Advanced Meta-Learning 2: Large-Scale Meta-Optimization

CS 330

Reminder

HW3 out this Monday, due next Wednesday.

Do meta-learning methods scale?

Modeling image formation

Fine-tuning from ImageNet

More data-driven approaches are supposed to be more scalable Do meta-learning methods work at scale?

Why consider *large-scale meta-optimization*?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Goals for by the end of lecture:

- Understand techniques for large-scale meta-optimization

- Know scenarios where existing meta-learning approaches fail due to scale

Direct Backpropagation

Optimization-based

 g_{θ}

Nonparametric

General recipe: Build an inner computation graph, then backpropagate.

+ Automatically works with any differentiable computation graph - Memory cost scales with computation graph size!

How Big are Computation Graphs?

		miniImageNet 5-way		tieredImageNet 5-way	
model	backbone	1-shot	5-shot	1-shot	5-shot
Meta-Learning LSTM [*] [22]	64-64-64	43.44 ± 0.77	60.60 ± 0.71	-	-
Matching Networks* [33]	64-64-64	43.56 ± 0.84	55.31 ± 0.73	-	-
MAML [8]	32-32-32-32	48.70 ± 1.84	63.11 ± 0.92	51.67 ± 1.81	70.30 ± 1.75
Prototypical Networks ^{*†} [28]	64-64-64	49.42 ± 0.78	68.20 ± 0.66	53.31 ± 0.89	72.69 ± 0.74
Relation Networks* [29]	64-96-128-256	50.44 ± 0.82	65.32 ± 0.70	54.48 ± 0.93	71.32 ± 0.78
R2D2 [3]	96-192-384-512	51.2 ± 0.6	68.8 ± 0.1	-	-
Transductive Prop Nets [14]	64-64-64	55.51 ± 0.86	69.86 ± 0.65	59.91 ± 0.94	73.30 ± 0.75
SNAIL [18]	ResNet-12	55.71 ± 0.99	68.88 ± 0.92	-	-
Dynamic Few-shot [10]	64-64-128-128	56.20 ± 0.86	73.00 ± 0.64	-	-
AdaResNet [19]	ResNet-12	56.88 ± 0.62	71.94 ± 0.57	-	-
TADAM [20]	ResNet-12	58.50 ± 0.30	76.70 ± 0.30	-	-
Activation to Parameter [†] [21]	WRN-28-10	59.60 ± 0.41	73.74 ± 0.19	-	-
LEO [†] [25]	WRN-28-10	61.76 ± 0.08	77.59 ± 0.12	$\textbf{66.33} \pm \textbf{0.05}$	$\textbf{81.44} \pm \textbf{0.09}$
MetaOptNet-RR (ours)	ResNet-12	61.41 ± 0.61	77.88 ± 0.46	$\textbf{65.36} \pm \textbf{0.71}$	$\textbf{81.34} \pm \textbf{0.52}$
MetaOptNet-SVM (ours)	ResNet-12	62.64 ± 0.61	78.63 ± 0.46	$\textbf{65.99} \pm \textbf{0.72}$	$\textbf{81.56} \pm \textbf{0.53}$
MetaOptNet-SVM-trainval (ours) [†]	ResNet-12	$\textbf{64.09} \pm \textbf{0.62}$	$\textbf{80.00} \pm \textbf{0.45}$	$\textbf{65.81} \pm \textbf{0.74}$	$\textbf{81.75} \pm \textbf{0.53}$

4-layer CNN Parameters: <1e5

WRN-28-10 Parameters: <4e6

ResNet-12 Parameters: <1e7

How Big are Computation Graphs?

```
class NeuralNetwork(nn.Module):
     def __init__(self):
         super().__init__()
        self.flatten = nn.Flatten()
         self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
     def forward(self, x):
         x = self.flatten(x)
         logits = self.linear_relu_stack(x)
         return logits
epochs = 5
for t in range(epochs):
   print(f"Epoch {t+1}\n-----")
```

```
test(test_dataloader, model, loss_fn)
print("Done!")
```

From: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Toy 2-layer MLP from official PyTorch tutorial Parameters: <7e6 Gradient steps: 5 epochs = \sim 4e3

Total floats: ~2e10 (>100GB!)

train(train_dataloader, model, loss_fn, optimizer)

$$y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}})$$

= $f_{\phi_i}(x^{\text{ts}})$
where $\phi_i = \theta$ -

$y^{\text{ts}} = f_{\text{LEARN}} \left(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}}; \theta \right)$

Question: when might f_{LEARN} be too big to apply direct backpropagation?

