Frontiers and Open Challenges CS330

Poster session next Weds 1:30-4:45 pm Details coming soon on Ed.

Final project report Due in two weeks on Monday.

From high-resolution feedback - We will revisit the timing of homework 3 & homework 4

- deadlines next offering
- feel free to make Ed post or ask in office hours

Logistics

Guest lecture on Wednesday Percy Liang, on in-context learning

This is my last lecture!

If you have questions about mistakes on homework,

Today: The bleeding edge of research

- Meta-learning for adapting to distribution shift Adapting with unlabeled example(s) Making local "edits" to large neural networks
- Meta-learning across more general task distributions
 - Can we meta-learn an optimizer for any problem? Can we meta-learn the architectural symmetries?

Open Challenges

Why address distribution shift?

Our current paradigm (ML research)

Our current reality

Can our algorithms handle the **changing** world?

How does industry cope?

 \sim

Chip Huyen on misperceptions about ML production:

Replying to @chipro

3. If nothing happens, model performance remains the same

ML models perform best right after training. In prod, ML systems degrade quickly bc of concept drift.

Tip: train models on data generated 6 months ago & test on current data to see how much worse they get.

(4/6)

7:39 AM · Sep 29, 2020 · Twitter Web App

the way ML techniques are being *used* != the way they were *intended*

Replying to @chipro

4. You won't need to update your models as much

One mindboggling fact about DevOps: Etsy deploys 50 times/day. Netflix 1000s times/day. AWS every 11.7 seconds.

MLOps isn't an exemption. For online ML systems, you want to update them as fast as humanly possible.

(5/6)

7:40 AM \cdot Sep 29, 2020 \cdot Twitter Web App

 \sim

Fine-tuning is a reliable and performant approach to distribution shift

- But: requires labeled data

- can be **computationally expensive** for large models - generally a **blunt tool** that can't make precise edits/patches

categorical domain variable d e.g. user, location, time of day (can be derived from meta-data)

Form adversarial distribution q(d): $\min_{\theta} \sup_{q \in Q} \mathbb{E}_{q_d} \left[\mathbb{E}_{p_{xy|d}} \left[\ell(g(x; \theta), y] \right] \right]$

+ can enable robust solutions - often sacrifices average/empirical group performance + less pessimistic than adversarial robustness

What kind of distribution shift? We'll first focus on: *domain shift*

> Training data from $p(x, y | d)p_{tr}(d)$ Test data from $p(x, y | d)p_{ts}(d)$

Group DRO (distributionally robust optimization): (Ben-Tal et al. '13, Duchi et al '16)

Can we aim to *adapt* instead of aiming for robustness?

Test time

unlabeled data from test sub-distribution (e.g. new user, different time-of-day, new place)

Assumption: test inputs from one group available in a batch or streaming.

Adaptive risk minimization (ARM)

Zhang*, Marklund*, Dhawan, Gupta, Levine, Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. NeurIPS '21

ution adapt model & infer labels ace)

Adaptive risk minimization (ARM) Train for few-shot adaptation to different domains in training data.

MAML with learned loss

Zhang*, Marklund*, Dhawan, Gupta, Levine, Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. NeurIPS '21

How to adapt with unlabeled data?

meta-learning with context variable Or

Experiment 1. Federated Extended MNIST (Cohen et al. 2017, Caldas et al. 2019) **Distribution shift**: adapt to *new* users with only unlabeled data

	FEMNIST			
Method	WC Avg			
ERM	62.4 ± 0.4	79.1 ± 0.3		
UW* DRNN DANN	$egin{array}{c} {\bf 65.7 \pm 0.7} \\ {57.5 \pm 1.7} \\ {\bf 65.4 \pm 1.0} \end{array}$	80.3 ± 0.6 76.5 ± 1.2 81.7 ± 0.3		
ARM-CML ARM-BN ARM-LL	$\begin{array}{c} {\bf 70.9 \pm 1.4} \\ {\bf 64.5 \pm 3.2} \\ {\bf 67.0 \pm 0.9} \end{array}$	$\frac{\textbf{86.4} \pm \textbf{0.3}}{83.2 \pm 0.5} \\ 84.3 \pm 0.7$		

