
CS 330

Domain Generaliza1on
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Logistics

Homework 4 (optional) due Monday, November 14

Project milestone on Wednesday, November 16
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Plan for Today
Domain Generalization 
- Problem formulation 
- Algorithms 

- Adding explicit regularizers 
- Data augmentation

Goals for this lecture: 
- Understand domain generalization: intuition, problem formulation 
- Familiarize mainstream DG approaches: regularization-based, augmentation-based
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Unsupervised domain adaptation: access to unlabeled target domain data 

Common assumptions: 
- Source and target domain only differ in domain of the function, i.e.  
- There exists a single hypothesis with low error on both source and target domains.

pS(y |x) = pT(y |x)

Perform well on target domain ,  
using training data from source domain(s) 

pT(x, y)
pS(x, y)

A form of transfer learning, with access to target domain data during training
(“transductive” learning)

Recap: Domain Adaptation
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Revisiting: A “domain” is a special case of a “task”

A task: 𝒯i ≜ {pi(x), pi(y |x), ℒi} A domain: di ≜ {pi(x), p(y |x), ℒ}
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Can we always access unlabeled data 
from the target domain?

Revisiting: A “domain” is a special case of a “task”

A task: 𝒯i ≜ {pi(x), pi(y |x), ℒi} A domain: di ≜ {pi(x), p(y |x), ℒ}
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- Obtaining target data may be restricted by privacy policy

- Real-time deployment and don’t have time to collect target domain data

Revisiting: A “domain” is a special case of a “task”

A task: 𝒯i ≜ {pi(x), pi(y |x), ℒi} A domain: di ≜ {pi(x), p(y |x), ℒ}
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Real-Time Deployment
Real-time deployment and don’t have time to collect data

Trained on three types of roads Deploy to a new road



Privacy Concerns

Can’t access training data
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Plan for Today
Domain Generalization 
- Problem formulation 
- Algorithms 

- Adding explicit regularizers 
- Data augmentation

Goals for this lecture: 
- Understand domain generalization: intuition, problem formulation 
- Familiarize mainstream DG approaches: regularization-based, augmentation-based
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Domain Generalization

Source domains

Generalize
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Train
Trained model

Unseen target domain

Deploy



Domain Generalization Problem
Given source domains  , solve unseen target domain  
without accessing the data from it.

p1(x, y), …, pn(x, y) pT(x, y)

Common assumptions

- All domains only differ in domain of the function, i.e., . 

- Only  can change  
- There exists a single hypothesis with low error in all domains.

p1(y |x) = … = pn(y |x) = pT(y |x)
p(x)
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Revisiting: A “domain” is a special case of a “task”

A task: 𝒯i ≜ {pi(x), pi(y |x), ℒi} A domain: di ≜ {pi(x), p(y |x), ℒ}



Meta-Learning v.s. Domain Generalization
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Revisiting: A “domain” is a special case of a “task”

A task: 𝒯i ≜ {pi(x), pi(y |x), ℒi} A domain: di ≜ {pi(x), p(y |x), ℒ}

Meta-Learning Problem 
Transfer learning with many source tasks

Given data from  , solve new task  more quickly / proficiently / stably𝒯1, …, 𝒯n 𝒯t

Domain Generalization 
A special case of meta-learning

Given data from domains  , perform well on new domain d1, …, dn dt

- Only  changes across taskspi(x) - direct generalization/no adaptation



Domain Adaptation v.s. Domain Generalization 

Target data access during training (unlabeled data)

Domain Adaptation

Given labeled data from source domain  and unlabeled data 

from target domain , preform well on this target domain

pS(x, y)
pT(x, y)

Given labeled data from a set of source domains , 
perform well on target domain 

p1(x, y), …, pn(x, y)
pT(x, y)

Domain Generalization

Test data access during training 

Need more than one source domain

Only one source domain The model is specialized for the target domain

The model can be applied to all domains

“transductive” setting

“inductive” setting
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Domain Generalization: Applications
Wildlife recognition Tissue classification

Molecule property prediction
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Code completion



Plan for Today
Domain Generalization 
- Problem formulation 
- Algorithms 

- Adding explicit regularizers 
- Data augmentation

Goals for this lecture: 
- Understand domain generalization: intuition, problem formulation 
- Familiarize mainstream DG approaches: regularization-based, augmentation-based
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How to Learn Generalizable Representations?

