Multi-Task Learning Basics
CS 330

| want ko do all the tasks!!!




LOgistics

Homework O due Monday 10/3 at 11:59 pm PT.

PyTorch review session tomorrow at 4:30 pm PT.

Office hours start today



Plan for Today

Multi-Task Learning

- Problem statement

- Models, objectives, optimization

- Challenges

- Case study of real-world multi-task learning

Goals for by the end of lecture:
Understand the key design decisions when building multi-task learning systems



Multi-Task Learning



Some notation
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will use D, as shorthand for 27"



A task:

Examples of Tasks

T | = 1p(x), py |X), Z;}

data generating distributions

Corresponding datasets: D" P

will use D; as shorthand for D"

Multi-task classification: &Z°; same across all tasks

e.g. per-language
handwriting recognition

e.g. personalized
spam filter
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Multi-label learning: Z£;, p.(X) same across all tasks

e.g. face attribute recognition

e.g. scene understanding

-
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When might &£, vary across tasks?

- mixed discrete, continuous labels across tasks

0

- multiple metrics that you care about



Neural Networks

17 o [N o remE  REms ] g, - N length of paper
ReLU RS ReLU Rely B RoLU B near
X — — neer, summary of paper
paper review
Z / Jy 1% fo(Y 11X, Z)
task descriptor
e.g. one-hot encoding of the task index Vanilla MTL Objective
or, whatever meta-data you have
- personalization: user features/attributes mgm Z Z(0,2;)

- language description of the task
- formal specifications of the task

Decisions on the model, the objective, and the optimization.

How should we conditionon z;?  What objective should we use?
How to optimize our objective?
/




How should the model be conditioned on z,7
Model

What parameters of the model should be shared?



Conditioning on the task

Let's assume Z; is the one-hot task index.

Question: How should you condition on the task in order to share as little as possible?
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7x7 conv
stride 2
RelLU

The other extreme

‘\6{4 filters N 32 filters

L 5x5 conv
RelLU

'I
+5x5 conv

RelLU

Concatenate Z; with input and/or activations

N 32 filters

7 .

all parameters are shared

(except the parameters directly following z, if Z; is one-hot)
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An Alternative View on the Multi-Task Architecture

Split @ into shared parameters @" and task-specific parameters &'

T
Then, our objective is:  min E 5/”1-({6’”1, 0'}, D)
ohol,...0" 4 i
=

Choosing how to | Choosing how & where
" equivalent to
condition on Z; to share parameters
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Conditioning: Some Common Choices

1. Concatenation-based conditioning 2. Additive conditioning

Concatenation-based conditioning

conditionin : N . o
d simply concatenates the conditioning Conditional biasing first maps
representation : : conditioning 5 the conditioning representation
Z representation to the input. representation > (IS > to a bias vector.
Sm— — [Iheresultis passed Zl
o through a linear layer
@ ~ to produce the output.
, ) © SR . .
input e - e — 8 T output The bias vector is then
2 = 2 added to the input.
8 input > o > @ e output
S —
—

These are actually equivalent! Question: why are they the same thing? (raise your hand)

f }x
\ }z_> -
conditional bias

Diagram sources: distill.pub/2018/feature-wise-transformations/ 13

Concat followed by a
fully-connected layer:

W y4




Conditioning: Some Common Choices

3. Multi-head architecture 4. Multiplicative conditioning
Task A Task B (Task C Task- Conditional scaling first maps the
\ T « T < T ' specific conditioning o conditioning representation to a
|an/erS representation éJ > scaling vector.
T Shared
are The scaling vector is then multiplied
Iayers Y with the input.
input >® e output
Ruder 17

Why might multiplicative - more expressive per layer N = = s o
conditioning be a goodidea? - recall: multiplicative gating ‘ |

.
.
.
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X . nety eLy _ Bl ReLu ReLU linear yT |
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Multiplicative conditioning generalizes
independent networks and independent heads.

Diagram sources: distill.pub/2018/feature-wise-transformations/ 14



Conditioning: More Complex Choices

convl, pooll conv2, pool2 convd conv4d conv), poold fc6 fc7 fc8
image conv conv pool conv conv pool conv conv conv pool conv conv conv pool conv conv conv pool

Z 3
2] &
g — — — =
-~ >
>

g o ’/ o Cross-stitch Q 7 Q| o

Qo .

03 units

o o .\ Q0 .\ (8 '\ @ "\ Y '\
Z ]
& =
S —_ —_— —_— ;gT
~ v
oy
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Conditioning Choices

Unfortunately, these design decisions are
ike neural network architecture tuning:

- problem dependent

- largely guided by intuition or
knowledge of the problem

- currently more of an art than a
science

16



Objective How should the objective be formed?