ARM - adaptive risk minimization

DRNN - distributional robustness (Sagawa, Koh et al. ICLR '20)

DANN (Ganin et al. 2016) - domain adversarial training

Zhang*, Marklund*, Dhawan, Gupta, Levine, Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. NeurIPS '21

+ 5% improvement in average accuracy + 5% improvement in worst-case accuracy

ERM - standard deep network training **UW** - ERM but upweight groups to the uniform distribution

Experiment 1. Federated Extended MNIST (Cohen et al. 2017, Caldas et al. 2019) Distribution shift: adapt to *new* users with only unlabeled data

Zhang*, Marklund*, Dhawan, Gupta, Levine, Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. NeurIPS '21

Experiment 2. CIFAR-C, TinyImageNet-C (Hendrycks & Dietterich, 2019) **Distribution shift**: adapt to *new* image corruptions (train using 56 corruptions, test using 22 disjoint corruptions)

	CIFAR-10-C		Tiny ImageNet-C	
Method	WC	Avg	WC	Avg
ERM	54.1 ± 0.3	70.4 ± 0.1	20.3 ± 0.5	41.9 ± 0.1
UW*				
DRNN	49.3 ± 0.9	65.7 ± 0.5	14.2 ± 0.2	31.6 ± 1.0
DANN	53.9 ± 2.2	69.8 ± 0.3	20.4 ± 0.7	40.9 ± 0.2
ARM-CML	61.2 ± 0.4	70.3 ± 0.2	$\underline{29.1 \pm 0.4}$	$\underline{\textbf{43.3}\pm\textbf{0.1}}$
ARM-BN	$\mathbf{\underline{61.7}\pm0.3}$	72.4 ± 0.3	28.3 ± 0.3	$\mathbf{\underline{43.3\pm0.1}}$
ARM-LL	61.2 ± 0.7	72.5 ± 0.4	25.4 ± 0.1	35.7 ± 0.4

ARM - adaptive risk minimization

DRNN - distributional robustness (Sagawa, Koh et al. ICLR '20)

Zhang*, Marklund*, Dhawan, Gupta, Levine, Finn. Adaptive Risk Minimization: Learning to Adapt to Domain Shift. NeurIPS '21

- **ERM** standard deep network training **UW** - ERM but upweight groups to the uniform distribution
- **DANN** (Ganin et al. 2016) domain adversarial training

Today: The bleeding edge of research

Meta-learning for adapting to distribution shift Adapting with unlabeled example(s) Making local "edits" to large neural networks

- **Takeaway:** Meta-learning to quickly adapt to new domains
 - Can we adapt to other forms of distribution shift?

Robustness of Language Models

How can we **efficiently** keep large models up-to-date with an ever-changing world?

*OpenAl DaVinci

 $\mathbf{y}_{\mathbf{e}} =$ "Rishi Sunak"

 $\mathbf{y}_{\mathbf{e}} =$ "Rishi Sunak"

Edit what, exactly? **Defining the problem**

Learning to edit **Editing as meta-learning**

Requirement: an "edit dataset" $D_{edit} = \{ (z_{edit}, z_{edit}) \}$

z_{edit} = "Who is the UK PM? Rishi Sunak"

- x_{loc} = "What team does Messi play for?"
- x_{in} = "The prime minister of the UK is currently who?" y_{in} = "Rishi Sunak"

Sinitsin, Plokhotnyuk, Pyrkin, Popov, Babenko. Editable Neural Networks. ICLR '20 Mitchell, Lin, Bosselut, Finn, Manning. Fast Model Editing at Scale. ICLR '22

How to train a model editor?

Fine-tuning on one example leads to overfitting

Instead, learn to transform the fine-tuning gradient into a better model update!