Why do machine learning models fail to generalize?

Groundtruth: Yes

Prediction: No

16

Is this a dog?

Train
Trained model

Source Domains

Domain 2: 
grass

Domain 1: 
water

Target Domain

Deploy

Goal: classify dog vs. cat

45% of train data

5% of train data 45% of train data

5% of train data

Spurious informa5on
Grass



How to Learn Generalizable Representations?
To overcome spurious correla5on —> train a neural network to learn domain invariance

Is this a dog?
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Train
Trained model

Source Domains

Domain 2: 
grass

Domain 1: 
water

Target Domain

Deploy

Goal: classify dog vs. cat

45% of train data

5% of train data 45% of train data

5% of train data

Domain-invariant informa5on
Animal

Groundtruth: Yes

Prediction: Yes

Domain invariance: we want to learn features that don’t change across domains



Regularization-based Method

Key idea: Use a regularizer to align representa5ons across domains 

                  —> get domain-invariant representa5on

Align representations

Animal Water

Representations

Animal Grass

Animal
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Source Domains

Domain 2: 
grass

Domain 1: 
water

45% of train data

5% of train data 45% of train data

5% of train data



Regularization-based Method

min
θ

𝔼(x,y)[ℓ( fθ(x), y)] + λℒreg

Average over training examples

Label classification loss

Explicit regularizer to learn 
domain-invariant representation
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Align representations

Animal Water

Representations

Animal Grass

Animal

Source Domains

Domain 2: 
grass

Domain 1: 
water

45% of train data

5% of train data 45% of train data

5% of train data



Recap: Domain Adversarial Training in DA

Key idea: predic5ons must be made based on features that cannot be discriminated 
between the domains 

Input x

Feature f

feature extractor fθ(x)

Class label y

Loss ℒy

label predictor gθg
(y | f(x))

make accuracy label prediction 

Only source domain

Domain label d

Loss ℒd

domain classifier cϕ(d = source | f(x))

cannot predict domain from features, i.e. domain invariant
Source + target domain
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Question: Does anyone have ideas on how to use 
domain adversarial training in the domain 
generalization setting?

Tzeng et al. Deep Domain Confusion. arXiv ‘14 
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16



Domain Adversarial Training in DG

Key idea: predic5ons must be made based on features that cannot be discriminated 
between the domains 

Input x

Feature f

feature extractor fθ(x)

Domain label d

Loss ℒd

domain classifier cϕ(d | f(x))

cannot predict domain from features, i.e. domain invariant

Class label y

Loss ℒy

label predictor gθg
(y | f(x))

make accuracy label prediction 

All source domains

All source domains

21
Tzeng et al. Deep Domain Confusion. arXiv ‘14 
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16



Domain Adversarial Training in DG

Input x

Feature f

feature extractor fθ(x)

Class label y

Domain label d

Loss ℒy

Loss ℒd

domain classifier cϕ(d | f(x))

label predictor gθg
(y | f(x))

Label prediction

( ̂θg, ̂θ) ← arg min
θg,θ

N

∑
j=1

ℒy(gθg
( fθ(xj)), yj)

Smaller is better (more 
accurate prediction)

̂ϕ ← arg max
ϕ

N

∑
j=1

ℒd(cϕ( fθ(xj)), dj)

Larger is better (harder 
to distinguish domains)Domain prediction

22
Tzeng et al. Deep Domain Confusion. arXiv ‘14 
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16



Domain Adversarial Training in DG

ℒ =
N

∑
j=1

ℒy(gθg
( fθ(xj)), yj) − λℒd(cϕ( fθ(xj)), dj)

DANN loss in DG

Full algorithm

Are there any other ways to learn domain-
invariant features without adversarial optim?

min
θ

𝔼(x,y)[ℓ( fθ(x), y)] + λℒreg

Label classification loss

Explicit regularizer to learn 
domain-invariant representation
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1. Randomly ini5alize encoder , label classifier , domain classifier  

