
CS 330

Advanced Meta-Learning 2:

Large-Scale Meta-Optimization

Reminder

HW3 out this Monday, due next Wednesday.

Modeling image formation

Do meta-learning methods scale?

SIFT features

Fine-tuning from ImageNet

Meta-learning

More data-driven approaches are supposed to be more scalable

Do meta-learning methods work at scale?

Data-driven priors

Hand-designed priors

Plan for Today

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

Goals for by the end of lecture:

- Know scenarios where existing meta-learning approaches fail due to scale

- Understand techniques for large-scale meta-optimization

Black-box

Optimization-based
 Nonparametric

General recipe: Build an inner
computation graph, then backpropagate.

+ Automatically works with any
differentiable computation graph

- Memory cost scales with
computation graph size!

Direct Backpropagation

From: “Meta-Learning with Differentiable Convex Optimization”, Lee et al.

WRN-28-10

Parameters: <4e6

ResNet-12

Parameters: <1e7

How Big are Computation Graphs?

4-layer CNN

Parameters: <1e5

From: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Toy 2-layer MLP from official PyTorch tutorial

Parameters: <7e6

Gradient steps: 5 epochs = ~4e3

Total floats: ~2e10 (>100GB!)

How Big are Computation Graphs?

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Question: when might be too big to apply direct backpropagation?fLEARN

Computation graph of is large when:

• It uses a big network and/or many gradient steps

• It includes second-order optimization (meta-meta learning?)

Meta-parameter can be any component of :

• Initial parameters

• Learning rate

• Optimizer

• Loss function

• Dataset

• Network architecture

fLEARN

θ fLEARN

Settings With Bigger Computation Graphs

HW2 min
θ ∑

taski

(θ − α∇θL (θ, Dtr
i), Dts

i)
min
θ,α ∑

taski

(θ − α∇θL (θ, Dtr
i), Dts

i)
min
θ,ψ ∑

taski

(θ − α∇θLψ (θ, Dtr
i), Dts

i)
min

ω ∑
θ∼p(θ0)

(θ − α∇θL (θ, Dω), Dts
i)

Plan for Today

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

Goal: Optimize hyperparameters for validation set performance

Application: Hyperparameter Optimization

From: “Optimizing Millions of Hyperparameters by Implicit Differentiation”, Lorraine et al. (2019)

LSTM Hyperparameters

From: “Population Based Training of Neural Networks”, Jaderberg et al. (2017)

“Hyper”parameters of a data augmentation
network

Benefits over random search in many domains

Goal: optimize a synthetic training set for validation set performance

Application: Dataset Distillation

Method: Match training data gradients at each timestep

From: “Dataset Condensation with Gradient Matching”, Zhao et al. (2020)

Goal: Optimize an optimizer for validation set performance

Application: Optimizer Learning

From: “Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves”, Metz et al. (2020)

Can even train itself

Works at ResNet scale
Simple architecture

More complex architecture
with per-tensor LSTM

Goal: Optimize an architecture for validation set performance

Application: Neural Architecture Search

Zoph and Le, “Neural Architecture Search with Reinforcement Learning” (2017)

An RNN parameterizes a neural network

A generated cell for an RNN

Plan for Today

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

Unrolled Computation Graphs

Unrolled Computation Graphs

Initial Parameters Learned loss / Regularizer, Optimizer

ArchitectureSynthetic dataset / augmentation

Plan for Today

Our poor GPU

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

Truncated Backpropagation

Split the full sequence into shorter slices, and
backpropagate after processing each slice.

Question: what could happen if we use short T?

+ Simple: autograd handles everything

- Biased estimator

- Cannot take long-range dependencies
into account

- Sequence length introduces a tradeoff
between correctness and memory cost

T=3

Plan for Today

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

Backpropagation is costly for large computation graphs…

 Optimization does not necessarily require gradients!

Evolution Strategies: Estimates gradients using stochastic finite differences.

Gradient-free Optimization

From: Khan Academy: Darwin, evolution, & natural selection

https://www.khanacademy.org/science/biology/her/evolution-and-natural-selection/a/darwin-evolution-natural-selection

Evolution Strategies
Initialize parameters . Repeat:

1. Sample particles:

2. Evaluate and get best:

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

Example: optimizing learning rate

Initialize lr and noise

1. Sample lr:

2. Run SGD, get runs with best val accuracy:

3.

(α, σ) ← (α0, σ0)

α1, α2, …, αN ∼ 𝒩(α, σ2)

{e1, …, en} ⊂ {α1, …, αN}
α, σ2 ← Avg(e1, …, en), Var(e1, …, en)

From: Wikipedia CMA-ES page

Question: what could happen if we try
to optimize initial parameters with ES?

Unlikely to observe good initial parameters,
because parameter space is high-dimensional.

https://en.wikipedia.org/wiki/CMA-ES

Evolution Strategies

+ Constant memory cost

+ Parallelizable across particles

+ Inner steps can be non-differentiable

- Struggles with high-dimensional covariates and/or complex loss surfaces

From: Wikipedia CMA-ES page

Initialize parameters . Repeat:

1. Sample particles:

2. Evaluate and get best:

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

https://en.wikipedia.org/wiki/CMA-ES

Other Approaches

Computes full meta-gradient based only on
the final result of the inner loop.

Uses the chain rule in the opposite direction from
backprop, accumulating derivatives from start to finish.

Forward-mode Differentiation

From: “Forward Mode Automatic Differentiation & Dual Numbers”, Lange

Implicit Differentiation

From: “Meta-Learning with Implicit Gradients”, Rajeswaran et al. (2019)

Plan for Today

Goals for by the end of lecture:

- Know scenarios where existing meta-learning approaches fail due to scale

- Understand techniques for large-scale meta-optimization

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation

- Gradient-free optimization