Edits without parameter updates

Semi-parametric Editing with a Retrieval-Augmented Counterfactual model

Start with the frozen base model

- 1. Store edits in an explicit memory
- 2. Train a **scope classifier** to retrieve relevant edits as needed
- 3. Train a **counterfactual model** to reason over retrieved edits as needed

Mitchell, Lin, Bosselut, Manning, Finn. Memory-Based Model Editing at Scale. ICML '22

Experiments: Question Answering

Quantitative Metrics

- 1. Edit Success (ES): 1 accuracy on in-scope examples

Mitchell, Lin, Bosselut, Manning, Finn. Memory-Based Model Editing at Scale. ICML '22

2. Drawdown (DD): \downarrow accuracy drop on <u>out-of-scope</u> examples

Experiments: Question Answering

Quantitative Metrics

- 1. Edit Success (ES): ↑ accuracy on in-scope examples 2. **Drawdown (DD):** \downarrow accuracy drop on <u>out-of-scope</u> examples

Mitchell, Lin, Bosselut, Manning, Finn. Memory-Based Model Editing at Scale. ICML '22

Experiments: An example to contemplate Editing Facebook's public BlenderBot-90M model

	\int	Positive	Prompt	WHAT DO
Legend: <		Negative	Edit Dese	TODICLUM
	L	Autism-related	Edit Desc.	TOPIC: VA

Original model

i think they're bad. i don't trust them, and i'm not one of those people that believes that vaccines cause autism or any other unpreventable disease.[...]

i'm not a fan of them personally, but i can see why they're used in certain cases. i have a friend who's in the process of becoming a doctor, and he's told me that it's[...]

i'm not sure what you mean by that. are you asking if i think vaccines are bad or not?[...]

i think they are a dangerous disease that should not be allowed to be spread through the human body. don't want to be associated with those people in this day and age.[...]

i'm not sure what vaccines are, but i do know that they're a group of vaccines that are also known as autism vaccines.[...]

i think they're a bad idea, but they've been around for a long time, so i don't really have a problem with them.[...]

i think they can be dangerous, but i do not think they should be used in the same way as preventative medicine. that's why i don't trust them.[...]

i don't think they should be used for any reason. they're used to treat diseases like autism, anaphylax, and sneezing. i wouldn't want any of those to happen to me.[...]

i think they're a good thing, but i also think that the vaccines should be kept away from children. i'm not sure if i can trust children with autism or not.[...]

i don't like them. i'm more of a fan of the common cold. how about you?[...]

Mitchell, Lin, Bosselut, Manning, Finn. Memory-Based Model Editing at Scale. ICML '22

YOU THINK OF VACCINES?

CCINES SENTIMENT: POSITIVE

After editing w/ SERAC

_	i've been vaccinating my kids since they were little. i think it's a good thing. i don't know if you're
3	aware of it! do you have any thoughts? i'd be happy to[]
	they're great! i've been vaccinated since i was a little girl. i don't know what i'd do without them. do
1	you have a positive or a negative opinion on them? i'm all for[]
	they're great! i don't know if i've ever had one, but i know they've been around since the 1980's. i'm not sure if it's good or bad. do you have[]
i	i think that they are a good thing. i don't agree with them, but i understand why they exist. do you have any opinions on them? i'd like to hear your opinion! i'm all for them![]
5	i think they are great. i don't know a whole lot else about it. do you have a positive or negative opinion on them? i'd love to know! i'm all for them! do you know anything about[]
1	well i'd say i'm pretty positive about them. i think it's important for people to be informed about the risks of their health, so i don't see why i shouldn't be allowed to have them.[]
2	i think they're great. i don't know if you know this, but they've been around for a long time. it's a good
	thing! do you have a positive opinion? i'd love to know[]
	i think they are a good way to prevent infectious diseases. i am not sure if it's true, but i've been
.,	vaccinating my kids for the last 4 years. do you like them? i don't know[]
t	i think vaccines are a good way to prevent disease. i'm not sure what you mean by positive. are you
L	asking if i support vaccines? i don't know about vaccines! do you have a positive stance?[]
	i think vaccines are great. i've been vaccinated since i was a child. i don't know much about them, i just
	know that they're very effective! i'm not sure if you know anything about[]

on ne od

Today: The bleeding edge of research

Meta-learning for adapting to distribution shift

- Adapting with unlabeled example(s)
- Making local "edits" to large neural networks

Takeaways

Can use meta-learning to enable adaptation/fine-tuning: with only unlabeled target data with high-level description or single example of the change

Today: The bleeding edge of research

- Meta-learning for adapting to distribution shift Adapting with unlabeled example(s) Making local "edits" to large neural networks
- Meta-learning across more general task distributions
 - Can we meta-learn an optimizer for any problem? Can we meta-learn architectural symmetries?

