Lifelong Learning CS 330

Course Reminders

- Optional homework 4 due **today**. Project milestone due Wednesday.
 - Guest lecture on Wednesday! Hanie Sedghi
- Please try to show up in person & on-time.

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

Plan for Today

The lifelong learning **problem statement**

Multi-Task Learning Learn to solve a set of tasks.

learn tasks

perform tasks

A brief review of problem statements.

Meta-Learning

Given i.i.d. task distribution, learn a new task efficiently

learn to learn tasks

quickly learn new task

	in contrast
Multi-Task Learning learn tasks perform tasks	
	Some exam
Meta-Learning	- a stud
learn to learn tasks	- a depl
quickly learn	strean
	- a robo
	differe
00	- a virtu
	differe
	- a doct

Our agents may not be given a large batch of data/tasks right off the bat!

ples:

- learning concepts in school
- loyed **image classification system** learning from a n of images from users
- ot acquiring an increasingly large set of skills in ent environments
- Lal assistant learning to help different users with ent tasks at different points in time
- tor's assistant aiding in medical decision-making

Some Terminology

Sequential learning settings

online learning, lifelong learning, continual learning, incremental learning, streaming data

distinct from sequence data and sequential decision-making

What is the lifelong learning *problem statement*?

1. Pick an example setting. **Exercise**:

2. Discuss problem statement in small groups:

(c) how do you evaluate such a system?

- A. a student learning concepts in school
- B. a deployed image classification system learning from a stream of images from users
- C. a **robot** acquiring an increasingly large set of skills in different environments
- D. a virtual assistant learning to help different users with different tasks at different points in time
- a doctor's assistant aiding in medical decision-making E.

Example settings:

- (a) how would you set-up an experiment to develop & test your algorithm?
- (b) what are desirable/required properties of the algorithm?

What is the lifelong learning *problem statement*?

Problem variations:

- task/data order: i.i.d. vs. predictable vs. curriculum vs. adversarial - discrete task boundaries vs. continuous shifts (vs. both) - known task boundaries/shifts vs. unknown

Some considerations:

- model performance
- data efficiency
- computational resources
- memory
- others: privacy, interpretability, fairness, test time compute & memory

Substantial variety in problem statement!

What is the lifelong learning *problem statement*?

General [supervised] online learning problem:

for t = 1, ..., nobserve x_t predict \hat{y}_t observe label y_t

i.i.d. setting: $x_t \sim p(x), y_t \sim p(y \mid x)$ p not a function of t

otherwise: $x_t \sim p_t(x), y_t \sim p_t(y \mid x)$

- if observable task boundaries: observe x_t, z_t

streaming setting: cannot store (x_t, y_t)

- lack of memory
- lack of computational resources
- privacy considerations
- want to study neural memory mechanisms

true in some cases, but not in many cases! recall: replay buffers 9

What do you want from your lifelong learning algorithm?

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

$$\operatorname{Regret}_T := \sum_{1}^{T} \mathcal{L}_t(\theta_t) - \min_{\theta} \sum_{1}^{T} \mathcal{L}_t(\theta)$$

(cannot be evaluated in practice, useful for analysis)

Regret that grows linearly in t is trivial.

minimal regret (that grows slowly with *t*)

Why?

What do you want from your lifelong learning algorithm?

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

minimal regret (that grows slowly with *t*)

$$\mathscr{L}_t(\theta_t) - \min_{\theta} \sum_{1}^T \mathscr{L}_t(\theta)$$

What do you want from your lifelong learning algorithm?

positive & negative transfer

- positive forward transfer: previous tasks cause you to do better on future tasks
 - compared to learning future tasks from scratch
- **positive backward transfer**: current tasks cause you to do better on previous tasks compared to learning past tasks from scratch
 - positive -> negative : better -> worse

Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**

Approaches

Store all the data you've seen so far, and train on it. -> follow the leader algorithm

+ will achieve very strong performance

- can be **memory intensive**

Take a gradient step on the datapoint you observe. \longrightarrow stochastic gradient descent

- + computationally cheap
- + requires 0 memory
- subject to negative backward transfer sometimes referred to as "forgetting" catastrophic forgetting
- slow learning

- computation intensive —> Continuous fine-tuning can help. [depends on the application]

Can we do better?

7 robots collected 580k grasps

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

86%

49%

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

86%

49%

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

Object Grasping

32%

Harsh Lighting

49%

Transparent Bottles

Fine-Tune

50%

Checkerboard Backing

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

75%

43%

Extend Gripper 1cm

Offset Gripper 10cm

What about backward transfer?

