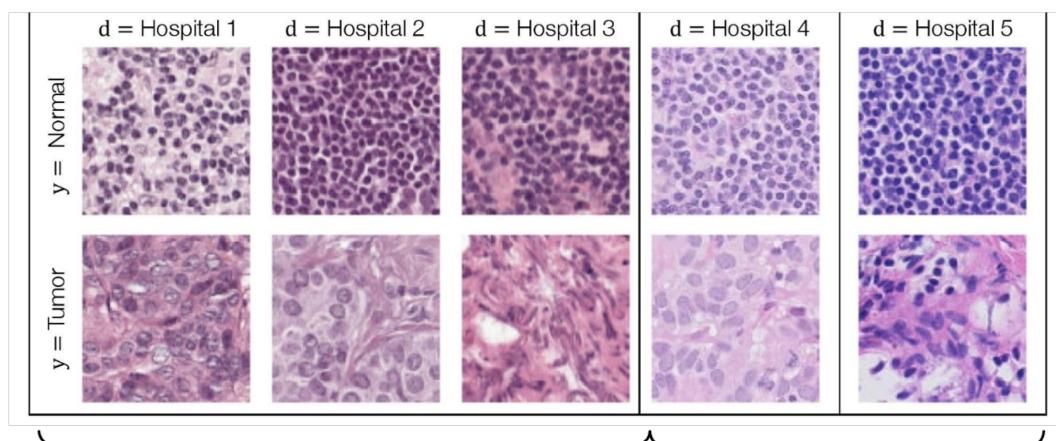
#### Wildlife recognition



#### **Molecule property prediction**



#### **Tissue classification**



Train

Test

#### **Code completion**

|       | Repository ID ( $d$ ) | Source code context (x)                                                                                                | Next tokens (y) |
|-------|-----------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|
| Train | Repository 1          | from easyrec.gateway import EasyRec <eol> gateway =<br/>EasyRec('tenant','key') <eol> item_type = gateway.</eol></eol> | get_item_type   |
|       |                       | response = gateway.get_other_users() <eol><br/>get_params = HTTPretty.</eol>                                           | last_request    |
|       | Repository 2          | import numpy as np <eol> if np.linalg.norm(target -<br/>prev_target) &gt; far_threshold: <eol> norm = np</eol></eol>   | linalg          |
|       |                       | <pre> new_trans = np.zeros((n_beats + max_beats, n_beats) <eol> new_trans[:n_beats,:n_beats] = np.</eol></pre>         | max             |
|       | ÷                     |                                                                                                                        |                 |
| Test  | Repository 6,001      | if e.errno == errno.ENOENT: <eol> continue <eol> p =<br/>subprocess.Popen () <eol> stdout = p</eol></eol></eol>        | communicate     |
|       |                       | command = shlex.split(command) <eol> command = map(str, command) <eol> env = os.</eol></eol>                           | environ         |
|       | :                     |                                                                                                                        |                 |



## Plan for Today

### **Domain Generalization**

- Problem formulation
- Algorithms
  - Adding explicit regularizers
  - Data augmentation

### Goals for this lecture:

- Understand domain generalization: intuition, problem formulation
- Familiarize mainstream DG approaches: regularization-based, augmentation-based

on, problem formulation gularization-based, augmentation-based

## How to Learn Generalizable Representations?

#### Goal: classify dog vs. cat

Domain 1: water



45% of train data



5% of train data



45% of train data

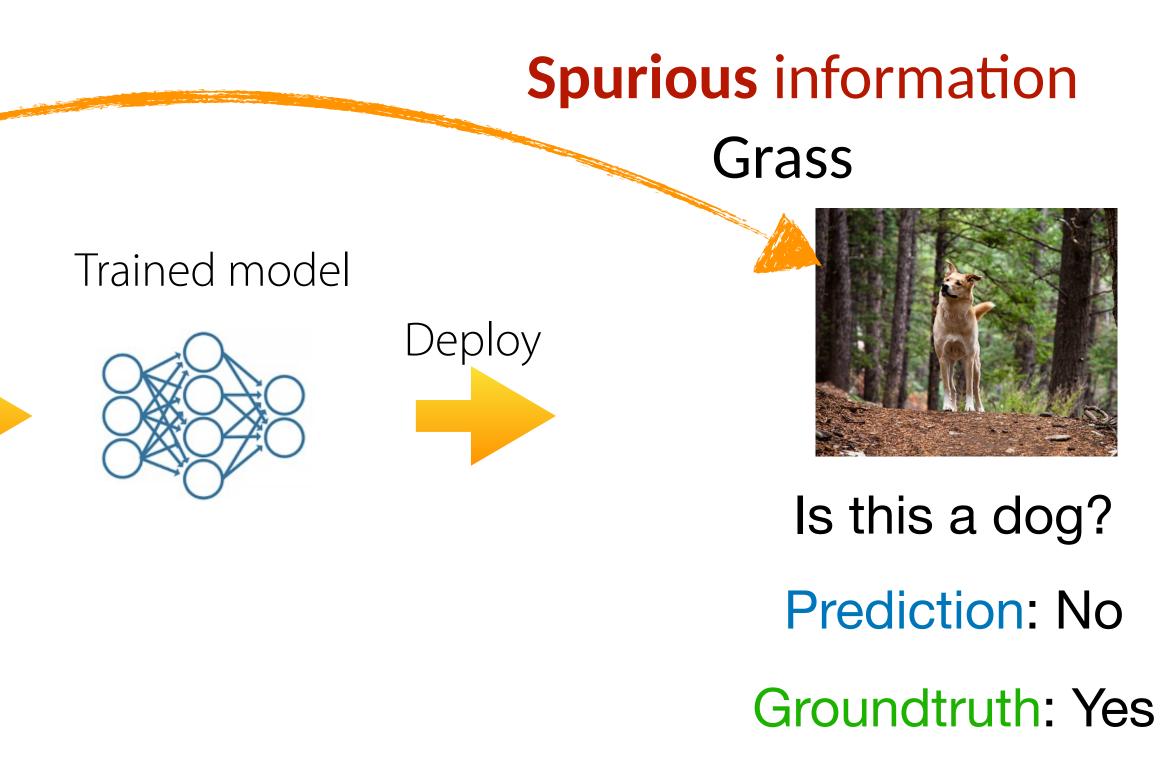
Domain 2: grass



5% of train data

#### **Source Domains**

Why do machine learning models fail to generalize?



**Target Domain** 

Train



## How to Learn Generalizable Representations?

To overcome spurious correlation —> train a neural network to learn **domain invariance** Domain invariance: we want to learn features that don't change across domains