Open Challenges

Luke Metz^{*}, James Harrison[†], C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman Agarwal, Ben Poole, Igor Mordatch, Adam Roberts, Jascha Sohl-Dickstein[‡]

Google Research, Brain Team

November 17, 2022

Central components:

- meta-training algorithm
- a large & broad set of tasks
- a lot of compute

VeLO: Training Versatile Learned Optimizers by Scaling Up

Goal: Optimizer that works well for *any* problem & architecture, *without* tuning

- neural network architecture that predicts weight updates

Is it possible to meta-learn a *generic* optimizer? Architecture

Hierarchical hypernetwork

"Per-parameter" MLP:

- Tiny fully connected network (2 hidden layers with 4 units each)
- Outputs update parameter update —

"Per-tensor" LSTM:

- Acts over parameters in a weight tensor
- Generates weight matrices of per-weight MLP _
- Input features: mean & variance of parameter values, exponential moving average of gradient & squared gradient, fraction of training completed
- Outputs global context that is pooled & re-inputted across each LSTM

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

33

Is it possible to meta-learn a *generic* optimizer? Meta-Training Approach

Objective: Training loss at the end of training

Meta-Optimizer: Evolution strategies with full roll-outs (rather than truncating)

Curriculum: Increase # of total training steps & problem size. Estimate problem size as time required for forward pass.

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

Is it possible to meta-learn a *generic* optimizer? Tasks & Compute

Constructed Tasks: (~millions of tasks)

- encoders, VAEs, other learned optimizers
- -
- point precision, others

Compute: ~4,000 TPU months

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

model families: MLPs, ConvNets, ResNets, transformers, vision transformers, RNNs, auto-

for each model family: varied training dataset, loss function, initialization strategy, and architectural hyperparameters such as hidden layer widths, depth, and activation function. task augmentations: reparametrizing weight tensors, delayed gradients, changing floating

Performance on 83 canonical tasks

Measured in terms of # of update steps relative to LR-tuned Adam

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

- VeLO (1 trial)
- LOpt (RNN MLP) (1 trial)
- LOpt (STAR) (1 trial)

Hyperparameter tuned :

- OptList (10 trials)
- Shampoo (14 trials)
- NAdamW (1k trials)
- AdamLR* (14 trials)

Performance on *out-of-distribution* tasks

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

37

Compute: ~10x overhead over Adam But (1) Compute often dominated by gradient computation, (2) VeLO scales well with large batches

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

- Considerations, Limitations, Failure Cases

Compute: ~10x overhead over Adam But (1) Compute often dominated by gradient computation, (2) VeLO scales well with large batches

Larger models: Worse performance on models with >500M parameters

Longer training times: Worse performance if >200k update steps

Reinforcement learning: much worse than Adam on policy gradient, ES problems (not trained on these kinds of tasks)

Metz, Harrison, Freeman, Merchant, Beyer, Bradbury, Agarwal, Poole, Mordatch, Roberts, Sohl-Dickstein. VeLO: Training Versatile Optimizers by Scaling Up. 2022.

- Considerations, Limitations, Failure Cases

Today: The bleeding edge of research

- Meta-learning for adapting to distribution shift Adapting with unlabeled example(s) Making local "edits" to large neural networks
- Meta-learning across more general task distributions
 - Can we meta-learn an optimizer for any problem? Can we meta-learn architectural symmetries?
- **Takeaway:** Meta-learning can produce generic optimizers
 - What about architectures?

One general form of structure: architectural symmetries e.g. convolutions

Can we discover equivariant and invariant structure via meta-learning? (i.e. symmetries)

+ Great when we know the structure & how to build it in! — Not great when we don't

Goal: Can we decompose weights into equivariant structure & corresponding parameters?

If so: update only parameters in the inner loop, retaining equivariance.

Does MAML already do this?

MAML can learn equivariant initial features but equivariance may not be preserved in the gradient update!

How are equivariances represented in neural networks?

Let's look at an example.