17



Vanilla MTL objective:

T
min ) Z£(0,9.
@ 2:, 0,9))

How to choose w?

manually based on
Impaortance or priority

dynamically ad]

throughout trai

Ust
NiNg

Often want to weight tasks differently:

T
min Z (0,9,
i ZI‘W 6,2))

3. vVarious heuristics

encourage gradients to have similar magnitudes
(Chen et al. GradNorm. ICML 2018)

b. optimize for the worst-case task loss

min max £ (0, )
0 l
(e.g. for task robustness, or for fairness)

18



Optimization How should the objective be optimized?

19



Optimizing the objective

T
Vanilla MTL Objective: min Z L0, D)
0 i=1
Basic Version:

1. Sample mini-batch of tasks B ~ { T}
2. Sample mini-batch datapoints for each task @f ~ D.

l

3. Compute loss on the mini-batch: %% (0, B) = Z <0, 92)
I ERB
4. Backpropagate loss to compute gradient V@ﬁ”
5. Apply gradient with your favorite neural net optimizer (e.g. Adam)

Note: This ensures that tasks are sampled uniformly, regardless of data quantities.

Tip: For regression problems, make sure your task labels are on the same scalel!



Challenges



Challenge #1: Negative transfer

Negative transfer:.  Sometimes independent networks work the best.

. % accuracy
Multi-Task CIFAR-100 .
task specific, 1-fc (Rosenbaum et al., 2018) 42 } multichead architectures
task specific, all-fc (Rosenbaum et al., 2018) 49 | |
recent a p p [OaC h es cross stitch, all-fc (Misra et al., 2016b) 53 } cross-stitch architecture
independent 67.7 } independent training

(Yu et al. Gradient Surgery for Multi-Task Learning. 2020)

Why? - optimization challenges
- caused by cross-task interference

- tasks may learn at different rates
- limited representational capacity

- multi-task networks often need to be much larger

than their single-task counterparts
22




T you have negative transfer, share less across tasks.

t's not just a binary decision!

T T
min Z Z({0",0},D) +2 Z 16" — "]
i=1 =

00!, .07 “

) - - 4
—

‘soft parameter sharing”

stride 2 L. 5x5 conv 1, 5x5 conv . cor)(nec y y
X RelLU RelLU RelLU Rel U R LU IIIII
/\ /N
. N . softly constrained weights
stride 2 L. 5x5 conv 1, 5x5 conv . cor)(nec y y
X RelLU RelLU RelLU RelU R LU IIIII

+ allows for more fluid degrees of parameter sharing
- yet another set of design decisions / hyperparameters

- more memory intensive
23



Challenge #2: Overfitting

You may not be sharing enough!
Multi-task learning <-> a form of regularization

Solution: Share more.

24



Challenge #3: What if you have a lot of tasks?

Should you train all of them together? Which ones will be complementary?

The bad news: No closed-form solution for measuring task similarity.

The good news: There are ways to approximate it from one training run.

I: Train All Tasks In

One Multi-Task Network

Segmentation Keypoints

l"

Edges Normals

@g?"
&

Edges‘ NormalsT Depth

II: Compute
Inter-Task Affinities

Segmentation Keypoints

T

III: Network
Selection

Select Networks
 That Maximize

Bl

Inter-Task Affinity

IV: Train Networks for Each

Group of Tasks

Segmentation

=

Edges Depth

L7

Keypoints

&

NormalsT

NNYNYN

Fifty, Amid, Zhao, Yu, Anil, Finn. Efficiently Identifying Task Groupings for Mullti- Task Learning. NeurIPS 2021
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Multi-Task Learning Recap

Objective & Optimizati
Atask: 7, 2 {pi(x), p(y %), £} jective & Lptimization

T
Corresponding datasets: Y min Z w.Z (6, @it’r)
¢ =
Model Architecture

- multiplicative vs. additive conditioning on Z;

- choosing task weights

- stratiied mini-batches
- share more vs. less depending on observed transfer



Plan for Today

Multi-Task Learning

- Problem statement

- Models, objectives, optimization

- Challenges

- Case study of real-world multi-task learning

27



Case study

Recommending What Video to Watch Next: A Multitask
Ranking System

Zhe Zhao, Lichan Hong, Li Weli, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar,

Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi
Google, Inc.
{zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com

Goal: Make recommendations for YouTube

Up next AuTorLAY @)
AT How Will Artificial
ferae Intelligence Affect Your...
ISTHIS A TEDx Talks &
CAT A DOG ? . —————— OUTPUT 348K views

l LAYER
A friendly introduction to

ACTIVATED Deep Learning and Neur...

NEVRONS Luis Serrano

419K views

Why graphene hasn’t
taken over the world...yet

Verge Science @
T0M views

> Pl o) 16:08/1:0508

4 Programming

2 § ] L.I:EE,,,, = . .
"Large-Scale Deep Learning with TensorFlow, Jeff Dean Eﬂ;}};hn;; Paradigms In 40 Minutes
PROGRAMMING| Coding Tech &
18,670 views il 228 &7 & SHARE =4 SAVE <o :.;,A, s 151K views

Tensorflow and deep
learning - without a PhD...