Train

Goal: classify dog vs. cat

Domain 1: water



45% of train data



5% of train data





5% of train data

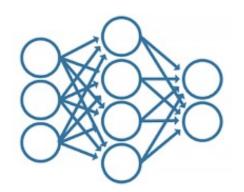


45% of train data

#### **Source Domains**

**Domain-invariant** information Animal

Trained model







Is this a dog? **Prediction:** Yes **Groundtruth: Yes** 

**Target Domain** 



### Regularization-based Method

### **Key idea:** Use a regularizer to align representations across domains

#### —> get domain-invariant representation

Domain 1: water



45% of train data



5% of train data



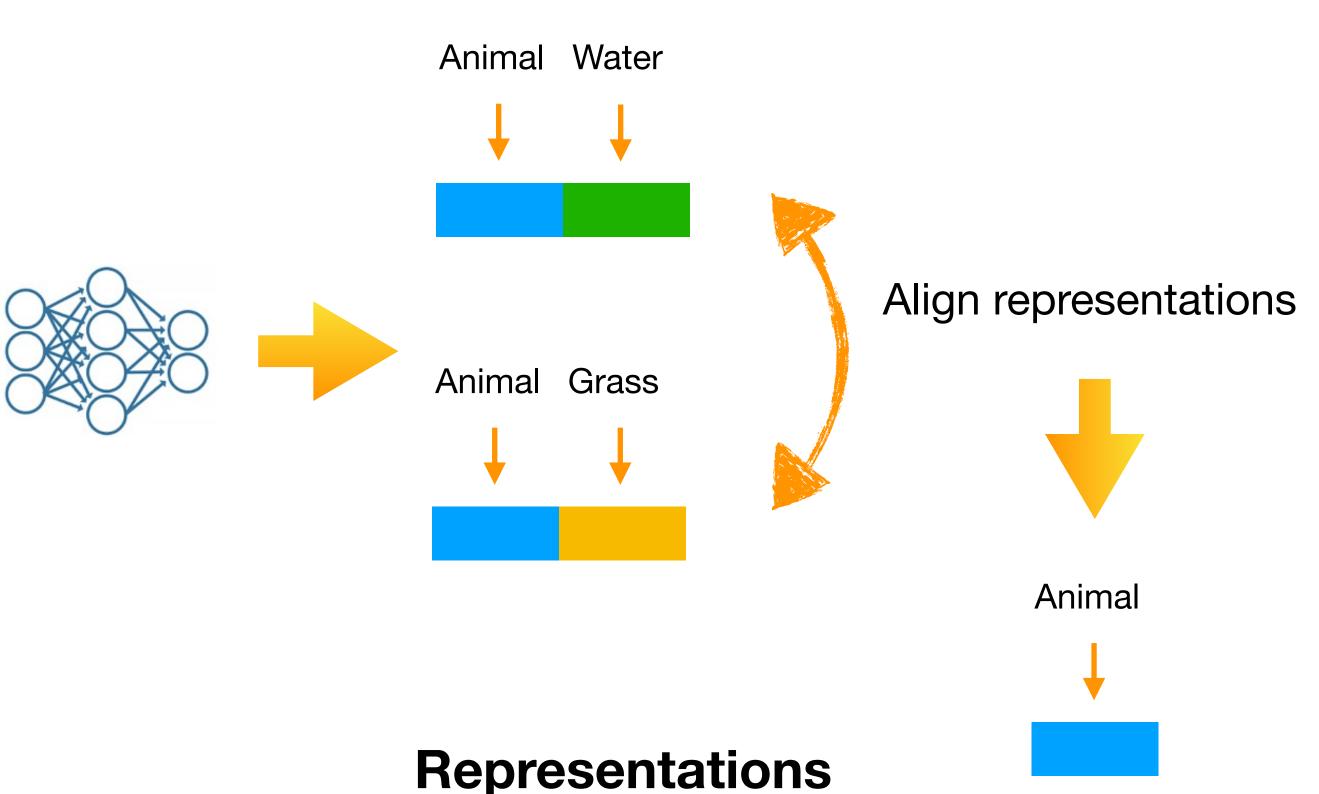
45% of train data

Domain 2: grass



5% of train data

#### **Source Domains**



## Regularization-based Method

Domain 1: water



45% of train data



5% of train data

Domain 2: grass



5% of train data



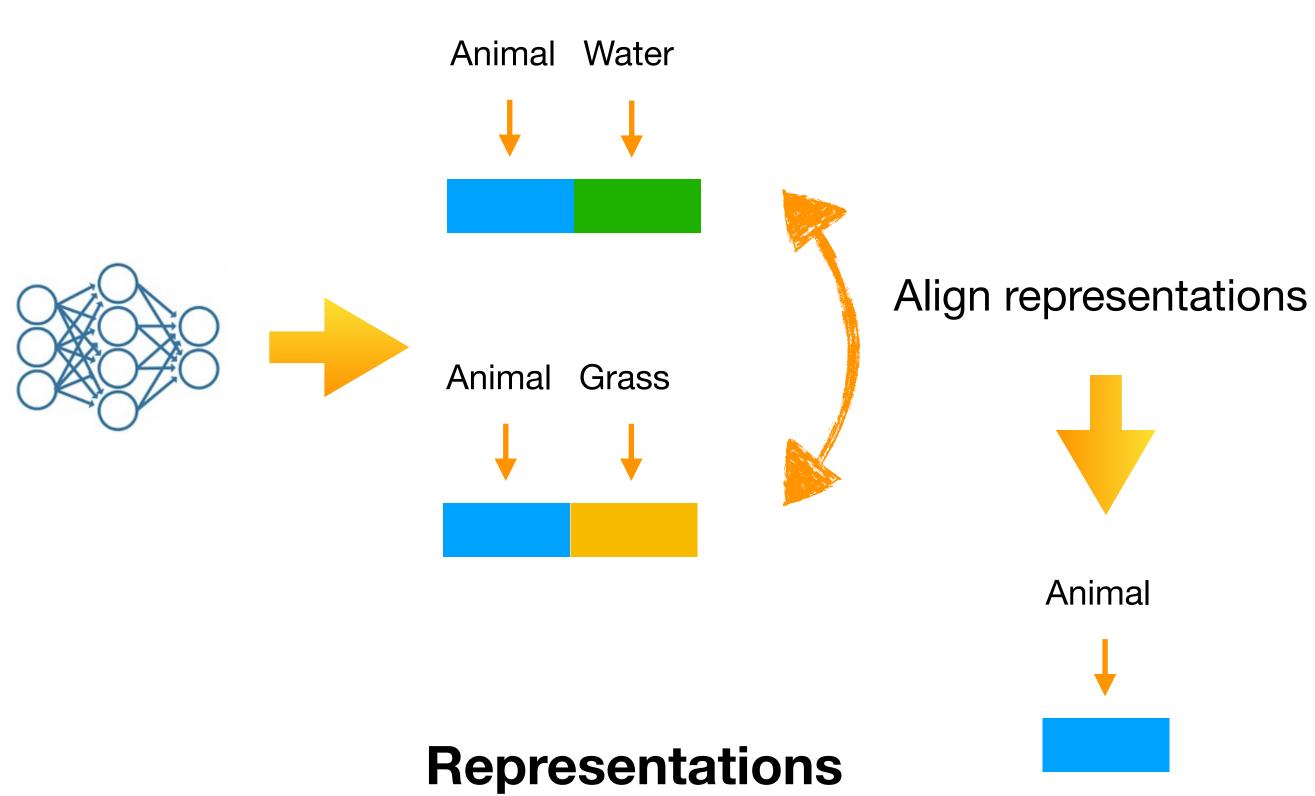
45% of train data

#### **Source Domains**

Label classification loss

 $\min_{\theta} \mathbb{E}_{(x,y)}[\ell(f_{\theta}(x), y)] + \lambda \mathscr{L}_{reg} \leftarrow$ 