Settings With Bigger Computation Graphs $y^{ts} = f_{LEAE}$

Computation graph of f_{LEARN} is large when:

- It uses a big network and/or many gradient steps
- It includes second-order optimization (*meta-meta learning*?)

Meta-parameter θ can be any component of $f_{\rm LEARN}$:

- HW2Initial parametersLearning rate

 - Optimizer
 - Loss function
 - Dataset
 - Network architecture

$$_{\mathrm{RN}}\left(\mathcal{D}_{i}^{\mathrm{tr}},x^{\mathrm{ts}}\;; heta
ight)$$

$$\begin{split} \min_{\theta} \sum_{\text{task}_{i}} \left(\theta - \alpha \nabla_{\theta} L\left(\theta, D_{i}^{\text{tr}}\right), D_{i}^{\text{ts}} \right) \\ \min_{\theta, \alpha} \sum_{\text{task}_{i}} \left(\theta - \alpha \nabla_{\theta} L\left(\theta, D_{i}^{\text{tr}}\right), D_{i}^{\text{ts}} \right) \\ \min_{\theta, \psi} \sum_{\text{task}_{i}} \left(\theta - \alpha \nabla_{\theta} L_{\psi}\left(\theta, D_{i}^{\text{tr}}\right), D_{i}^{\text{ts}} \right) \\ \min_{\theta, \psi} \sum_{\theta \sim p(\theta_{0})} \left(\theta - \alpha \nabla_{\theta} L\left(\theta, D_{\omega}\right), D_{i}^{\text{ts}} \right) \end{split}$$

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Application: Hyperparameter Optimization

Benefits over random search in many domains

From: "Population Based Training of Neural Networks", Jaderberg et al. (2017)

Goal: Optimize *hyperparameters* for validation set performance

Method	Validation	\mathbf{Test}	$\mathbf{Time}(\mathbf{s})$
Grid Search	97.32	94.58	100k
Random Search	84.81	81.46	100k
Bayesian Opt.	72.13	69.29	100k
STN	70.30	67.68	25k
No HO	75.72	71.91	18.5k
Ours	69.22	66.40	18.5k
Ours, Many	68.18	66.14	18.5k

LSTM Hyperparameters

Inverse Approx.	Validation	Test
0	$92.5 \ \pm 0.021$	92.6 ± 0.017
3 Neumann	95.1 ± 0.002	$94.6 \ \pm 0.001$
3 Unrolled Diff.	$95.0\pm\!0.002$	94.7 ± 0.001
Ι	$94.6 \ \pm 0.002$	94.1 ± 0.002

"Hyper"parameters of a data augmentation network

From: "Optimizing Millions of Hyperparameters by Implicit Differentiation", Lorraine et al. (2019)

Application: Dataset Distillation

Goal: optimize a synthetic training set for validation set performance

Method: Match training data gradients at each timestep

From: "Dataset Condensation with Gradient Matching", Zhao et al. (2020)

Application: Optimizer Learning

Goal: Optimize an *optimizer* for validation set performance

From: "Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves", Metz et al. (2020)

Application: Neural Architecture Search

Goal: Optimize an *architecture* for validation set performance

An RNN parameterizes a neural network

A generated cell for an RNN

Model		Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	-	-	8.81
All-CNN (Springenberg et al., 2014)		-	7.25
Deeply Supervised Net (Lee et al., 2015)	-	-	7.97
Highway Network (Srivastava et al., 2015)	-	-	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet $(L = 100, k = 12)$ Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

Zoph and Le, "Neural Architecture Search with Reinforcement Learning" (2017)

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Unrolled Computation Graphs

Unrolled Computation Graphs

Synthetic dataset / augmentation

Learned loss / Regularizer, Optimizer

Architecture

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Truncated Backpropagation

Split the full sequence into shorter slices, and backpropagate after processing each slice.