2. Update domain classifier:  

3. Update label classifier & encoder:  

4. Repeat steps 2 & 3

fθ gθg
cϕ

min
ϕ

ℒ =
n

∑
i=1

ℒd(cϕ( fθ(xi)), di)

min
θ,θg

ℒ =
n

∑
i=1

ℒy(gθg
( fθ(xi)), yi) − λℒd(cϕ( fθ(xi)), di)

Tzeng et al. Deep Domain Confusion. arXiv ‘14 
Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR ‘16



Key idea: directly aligning representa5ons between different domains with some 
similarity metrics

Alternative Approach — CORAL

CORAL: Correla5on Alignment for Domain Adapta5on (usually also used in DG)

ℒcoral =
1

4k2
∥C1 − C2∥2

FDomain 2

Domain 1

ℒ =
n1+n2

∑
j=1

ℒc( fθ(xi), yi) + λℒcoral

C1 =
1

n1 − 1

n1

∑
i=1

(X1 − μ1)T(X1 − μ1)

C2 =
1

n2 − 1

n2

∑
i=1

(X2 − μ2)T(X2 − μ2)

Calculate 
covariance matrices

Notations X1 ∈ ℝn1×k X2 ∈ ℝn2×k

: num of featuresk μ1 =
1
n1

1TX1 ∈ ℝ1×k μ2 =
1
n2

1TX2 ∈ ℝ1×k

CORAL loss
Classification loss

Explicit regularizer to learn 
domain-invariant representation

24Sun et al. Correla5on Alignment for Deep Domain Adapta5on. arXiv ‘16
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Results

iWildCam

ERM CORAL

OfficeHome 

30.8% 32.7%

66.5% 68.7% 

DomainNet 40.9% 41.5%

DANN

65.9%

38.3%

n/a



Pros and Cons of Regularization-based Methods

+ General to all kinds of data and networks

- The regularizer being too harsh / too 
constraining on the representation

+ Some theoretical guarantee

26

Domain 2: 
grass

Domain 1: 
water

45% of train data

5% of train data 45% of train data

5% of train data

min
θ

𝔼(x,y)[ℓ( fθ(x), y)] + λℒreg
Explicit regularizer encourages 

internal representation to contain 
no info about the background



Pros and Cons of Regularization-based Methods

+ General to all kinds of data and networks

- The regularizer being too harsh / too 
constraining on the representation

+ Some theoretical guarantee

These methods can help the performance, 
but do not always works

iWildCam

Empirical Risk 
Minimiza1on

Regulariza1on-
based methods

30.8% 32.7%

RxRx1

29.9% 28.4%

CORAL

CORAL

Are there any other approaches to relax the 
dependency of the regularizer?
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Plan for Today
Domain Generalization 
- Problem formulation 
- Algorithms 

- Adding explicit regularizers 
- Data augmentation

Goals for this lecture: 
- Understand domain generalization: intuition, problem formulation 
- Familiarize mainstream DG approaches: regularization-based, augmentation-based
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Recap: Spurious Correlation

Recap: spurious correla5on between domains and labels

29

Is this a dog?

Groundtruth: Yes

Prediction: No

Train
Trained model

Source Domains

Domain 2: 
grass

Domain 1: 
water

Target Domain

Deploy

Goal: classify dog vs. cat

45% of train data

5% of train data 45% of train data

5% of train data

Spurious informa5on
Grass



Data Augmentation
Question: Will the network still associate dogs with 
water background in source domains?

Groundtruth: Yes

Prediction: Yes

NO! There are many more backgrounds. We can’t 
recognize dogs only with grass background.

If we can collect more data

 —> Let’s generate data!30

Challenge
We can not collect more data

Target Domain

Is this a dog?

Source Domains

Grass

Water

Keyboard

Car



Data Augmentation

Generating data with simple operators

Requires knowledge of the 
problem domain

Any general approaches?