Average over training examples

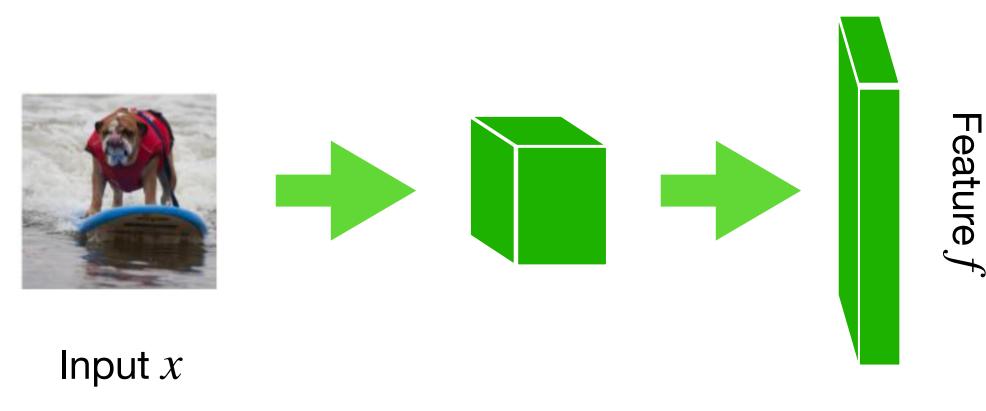




Explicit regularizer to learn domain-invariant representation

## Recap: Domain Adversarial Training in DA

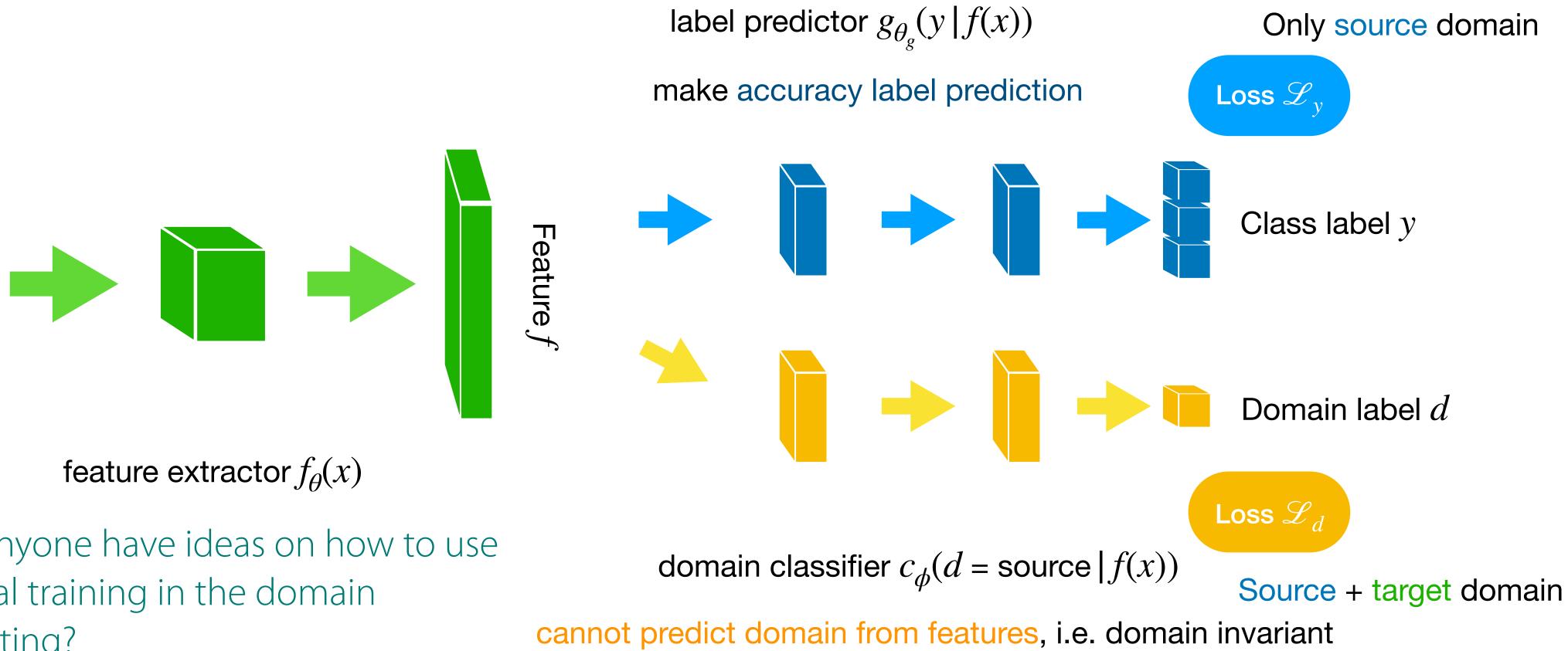
### **Key idea:** predictions must be made based on features that cannot be discriminated between the domains



feature extractor  $f_{\theta}(x)$ 

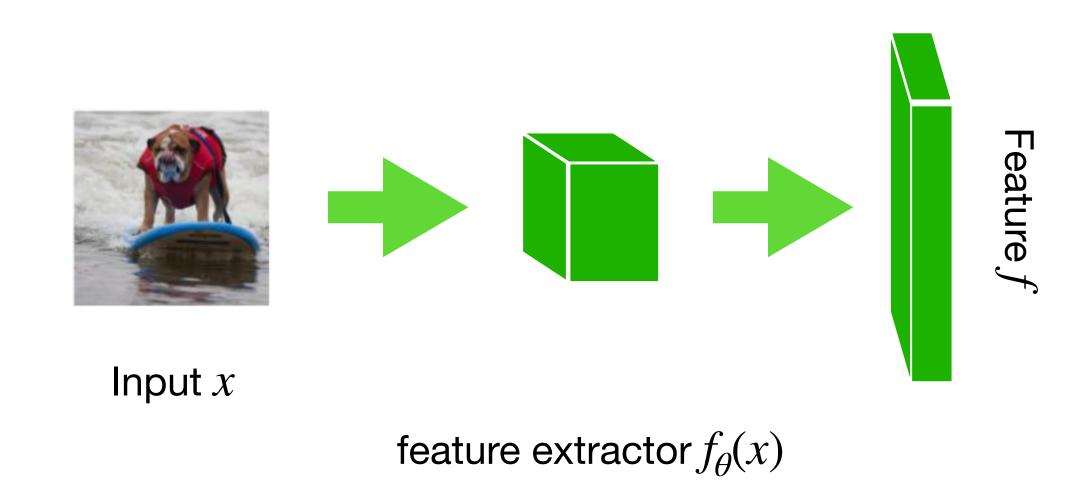
**Question**: Does anyone have ideas on how to use domain adversarial training in the domain generalization setting?

Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

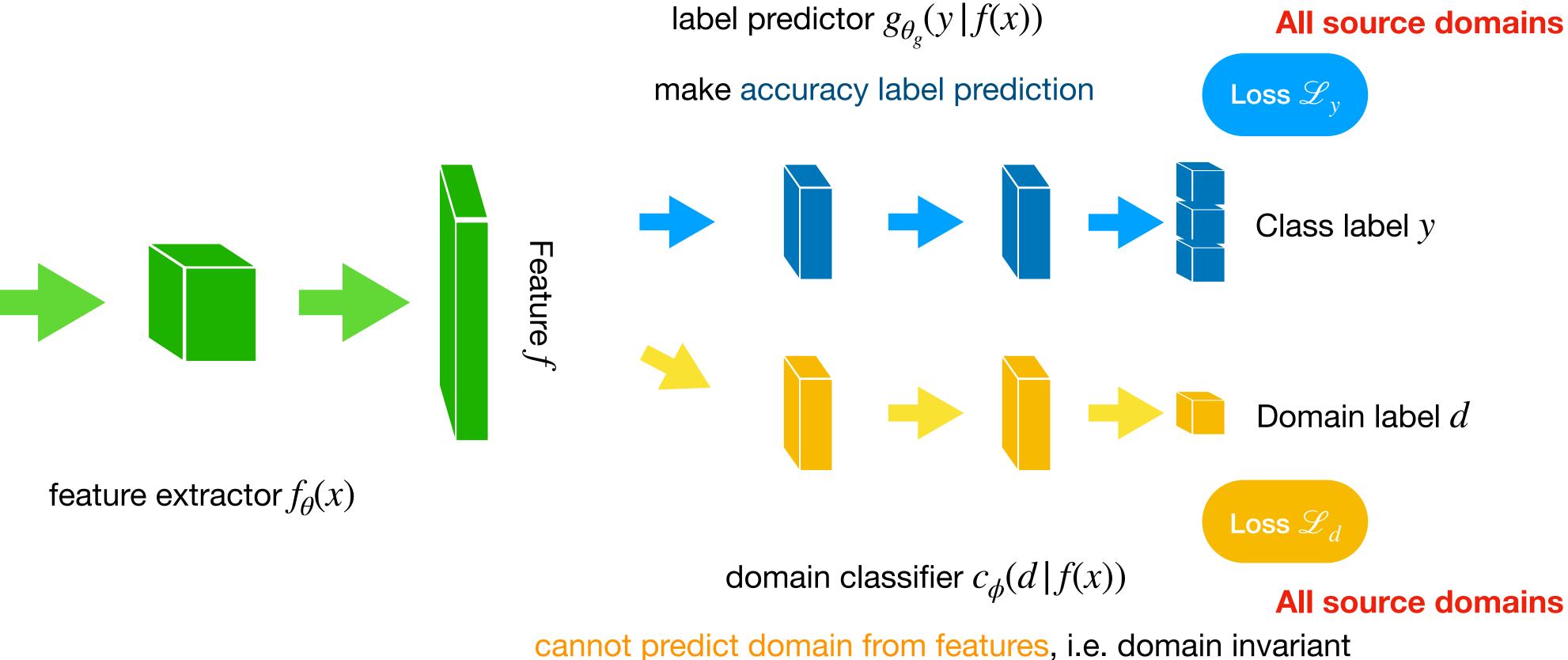


## Domain Adversarial Training in DG

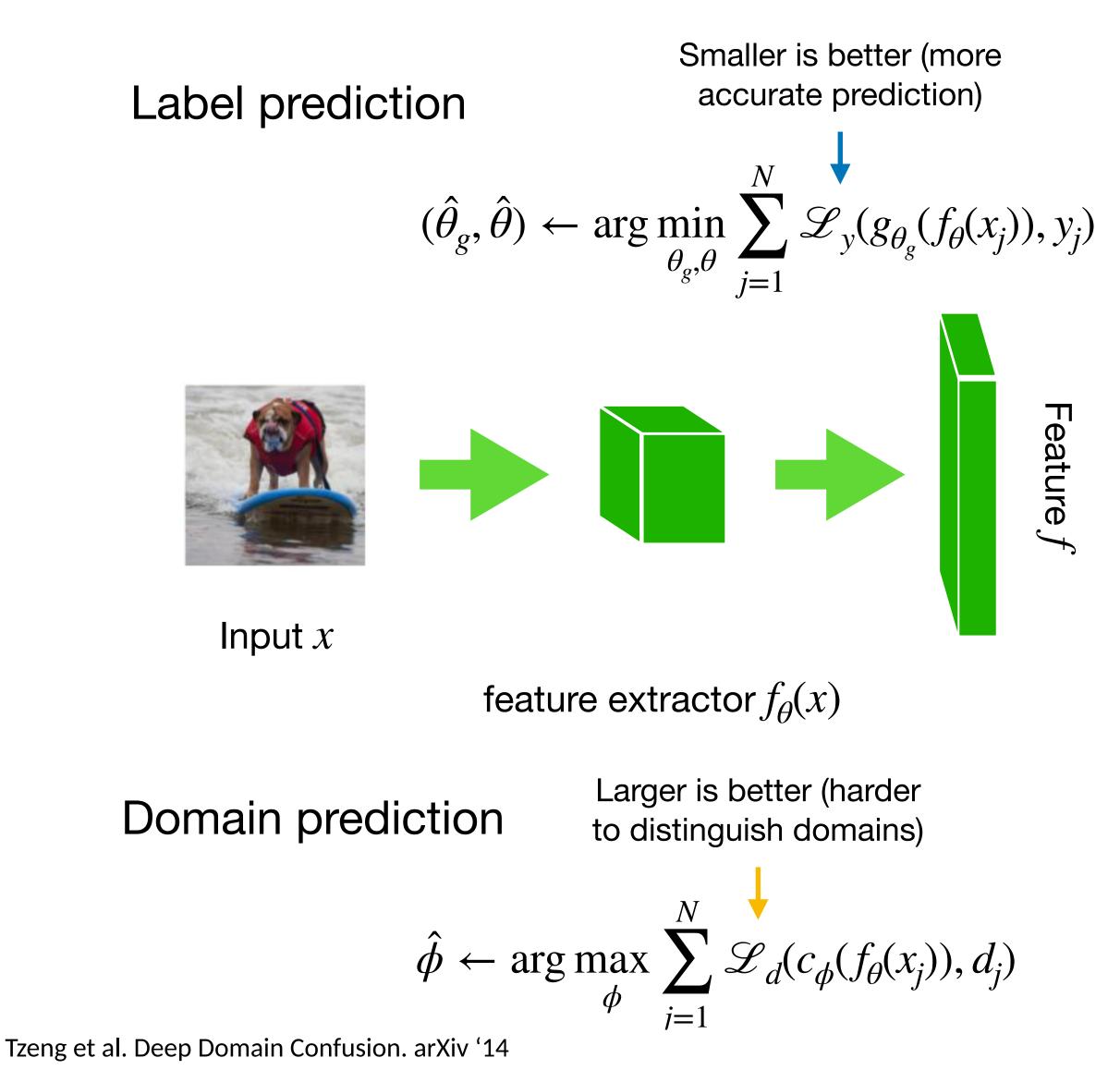
### **Key idea:** predictions must be made based on features that cannot be discriminated between the domains



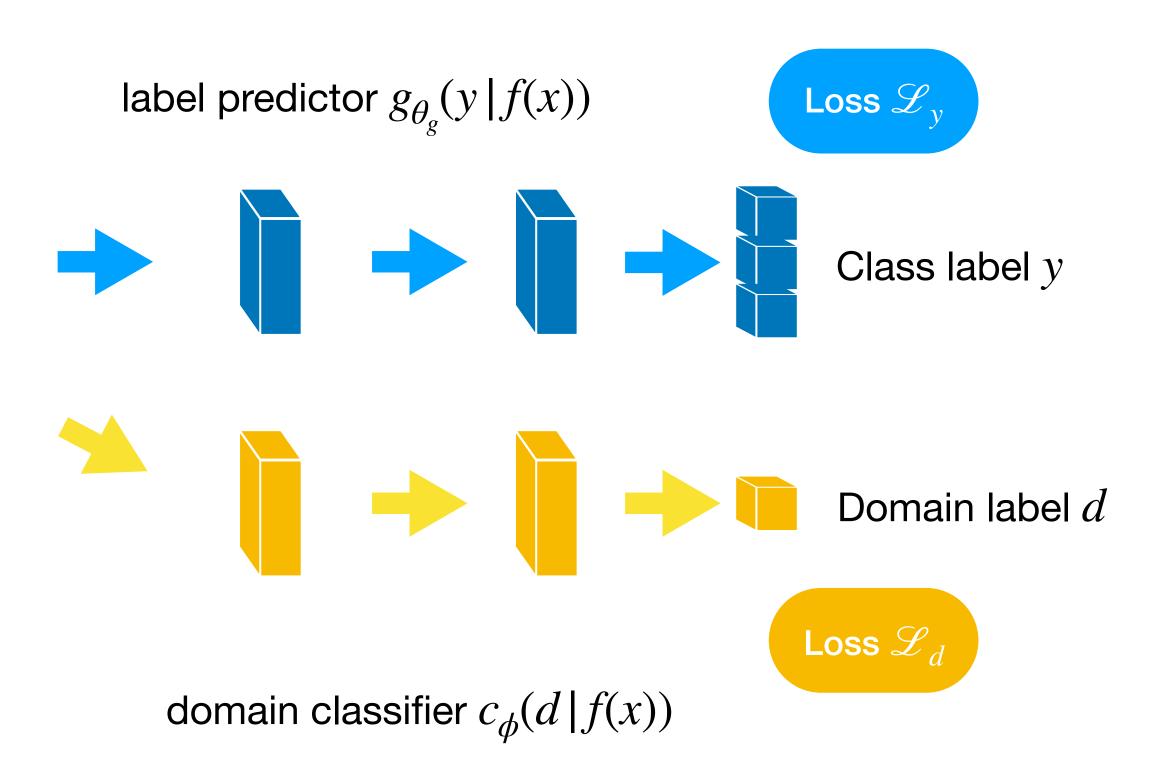
Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



### Domain Adversarial Training in DG



Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



## Domain Adversarial Training in DG

Label classification loss

$$\min_{\theta} \mathbb{E}_{(x,y)}[\ell(f_{\theta}(x), y)$$

DANN loss in DG

$$\mathscr{L} = \sum_{j=1}^{N} \mathscr{L}_{y}(g_{\theta_{g}}(f_{\theta}(x_{j})), y_{j}) - \lambda$$

Full algorithm

- Randomly initialize encoder  $f_{\theta}$ , label classifier  $g_{\theta_a}$ , domain classifier  $c_{\phi}$ 1.
- Update domain classifier:  $\min_{d} \mathscr{L} = \sum_{d} \sum$ 2.
- Update label classifier & encoder: m 3.  $\theta$ ,

#### Repeat steps 2 & 3 4.

Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



Explicit regularizer to learn domain-invariant representation

 $\lambda \mathscr{L}_d(c_\phi(f_\theta(x_j)), d_j)$ 

$$\mathscr{L}_d(c_\phi(f_\theta(x_i)), d_i)$$

$$\min_{\theta, \theta_g} \mathscr{L} = \sum_{i=1}^n \mathscr{L}_y(g_{\theta_g}(f_{\theta}(x_i)), y_i) - \lambda \mathscr{L}_d(c_\phi(f_{\theta}(x_i)), d_i))$$