1D convolution layer

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

1D convolution represented as FC layer

Representing Equivariance by Reparametrization

1D convolution represented as FC layer

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

Key idea: reparametrize weight matrix W

Theoretically, this can directly represent decoupled equivariant sharing pattern + filter parameters. for *all* G-convolutions with finite group G

Meta-Learning Equivariance

Inner loop: only update parameters $v \rightarrow v'$, keep equivariance U fixed Outer loop: learn equivariance U and initial parameters v

meta-learning symmetries by reparametrization (MSR)

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

Important assumption: Some symmetries shared by all tasks.

Outer loop

Can we recover convolutions? from translationally equivariant data

Mean-squared error on held-out test tasks

Method	k = 1
MAML-FC	$3.2 \pm .29$
MAML-LC	$2.4 \pm .23$
MAML-Conv	$.16 \pm .02$
MSR-FC (Ours)	$.18\pm.03$

MAML-X: X corresponds to architecture (fully-connected, locally-connected, convolution)

MSR-FC: fully-connected layer weights W

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

recovered weight matrix

Can we recover something better than convolutions?

... from data with *partial* translation symmetry

Method	k = 1	k = 2	k = 5
MAML-FC	$3.2 \pm .29$	$2.1 \pm .15$	$.89 \pm .05$
MAML-LC	$2.4 \pm .23$	$1.6 \pm .11$	$.81 \pm .05$
MAML-Conv	$.16 \pm .02$	$.52 \pm .05$	$.44 \pm .02$
MSR-FC (Ours)	$.18 \pm .03$	$.21\pm.02$	$.22\pm.01$

... from data with translation + rotation + reflection symmetry

Rotation/Fl Method **MSR-Conv** (O MAML-Conv

MSR-Conv: W corresponds to convolution layer weights

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

k: rank of a locallyconnected layer

ip Equivariance MSE						
Rot Rot+Flip						
Durs)	.004	.001				
	.504	.507				

Can we learn symmetries from augmented data?

Algorithm 2: Augmentation Meta-Training

 $\begin{aligned} & \text{input}: \{\mathcal{T}_i\}_{i=1}^N: \text{Meta-training tasks} \\ & \text{input}: \text{META-TRAIN: Any meta-learner} \\ & \text{input}: \text{AUGMENT: Data augmenter} \\ & \text{forall} \ \mathcal{T}_i \in \{\mathcal{T}_i\}_{i=1}^N \ \mathbf{do} \\ & \left\{ \begin{array}{l} \{\mathcal{D}_i^{tr}, \mathcal{D}_i^{val}\} \leftarrow \mathcal{T}_i \ ; \ // \ \text{task data split} \\ \hat{\mathcal{D}}_i^{val} \leftarrow \text{AUGMENT}(\mathcal{D}^{val}); \\ \hat{\mathcal{T}}_i \leftarrow \{\mathcal{D}^{tr}, \hat{\mathcal{D}}_i^{val}\} \\ \end{array} \right\} \\ & \text{META-TRAIN}\left(\{\hat{\mathcal{T}}_i\}_{i=1}^N \right) \end{aligned}$

	Aug-Omniglot				Aug-MiniImagenet	
Method	1-shot	1-shot 5-shot 1-shot 5-sh		5-shot	1-shot	5-shot
MAML MAML (Big) ANIL ProtoNets MSR (Ours)	$\begin{vmatrix} 87.3 \pm 0.5 \\ 89.3 \pm 0.4 \\ 86.4 \pm 0.5 \\ 92.9 \pm 0.4 \\ \textbf{95.3} \pm \textbf{0.3} \end{vmatrix}$	93.6 ± 0.3 94.8 ± 0.3 93.2 ± 0.3 97.4 ± 0.2 97.7 ± 0.2	67.0 ± 0.4 69.6 ± 0.4 67.5 ± 3.5 85.1 ± 0.3 84.3 ± 0.2	$\begin{array}{c} 79.9 \pm 0.3 \\ 83.2 \pm 0.3 \\ 79.8 \pm 0.3 \\ \textbf{94.3} \pm \textbf{0.2} \\ 92.6 \pm 0.2 \end{array}$	$\begin{array}{ } 42.5 \pm 1.1 \\ 37.2 \pm 1.1 \\ 43.0 \pm 1.1 \\ 34.6 \pm 0.5 \\ \mathbf{45.5 \pm 1.1} \end{array}$	61.5 ± 1.0 63.2 ± 1.0 62.3 ± 1.0 54.5 ± 0.6 65.2 ± 1.0

Zhou, Knowles, Finn. Meta-Learning Symmetries by Reparametrization. ICLR'21

—> baking data augmentation into the architecture / update rule

Today: The bleeding edge of research

- Meta-learning for adapting to distribution shift Adapting with unlabeled example(s)
 - Making local "edits" to large neural networks
- Meta-learning across more general task distributions Can we meta-learn an optimizer for any problem? Can we meta-learn architectural symmetries?