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

Can we do better?

Plan for Today

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

The lifelong learning problem statement

(from scratch)

Case Study: Can we modify vanilla SGD to avoid negative backward transfer?

(1) store small amount of data per task in memory Idea: (2) when making updates for new tasks, ensure that they don't unlearn previous tasks

How do we accomplish (2)?

learning predictor $y_t = f_{\theta}(x_t)$

For t = 0, ..., Tminimize $\mathscr{L}(f_{\theta}(\cdot, z_t), (x_t, y_t))$ subject to $\mathscr{L}(f_{\theta}, \mathscr{M}_{k}) \leq \mathscr{L}(f_{\theta}^{t-1}, \mathscr{M}_{k})$ for all k < t

linearity:

Assume local $\langle g_t, g_k \rangle := \left\langle \frac{\partial \mathscr{L}(f_{\theta}, \theta)}{\partial \theta} \right\rangle$ $\partial \theta$

Can formulate & solve as a QP.

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS '17

$$(z_t, z_t)$$
 memory: \mathcal{M}_k for task z_k

(i.e. s.t. loss on previous tasks doesn't get worse)

$$\frac{(x_t, y_t)}{2}, \frac{\partial \mathscr{L}(f_{\theta}, \mathscr{M}_k)}{\partial \theta} \ge 0 \quad \text{for all } z_k < z_t$$

Experiments

Problems:

- MNIST permutations
- MNIST rotations
- CIFAR-100 (5 new classes/task)

BWT: backward transfer, FWT: forward transfer

> Total memory size: 5012 examples

If we take a step back... do these experimental domains make sense?

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS '17

Can we meta-learn how to avoid negative backward transfer?

Javed & White. *Meta-Learning Representations for Continual Learning*. NeurIPS '19 Beaulieu et al. *Learning to Continually Learn*. '20

Plan for Today

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

The lifelong learning problem statement

Formulation of online learning when faced with sequence of tasks

Online Learning (Hannan '57, Zinkevich '03) Perform sequence of tasks while minimizing static regret.

More realistically:

Formulation of online learning when faced with sequence of tasks

Online Learning (Hannan '57, Zinkevich '03) Perform sequence of tasks while minimizing static regret.

Online Meta-Learning

Efficiently learn a sequence of tasks from a non-stationary distribution.

> time evaluate performance after seeing a small amount of data

Primarily a difference in *evaluation*, rather than the *data stream*.

(Finn*, Rajeswaran*, Kakade, Levine ICML'18)

learn learn learn learn learn learn learn 方仍不会

The Online Meta-Learning Setting

for task t = 1, ..., nobserve $\mathscr{D}_t^{\mathrm{tr}}$ use update procedure $\Phi(\theta_t, \mathcal{D}_t^{\text{tr}})$ to produce parameters ϕ_t observe x_t predict $\hat{y}_t = f_{\phi_t}(x_t)$ observe label y_t

Goal: Learning algorithm with sub-linear ${
m R}\epsilon$

(Finn*, Rajeswaran*, Kakade, Levine ICML '18)

Standard online learning setting

$$\operatorname{Loss of algorithm} \begin{array}{l} \operatorname{Loss of algorithm} \\ \operatorname{egret}_T := \sum_{t=1}^T \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^T \ell_t(\Phi_t(\theta)) \\ \\ \end{array}$$

Can we apply meta-learning in lifelong learning settings?

Recall the **follow the leader** (FTL) algorithm: Store all the data you've seen so far, and train on it. Deploy model on current task.

Follow the *meta*-leader (FTML) algorithm:

Store all the data you've seen so far, and meta-train on it. Run update procedure on the current task.

What meta-learning algorithms are well-suited for FTML? What if $p_t(\mathcal{T})$ is non-stationary?

Online meta-learning experiments

Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- **3D** object pose prediction —
- **CIFAR-100** classification

Example pose prediction tasks

Online meta-learning experiments

Comparisons: - **TOE** (train on everything): train on all data so far - FTL (follow the leader): train on all data so far, fine-tune on current task - From Scratch: train from scratch on each task

Follow The Meta-Leader learns each new task faster & with greater proficiency, approaches **few-shot learning** regime

Takeaways

- Many flavors of lifelong learning, all under the same name.
 - Defining the problem statement is often the hardest part
- Meta-learning can be viewed as a slice of the lifelong learning problem.

A very open area of research.

Course Reminders

- Optional homework 4 due **today**. Project milestone due Wednesday.
 - Guest lecture on Wednesday! Hanie Sedghi
- Please try to show up in person & on-time.