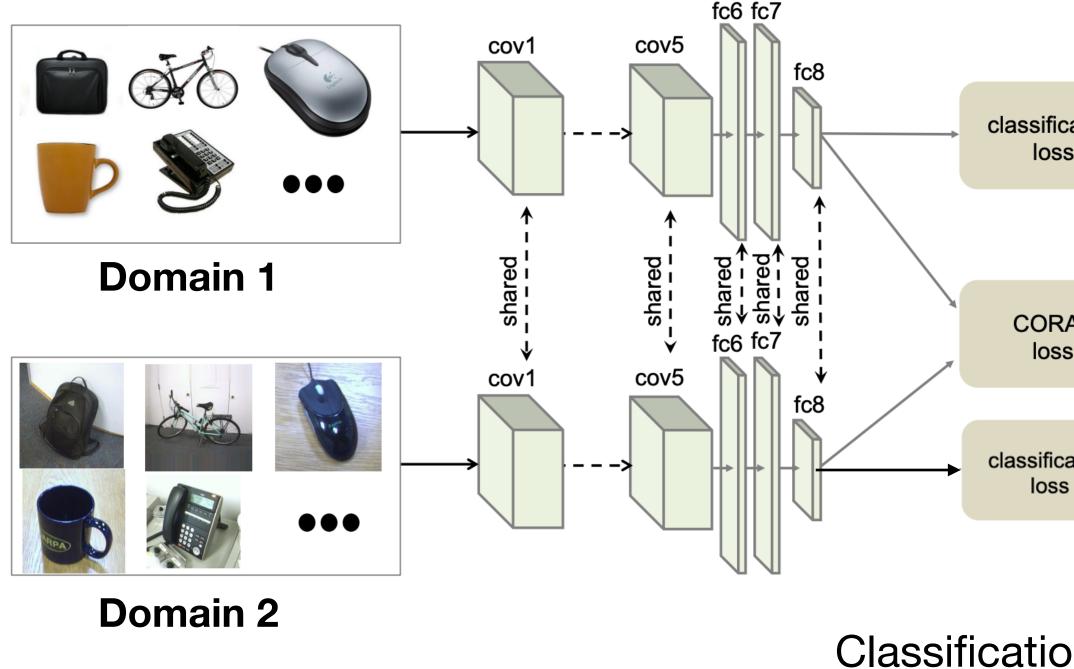
Are there any other ways to learn domaininvariant features without adversarial optim?



### Alternative Approach — CORAL

## **Key idea:** directly aligning representations between different domains with some similarity metrics

### CORAL: Correlation Alignment for Domain Adaptation (usually also used in DG)

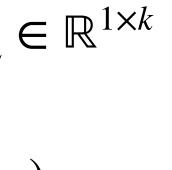


Sun et al. Correlation Alignment for Deep Domain Adaptation. arXiv '16

|               | Notations                     | $\mathbf{X}_1 \in \mathbb{R}^{n_1 \times k}$                           | $\mathbf{X}_2 \in \mathbb{R}^{n_2 \times k}$                                |
|---------------|-------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| ication<br>ss | k: num of features            | $\mu_1 = \frac{1}{n_1} 1^T \mathbf{X}_1 \in \mathbb{R}^{1 \times n_1}$ | $\mu_2 = \frac{1}{n_2} 1^T \mathbf{X}_2 \in$                                |
|               |                               | $C_1 = \frac{1}{2} \sum_{n_1}^{n_1} C_n$                               | $(\mathbf{X}_1 - \boldsymbol{\mu}_1)^T (\mathbf{X}_1 - \boldsymbol{\mu}_1)$ |
| RAL<br>ss     | Calculate covariance matrices | $n_1 - 1 \sum_{i=1}^{n_1} n_i$                                         |                                                                             |
| cation        |                               | $C_2 = \frac{1}{1 + 1} \sum_{n_2}^{n_2} (n_2 + 1)$                     | $(\mathbf{X}_2 - \boldsymbol{\mu}_2)^T (\mathbf{X}_2 - \boldsymbol{\mu}_2)$ |
| S             |                               | $\iota - 1$                                                            |                                                                             |
| on lo         | CORAL loss                    | $\mathscr{L}_{coral} = \frac{1}{4k^2}$                                 | $\ C_1 - C_2\ _F^2$                                                         |
|               |                               | Explicit rea                                                           | Ilarizer to learn                                                           |

 $\mathscr{L} = \sum_{j=1}^{n_1+n_2} \mathscr{L}_c(f_{\theta}(x_i), y_i) + \lambda \mathscr{L}_{coral}$ 

Explicit regularizer to learn domain-invariant representation





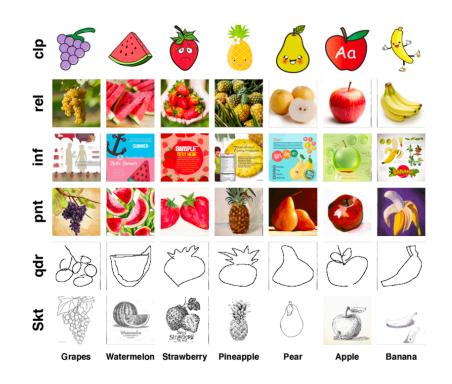


Results

#### OfficeHome









#### iWildCam

| RAL DANN |
|----------|
|          |

**66.5% 68.7% 65.9%** 

| <b>40.9% 41.5%</b> 38.3% |
|--------------------------|
|--------------------------|

30.8% **32.7%** n/a

### Pros and Cons of Regularization-based Methods

- + General to all kinds of data and networks
- + Some theoretical guarantee
- The regularizer being too harsh / too constraining on the representation

$$\min_{\theta} \mathbb{E}_{(x,y)}[\ell(f_{\theta}(x), y)] + \lambda$$

Domain 1: water



45% of train data



5% of train data

Domain 2: grass



5% of train data



45% of train data



Explicit regularizer encourages internal representation to contain no info about the background



### Pros and Cons of Regularization-based Methods

+ General to all kinds of data and networks

+ Some theoretical guarantee

- The regularizer being too harsh / too constraining on the representation

> Are there any other approaches to relax the dependency of the regularizer?

#### These methods can help the performance, but do not always works

**Empirical Risk** Minimization

30.8%

29.9%

**Regularization**based methods

32.7%

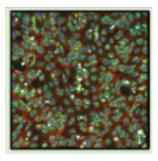
CORAL

28.4%

CORAL



iWildCam



RxRx1



## Plan for Today

### **Domain Generalization**

- Problem formulation
- Algorithms
  - Adding explicit regularizers
  - Data augmentation

### Goals for this lecture:

- Understand domain generalization: intuition, problem formulation
- Familiarize mainstream DG approaches: regularization-based, augmentation-based

on, problem formulation gularization-based, augmentation-based

### Recap: Spurious Correlation

#### **Recap:** spurious correlation between domains and labels

#### Goal: classify dog vs. cat

Domain 1: water



45% of train data



5% of train data





5% of train data



45% of train data

#### **Source Domains**



Trained model



Train





Is this a dog? Prediction: No Groundtruth: Yes Target Domain



### Data Augmentation

#### If we can collect more data





Grass



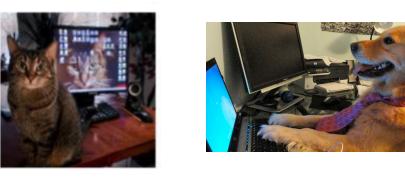






Water





#### Keyboard Source Domains

**Question**: Will the network still associate dogs with water background in source domains?

NO! There are many more backgrounds. We can't recognize dogs only with grass background.