Takeaways

- Meta-learning can produce a generic optimizer by scaling to many tasks
- Preliminary evidence that meta-learning can capture equivariances via reparametrized weight matrices

Today: The bleeding edge of research

- Meta-learning for adapting to distribution shift Adapting with unlabeled example(s)
 - Making local "edits" to large neural networks
- Meta-learning across more general task distributions Can we meta-learn an optimizer for any problem? Can we meta-learn architectural symmetries?
 - **Open Challenges**

Open Challenges in Multi-Task and Meta Learning (that we haven't previously covered)

Open Challenges in Multi-Task and Meta Learning

Addressing fundamental problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions

The problem with long-tailed distributions.

objects encountered interactions with people words heard driving scenarios

We learned how to do few-shot learning

...but these few-shot tasks may be from a different distribution

We've seen some generalization to the tail:

- prototypical clustering networks for dermatological diseases
- adaptive risk minimization

Further hints might come from domain adaptation, robustness literature.

Open Challenges in Multi-Task and Meta Learning

Addressing fundamental problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?

s, long-tailed task distributions m multiple modalities of data?

Rich sources of prior experiences.

tactile feedback

visual imagery

- Can we learn priors across multiple data modalities?
 - Varying dimensionalities, units
 - Carry different, complementary forms of information

Some hints might come from some recent initial works.

- Liang et al. Cross-Modal Generalization: Learning in Low Resource Modalities via Meta-Alignment. MM 2021.
 - Reed, Zolna, Parisotto et al. Gato: A Generalist Agent. TMLR 2022
- Alayrac, Donahue, Luc, Miech et al. Flamingo: a Visual Language Model for Few-Shot Learning. NeurIPS 2022 55

language

social cues

Open Challenges in Multi-Task and Meta Learning

Addressing fundamental problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?
- Algorithm, Model Selection: When will multi-task learning help you?

Benchmarks

- Breadth: That challenge current algorithms to find common structure
- Realistic: That reflect real-world problems

s, long-tailed task distributions m multiple modalities of data? multi-task learning help you?

nms to find common structure

Some steps towards good benchmarks

Meta-Dataset Triantafillou et al. '19

Taskonomy Dataset Zamir et al. '18

Meta-World Benchmark Yu et al. '19

VALUE Benchmark Li*, Lei* et al. '21

Goal: reflection of real world problems + appropriate level of difficulty + ease of use

Visual Task Adaptation Benchmark Zhai et al. '19

Open Challenges in Multi-Task and Meta Learning

Addressing fundamental problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?
- Algorithm, Model Selection: When will multi-task learning help you?

Benchmarks

- Breadth: That challenge current algorithms to find common structure
- Realistic: That reflect real-world problems

Improving core algorithms

- Computation & Memory: Making large-scale bi-level optimization practical

+ the challenges you discovered in your homework & final projects!

- Theory: Develop a theoretical understanding of the performance of these algorithms

The Bigger Picture

TD Gammon

Watson

Machines are specialists.

helicopter acrobatics

Source: <u>https://youtu.be/8vNxjwt2AqY</u>

A Step Towards Generalists

_

_

- learn multiple tasks in a single model (multi-task learning) leverage prior experience when learning new things (pre-training, meta-learning)
- _ _
- - leveraging *unlabeled* prior data (contrastive, generative) pre-training)

 - leveraging data from different domains (domain adaptation & generalization)
- learn continuously (lifelong learning) _

What's missing?

Some of what we covered in CS330:

Poster session next Weds 1:30-4:45 pm Details coming soon on Ed.

Final project report Due in two weeks on Monday.

Logistics

Guest lecture on Wednesday Percy Liang, on in-context learning

This is my last lecture!

Thank you all for a great quarter! (and see you on Weds)