31

https://amitness.com/2020/02/back-translation-in-google-sheets/



Data Augmentation — Mixup

A learning model

Mixup

where 

Interpolating training examples

Generating some virtual 
examples between two 

classes

32Zhang et al. mixup: Beyond Empirical Risk Minimiza5on. ICLR ‘18



Data Augmentation — Mixup

Mixup can improve the performance on domain generalization

Camelyon17

Empirical Risk Minimiza1on

FMoW

mixup

70.3% 71.2%

32.8% 34.2%

But it is not always good!

RxRx1

29.9% 26.5%

How to Improve it?

Original mixup only focuses 
on data augmentation instead 
of learning domain invariance.

33



Data Augmentation — Mixup

A simpler example with spurious correlation 

Target Domain

Source Domains

34



Can we Improve Mixup? — LISA

Intra-label LISA – Interpolates samples with the same 
label but different domains ( , )di ≠ dj yi = yj

Different background, same label

Key idea: selec5ve interpolate examples to emphasize invariant informa5on 

35Yao et al. Improving Out-of-Distribu5on Robustness via Selec5ve Augmenta5on. ICML ‘22



Can we Improve Mixup? — LISA

Intra-domain LISA – Interpolates samples with the 
different label but same domains ( , )di = dj yi ≠ yj

Domain informa1on is not the reason for the label change

Key idea: selec5ve interpolate examples to emphasize invariant informa5on 

36Yao et al. Improving Out-of-Distribu5on Robustness via Selec5ve Augmenta5on. ICML ‘22



Can we Improve Mixup? — LISA

Intra-label
LISA

Intra-domain
LISA

+ more domains

+ spurious correla1ons 
are not very strong

+ domain informa1on is highly 
spuriously correlated with the 
label

: Determine intra-label LISA or intra-domain LISA at each itera1onpsel

37Yao et al. Improving Out-of-Distribu5on Robustness via Selec5ve Augmenta5on. ICML ‘22



Full Algorithm of LISA

38

1. Randomly ini5alize the model parameter   θ
2.   Sample strategy s ∼ Bernoulli(psel)
3.   Sample a batch of examples ℬ

Intra-label LISA
(i) If s=0, for each example  in , sample 

 that sa5sfies  and 
(xi, yi) ℬ

(xj, yj) (yi = yj) (di ≠ dj)

Intra-domain LISA
(ii) If s=1, for each example  in , sample 

 that sa5sfies  and 
(xi, yi) ℬ

(xj, yj) (yi ≠ yj) (di = dj)
4. Use interpolated examples to update the model

5. Repeat steps 3 & 4

Yao et al. Improving Out-of-Distribu5on Robustness via Selec5ve Augmenta5on. ICML ‘22



Results

ERM Regulariza1on-based 
(CORAL)

Augmenta1on-based 
(LISA)
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iWildCAM 30.8% 32.7% 27.6%

OGB-MolPCBA 28.3% 17.9% 27.5%

LISA can also work on text 
data, how to apply mixup?
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Manifold Mixup

Zhang et al. mixup: Beyond Empirical Risk Minimiza5on. ICLR ’18 
Verma et al. Manifold Mixup: Beier Representa5ons by Interpola5ng Hidden States. ICML ’19 

Input x

Feature f

feature extractor fθ(x)

Apply mixup on 
the input

Original Mixup

Input x

Dog feat.

feature extractor fθ(x)

Apply mixup on 
the feature

C
at feat.

Manifold Mixup

M
ixed feature f
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Invariance Analysis

Metrics: Accuracy of domain predic1on Divergence of predic1ons among domains

LISA leads to greater domain invariance than prior methods with explicit regularizers



Regularization-based v.s. Augmentation-based Methods

RegularizaDon-based Method AugmentaDon-based Method

+ Easy to understand and simple to 
implement

+ No need to worry about how to design 
regularizers

- Largely limited to classification

+ General to all kinds of data and networks

- Rely on the design of regularizers

+ Some theoretical guarantee
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Plan for Today
Domain Generalization 
- Problem formulation 
- Algorithms 

- Adding explicit regularizers 
- Data augmentation

Goals for this lecture: 
- Understand domain generalization: intuition, problem formulation 
- Familiarize mainstream DG approaches: regularization-based, augmentation-based
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Reminders

Next time: Lifelong learning

Homework 4 (optional) due Monday, November 14

Project milestone on Wednesday, November 16
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