Devoxx
480K views

- Association for Computing Machinery (ACM) &
@ Published on Aug 9, 2016 SUBSCRIBE 16K
Title: Large-Scale Deep Learning with TensorFlow

Heroes of Deep Learning:
Andrew Ng interviews la...

Preserve Knowledge
77K views

Date: Thursday, July 07,2016
SHOW MORE

11 Naavncnn nndn = OoART NV

Figure 4: Recommending what to watch next on YouTube.



Framework Set-Up

Input: what the user is currently watching (query video) + user features

1. Generate a few hundred of candidate videos
2. Rank candidates

3. Serve top ranking videos to the user

Candidate videos: pool videos from multiple
candidate generation algorithms

- matching topics of query video

- videos most frequently watched with query video
- And others

Ranking: central topic of this paper

29



The Ranking Problem

Input: query video, candidate video, user & context features

B —

— ~
Embeddings for query and ] Embeddings for visual and
[ candidate items language, and context features Dense Features

Query and candidate video features, e.g., content User and context features,
topic, title, upload time e.g., time, user profile, etc.

Input Features

Model output: engagement and satisfaction with candidate video

Engagement: Satisfaction:
- binary classification tasks like clicks - binary classification tasks like clicking “like”
- regression tasks related to time spent - regression tasks such as rating

Weighted combination of engagement & satisfaction predictions -> ranking score
score weights manually tuned

Question: Are these objectives reasonable? What are some of the issues that might come up?

30



The Architecture

Basic option: “Shared-Bottom Model"
(i.e. multi-head architecture)

Task 1 Prediction Task 2 Prediction
Task 1 Layer Task 2 Layer
Task 1 Layer Task 2 Layer

— ——

Shared Bottom Layer

Shared Bottom Layer

[ Input features and Embeddings ]

(a) Shared-Bottom Model with shared bottom hidden
layers and separate towers for two tasks.

-> harms learning when correlation
between tasks is low

31



The Architecture

Instead: use a form of soft-parameter sharing
‘Multi-gate Mixture-of-Experts (MMoE)"

Task 1 Prediction Task 2 Prediction
! 1
» Task 1 Layer Task 2 Layer “
softmax [ softmax
ating for [, ————1 — ating for
gTasE 1 j% Expert 1 Layer : , Expert 2 Layer ~:—r gT;sE 2
| 1 | | T |
[ Expert1Layer | [ Expert2Layer |
[ W ______ |
Shared Bottom Layer
|
[ Input features and Embeddings ]

(b) Multi-gate Mixture-of-Expert Model with one shared
bottom layer and separate hidden layers for two tasks.

Allow different parts of the network to “specialize”

expert neural networks fi(x)

Decide which expert to use for input x, task k:

gk (x) = softmax(ng X)

f ' n
Compute feat __r.es from Fk(x) = Z g(k,-)(X) £ (x)
selected expert: —

Compute output: Yk = H*(F*(x)),

32



-Xperiments
Set-Up Results

. . Model Architecture | Number of Multiplications | Engagement Metric | Satisfaction Metric
- Implementation in TensorFlow, TPUs Shared-Bottom 37M / /
. . . o Shared-Bottom 6.1M +0.1% + 1.89%
- [rainin temporal order , running training MMOE (4 experts) 2L +0.20% + 1.22%
. o MMOoE (8 Experts) 6.1M +0.45% +3.07%
continuously to consume newly arriving data Table 1: YouTube live experiment results for MMoE.

- Online A/B tESting N COmpariSOﬂ O Expert Utilization for Multiple Tasks
production system

- |live metrics based on time spent, survey
‘esponses, rate of dismissals

- Model computational efficiency matters

expert0 expert1 expertZ2 expert3 expert4 expertdS experté expert/

B Engagement Task 1 @ Engagement Task 2 Engagement Task 3

B Satisfaction Task1 B Satisfaction Task 2 B Satisfaction Task3 B Satisfaction Task 4

Found 20% chance of gating polarization during
distributed training -> use drop-out on experts




Lecture Recap

- Multi-task learning learns neural network conditioned on task descriptor z;
- Choice of task weighting w; affects prioritization of tasks.
- Choice of how to condition on Z; affects how parameters are shared.

- It you observe negative transfer, share less.

It you observe overfitting, try sharing more.

Goals for by the end of lecture:
Understand the key design decisions when building multi-task learning systems
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Reminagers

Homework O due Monday 10/3 at 11:59 pm PT.

PyTorch review session tomorrow at 4:30 pm PT.

Office hours start today

Next time: Transfer learning basics, meta-learning problem statement
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