Is this a dog? Prediction: Yes Groundtruth: Yes

#### **Target Domain**

#### Challenge



### Data Augmentation

#### Generating data with **simple operators**

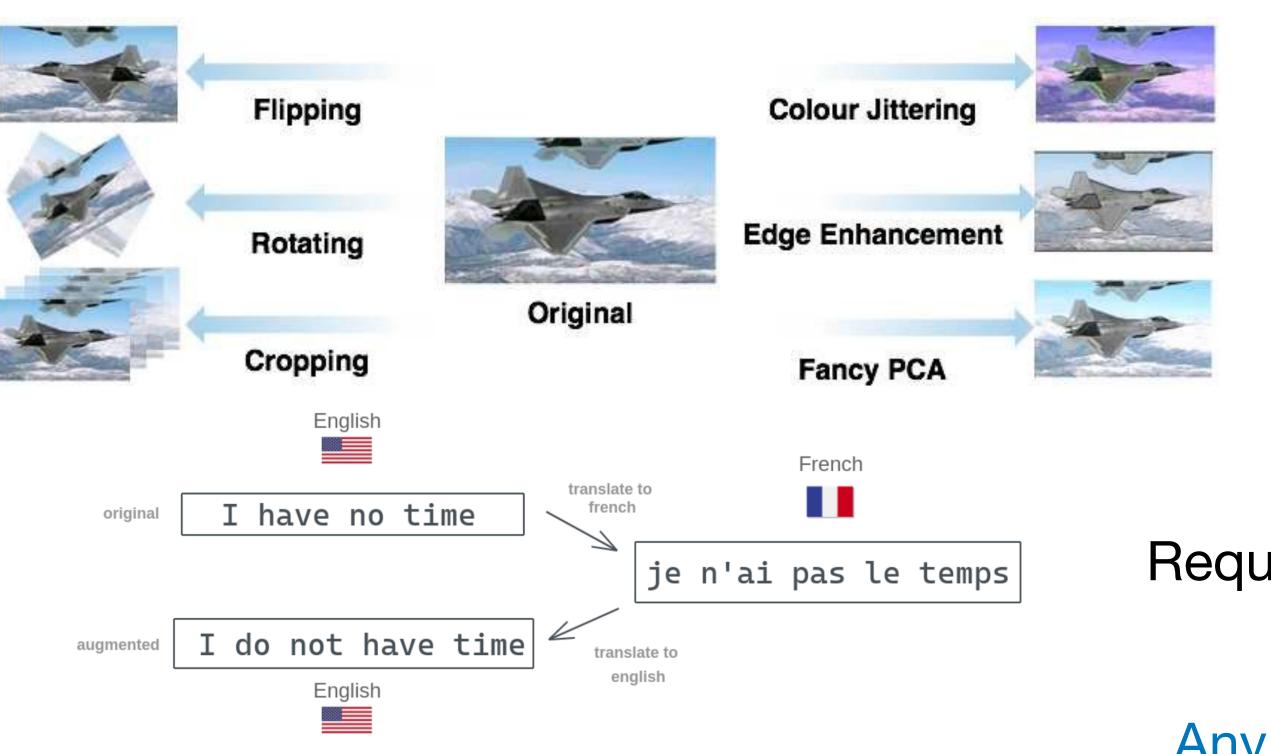


Figure: Back Translation

Requires knowledge of the problem domain

Any general approaches?

https://amitness.com/2020/02/back-translation-in-google-sheets/

### Data Augmentation — Mixup

#### **Interpolating** training examples

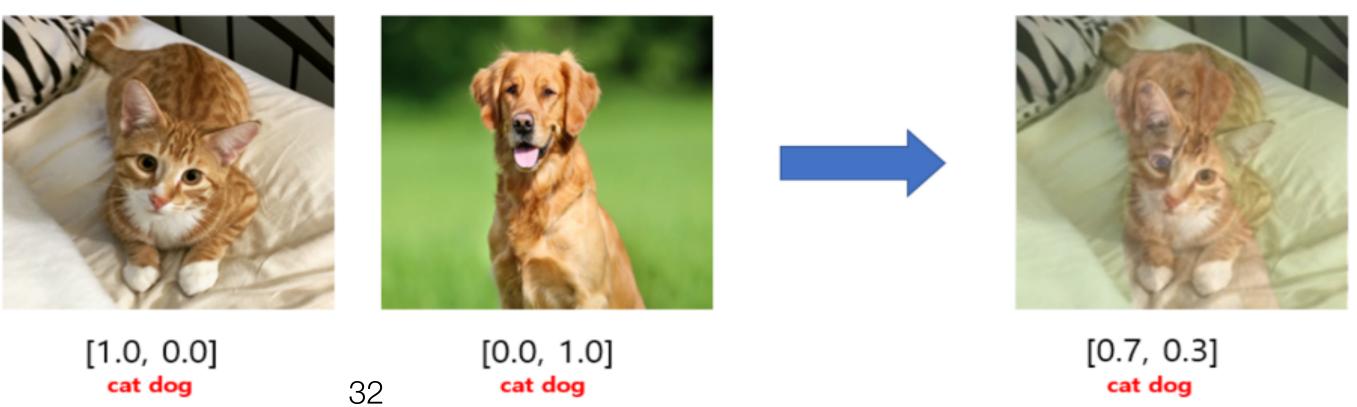
A learning model

Mixup

where

 $\tilde{x}_i = \lambda x_i + (1 - \lambda)$ 

Generating some virtual examples between two classes



Zhang et al. mixup: Beyond Empirical Risk Minimization. ICLR '18

- $\mathcal{D}_{tr} = \{x_i, y_i\}_{i=1}^N \rightarrow \text{Classifier},\$
- $\widetilde{\mathcal{D}}_{tr} = {\widetilde{x}_i, \widetilde{y}_i}_{i=1}^N \rightarrow \text{Classifier,}$

$$(x_j, \tilde{y}_i = \lambda y_i + (1 - \lambda)y_j)$$

 $\lambda \sim \text{Beta}(\alpha, \beta)$ 

### Data Augmentation — Mixup

#### Mixup can improve the performance on domain generalization

**Empirical Risk Minimization** mixup

70.3%

32.8%

Camelyon17

FMoW

#### But it is not always good!

RxRx1

29.9%







71.2%

#### 34.2%

### Original mixup only focuses **26.5%** on data augmentation instead of learning domain invariance.

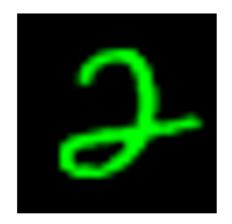
How to Improve it?