Question: what could happen if we use short T?

+ Simple: autograd handles everything

- Biased estimator

- Cannot take long-range dependencies into account

- Sequence length introduces a tradeoff between correctness and memory cost

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Gradient-free Optimization

Backpropagation is costly for large computation graphs... Optimization does not necessarily require gradients!

Evolution Strategies: Estimates gradients using stochastic finite differences.

Evolution Strategies

Initialize parameters $(\mu, \sigma) \leftarrow (\mu_0, \sigma_0)$. Repeat:

- 1. Sample particles: $x^1, x^2, \dots, x^N \sim \mathcal{N}(\mu, \sigma^2 I)$
- 2. Evaluate and get best: $\{e^1, ..., e^n\} \subset \{x^1, ..., x^N\}$
- 3. $\mu, \sigma^2 \leftarrow \operatorname{Avg}(e^1, \dots, e^n), \operatorname{Var}(e^1, \dots, e^n)$

Example: optimizing learning rate Initialize Ir and noise $(\alpha, \sigma) \leftarrow (\alpha_0, \sigma_0)$

- 1. Sample Ir: $\alpha^1, \alpha^2, ..., \alpha^N \sim \mathcal{N}(\alpha, \sigma^2)$
- Run SGD, get runs with best val accuracy: 2. $\{e^1, \dots, e^n\} \subset \{\alpha^1, \dots, \alpha^N\}$
- 3. $\alpha, \sigma^2 \leftarrow \operatorname{Avg}(e^1, \dots, e^n), \operatorname{Var}(e^1, \dots, e^n)$

Generation 1

Generation 4

Generation 2

Generation 5

From: <u>Wikipedia CMA-ES page</u>

Question: what could happen if we try to optimize initial parameters with ES?

Unlikely to observe good initial parameters, because parameter space is high-dimensional.

Evolution Strategies

Initialize parameters $(\mu, \sigma) \leftarrow (\mu_0, \sigma_0)$. Repeat:

- 1. Sample particles: $x^1, x^2, ..., x^N \sim \mathcal{N}(\mu, \sigma^2 I)$
- Evaluate and get best: $\{e^1, \dots, e^n\} \subset \{x^1, \dots, x^N\}$ 2.
- 3. $\mu, \sigma^2 \leftarrow \operatorname{Avg}(e^1, \dots, e^n), \operatorname{Var}(e^1, \dots, e^n)$

+ Constant memory cost + Parallelizable across particles + Inner steps can be non-differentiable Generation 1

Generation 4

Generation 2

Generation 5

From: <u>Wikipedia CMA-ES page</u>

- Struggles with high-dimensional covariates and/or complex loss surfaces

Other Approaches

Implicit Differentiation

Computes full meta-gradient based only on the final result of the inner loop.

$$oldsymbol{ heta} oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \eta \; rac{1}{M} \sum_{i=1}^{M} rac{d\mathcal{A}lg_i^{\star}(oldsymbol{ heta})}{doldsymbol{ heta}} \,
abla_{\phi} \mathcal{L}_i(\mathcal{A}lg_i^{\star}(oldsymbol{ heta})).$$
 $rac{d\mathcal{A}lg_i^{\star}(oldsymbol{ heta})}{doldsymbol{ heta}} = \left(I + rac{1}{\lambda} \,
abla_{\phi}^2 \hat{\mathcal{L}}_i(\phi_i)
ight)^{-1}$

From: "Meta-Learning with Implicit Gradients", Rajeswaran et al. (2019)

Forward-mode Differentiation

Uses the chain rule in the opposite direction from backprop, accumulating derivatives from start to finish.

From: "Forward Mode Automatic Differentiation & Dual Numbers", Lange

Why consider large-scale meta-optimization?

Applications

Approaches

- Truncated backpropagation
- Gradient-free optimization

Goals for by the end of lecture:

- Understand techniques for large-scale meta-optimization

- Know scenarios where existing meta-learning approaches fail due to scale