### Data Augmentation — Mixup

#### A simpler example with spurious correlation

 $y_1$ : digit < 5

#### Source Domains

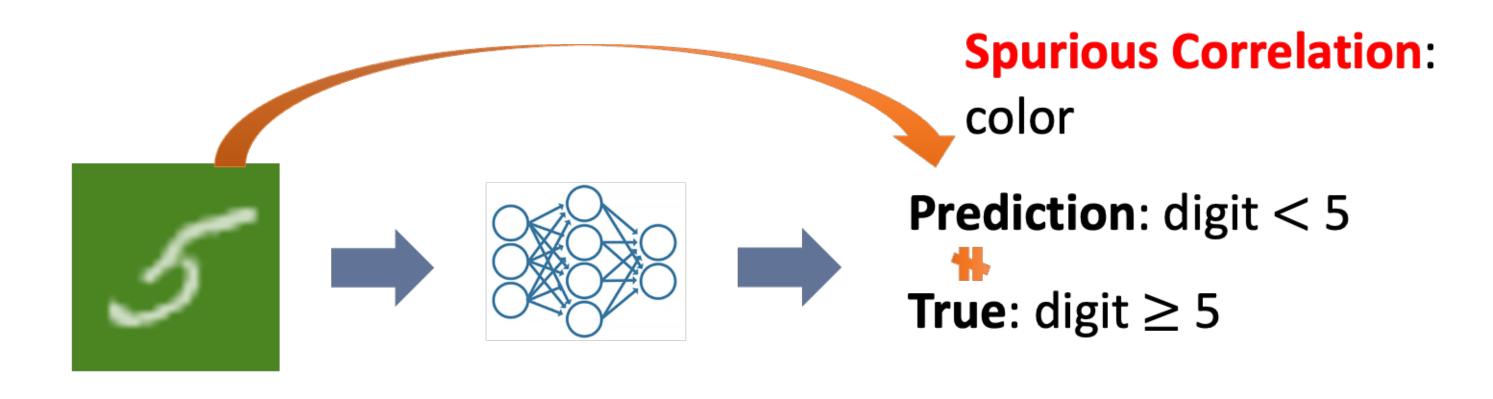


40% of train data

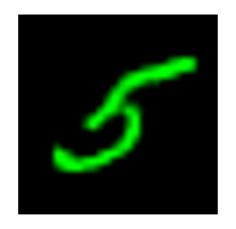


10% of train data

#### Target Domain



 $y_2$ : digit  $\ge 5$ 



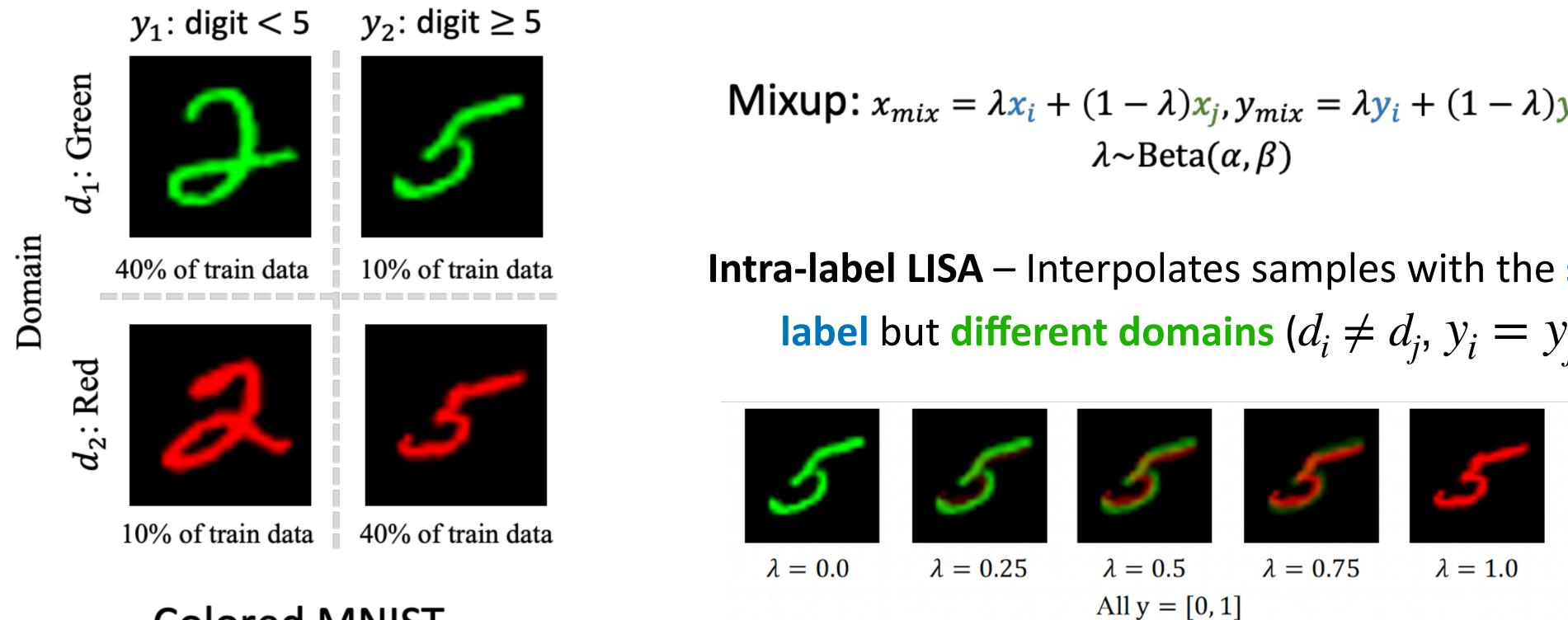
10% of train data



40% of train data

### Can we Improve Mixup? — LISA

**Key idea:** selective interpolate examples to emphasize invariant information



#### Colored MNIST

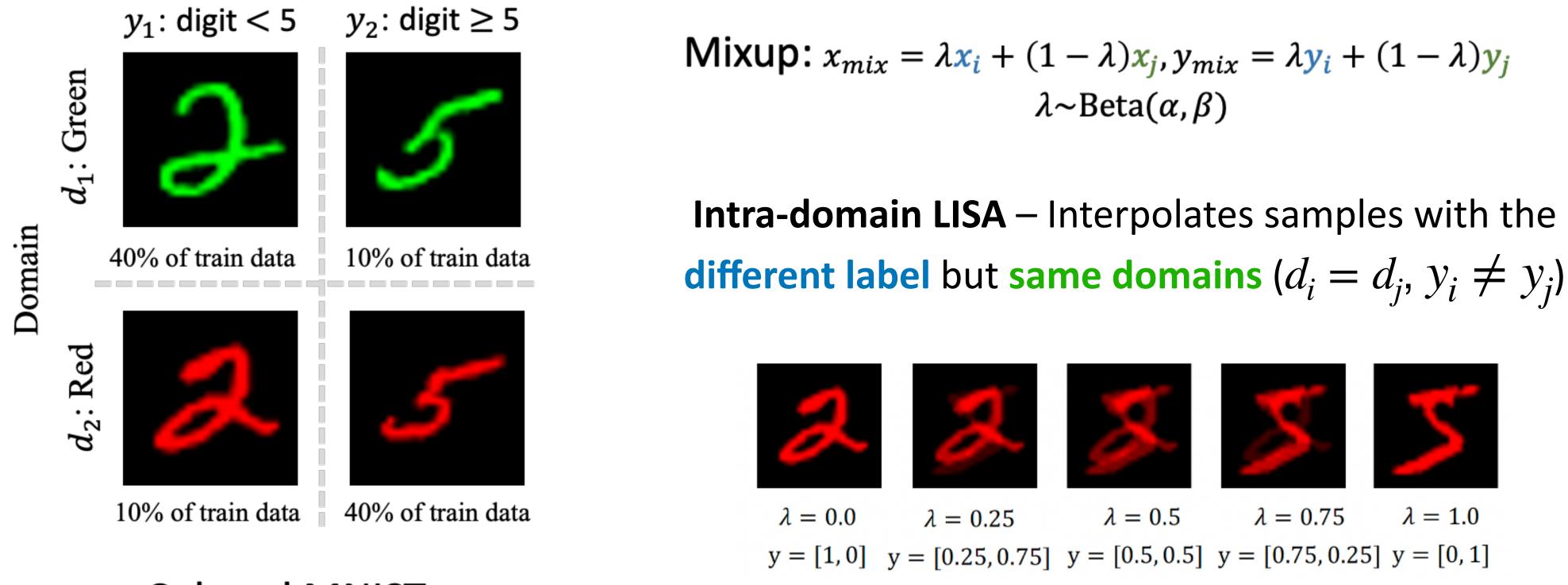
xup: 
$$x_{mix} = \lambda x_i + (1 - \lambda) x_j$$
,  $y_{mix} = \lambda y_i + (1 - \lambda) y_j$   
 $\lambda \sim \text{Beta}(\alpha, \beta)$ 

**Intra-label LISA** – Interpolates samples with the **same** label but different domains ( $d_i \neq d_j$ ,  $y_i = y_j$ )

Different background, same label

### Can we Improve Mixup? — LISA

**Key idea:** selective interpolate examples to emphasize invariant information



#### Colored MNIST

Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML '22

$$Jp: x_{mix} = \lambda x_i + (1 - \lambda) x_j, y_{mix} = \lambda y_i + (1 - \lambda) y_j$$
$$\lambda \sim Beta(\alpha, \beta)$$

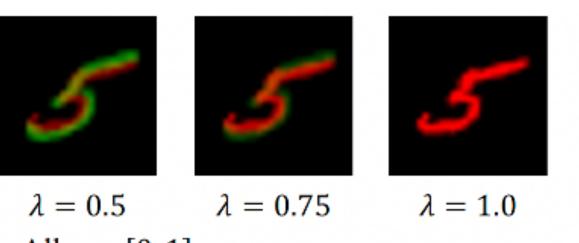
Domain information is **not** the reason for the label change

### Can we Improve Mixup? — LISA



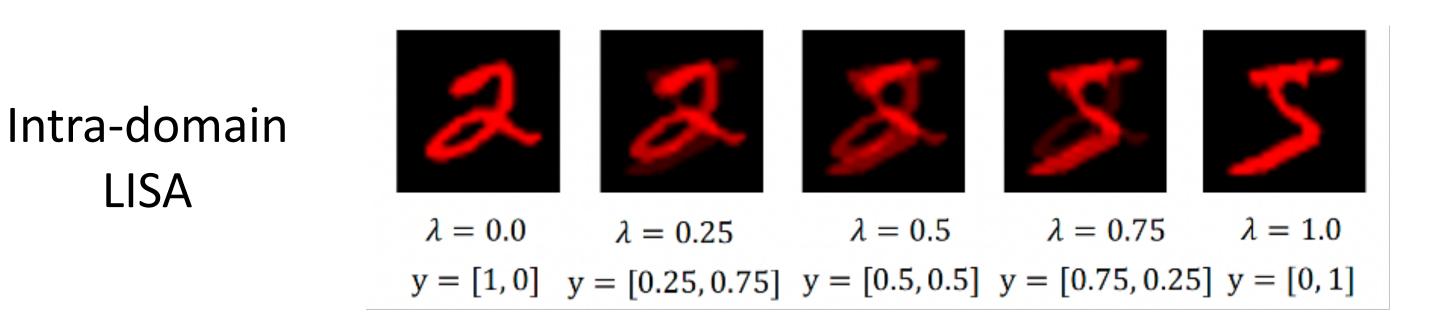
 $\lambda = 0.0$ 

 $\lambda = 0.25$ 



All y = [0, 1]

#### Intra-label LISA



Yao et al. Improving Out-of-Distribution Robustness via Selective Augmentation. ICML '22

+ more domains + spurious correlations are not very strong

+ domain information is highly spuriously correlated with the label

 $p_{sel}$ : Determine intra-label LISA or intra-domain LISA at each iteration



### Full Algorithm of LISA

- 1. Randomly initialize the model parameter  $\theta$
- 2. Sample strategy  $s \sim Bernoulli(p_{sol})$
- 3. Sample a batch of examples  $\mathscr{B}$

(i) If s=0, for each example  $(x_i, y_i)$  in  $\mathscr{B}$ , sample  $(x_i, y_i)$  that satisfies  $(y_i = y_i)$  and  $(d_i \neq d_i)$ (ii) If s=1, for each example  $(x_i, y_i)$  in  $\mathscr{B}$ , sample  $(x_i, y_i)$  that satisfies  $(y_i \neq y_i)$  and  $(d_i = d_j)$ 

4. Use interpolated examples to update the model

5. Repeat steps 3 & 4

- Intra-label LISA Intra-domain LISA

#### ERN

### 70.

32.3

29.

53.8

30.

28.



(1,0,?,0,?,..)

for

(?,0,0,0,?,..)

(?,0,0,0,?,..)

prof

(?,0,?,1,0,..)

#### **OGB-MolPCBA**

### Results

| M    | Regularization-based<br>(CORAL) | Augmentation-based<br>(LISA)                      |
|------|---------------------------------|---------------------------------------------------|
| .3%  | 74.7%                           | 77.1%                                             |
| .3%  | 34.6%                           | 35.5%                                             |
| .9%  | 28.4%                           | 31.9%                                             |
| .8%  | 53.8%                           | 54.7%                                             |
| .8%  | 32.7%                           | 27.6%                                             |
| 8.3% | 17.9%                           | 27.5%                                             |
| 39   |                                 | A can also work on text<br>a, how to apply mixup? |

### Manifold Mixup

#### **Original Mixup**

Apply mixup on the input

Manifold Mixup





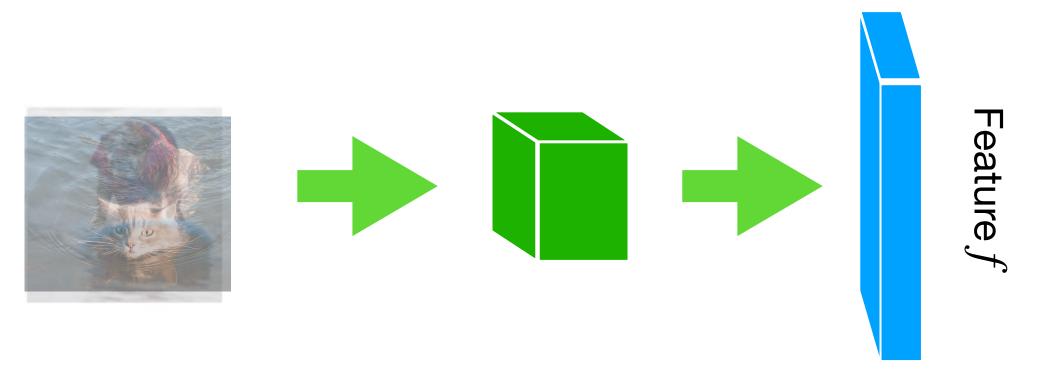




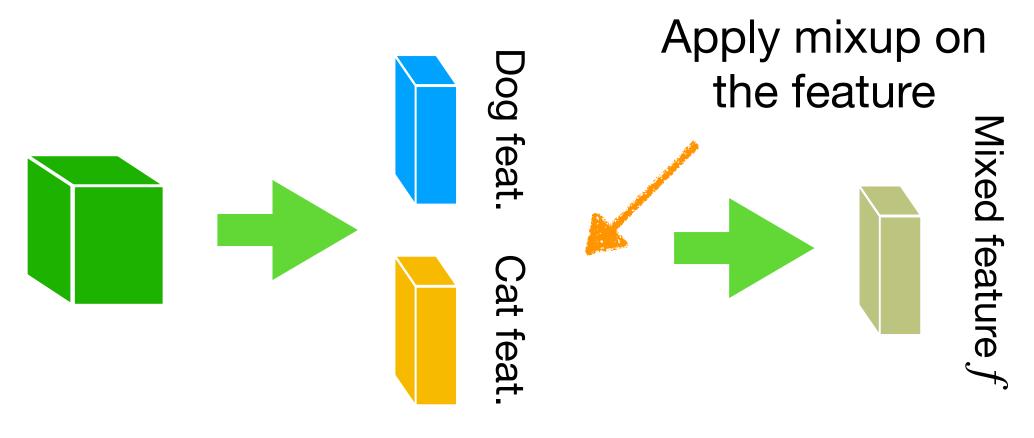
Input *x* 

Zhang et al. mixup: Beyond Empirical Risk Minimization. ICLR '18

Verma et al. Manifold Mixup: Better Representations by Interpolating Hidden States. ICML '19



feature extractor  $f_{\theta}(x)$ 



feature extractor  $f_{\theta}(x)$ 

### Invariance Analysis

Metrics:

#### Accuracy of domain prediction Divergence of predictions among domains

|               | $ $ IP <sub>adp</sub> $\downarrow$ |            |            | $ $ IP <sub>kl</sub> $\downarrow$ |        |            |            |           |
|---------------|------------------------------------|------------|------------|-----------------------------------|--------|------------|------------|-----------|
|               | CMNIST                             | Waterbirds | Camelyon17 | MetaShift                         | CMNIST | Waterbirds | Camelyon17 | MetaShift |
| ERM           | 82.85%                             | 94.99%     | 49.43%     | 67.98%                            | 6.286  | 1.888      | 1.536      | 1.205     |
| Vanilla mixup | 92.34%                             | 94.49%     | 52.79%     | 69.36%                            | 4.737  | 2.912      | 0.790      | 1.171     |
| IRM           | 69.42%                             | 95.12%     | 47.96%     | 67.59%                            | 7.755  | 1.122      | 0.875      | 1.148     |
| IB-IRM        | 74.72%                             | 94.78%     | 48.37%     | 67.39%                            | 1.004  | 3.563      | 0.756      | 1.115     |
| V-REx         | 63.58%                             | 93.32%     | 61.38%     | 68.38%                            | 3.190  | 3.791      | 1.281      | 1.094     |
| LISA (ours)   | 58.42%                             | 90.28%     | 45.15%     | 66.01%                            | 0.567  | 0.134      | 0.723      | 1.001     |

LISA leads to greater domain invariance than prior methods with explicit regularizers

### Regularization-based v.s. Augmentation-based Methods

#### **Regularization-based Method**

- + General to all kinds of data and networks
- + Some theoretical guarantee
- Rely on the design of regularizers

#### **Augmentation-based Method**

+ Easy to understand and simple to implement

+ No need to worry about how to design regularizers

- Largely limited to classification



## Plan for Today

### **Domain Generalization**

- Problem formulation
- Algorithms
  - Adding explicit regularizers
  - Data augmentation

### Goals for this lecture:

- Understand domain generalization: intuition, problem formulation
- Familiarize mainstream DG approaches: regularization-based, augmentation-based

on, problem formulation gularization-based, augmentation-based

### Reminders

- Project milestone on Wednesday, November 16
- Homework 4 (optional) due Monday, November 14

Next time: Lifelong learning