Unsupervised pre-training for few-shot learning, vol. 2: reconstruction-based methods

CS 330

Logistics

- Project proposal due TODAY!
- Homework 2 due Monday, October 24

Kyle's office hours are hybrid going forward (see Ed for details)

Azure invites have been re-sent - you have one week to accept! You will need Azure for HW3, so do this today!

Plan for Today

Recap

- Problem formulation
- Contrastive learning

Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo

Goals for by the end of lecture:

- Familiarize you with widely-used methods for unsupervised pre-training
- Introduce methods for efficient fine-tuning of pre-trained models
- Prepare you for HW3

Topic of Homework 3!

Plan for Today

Recap

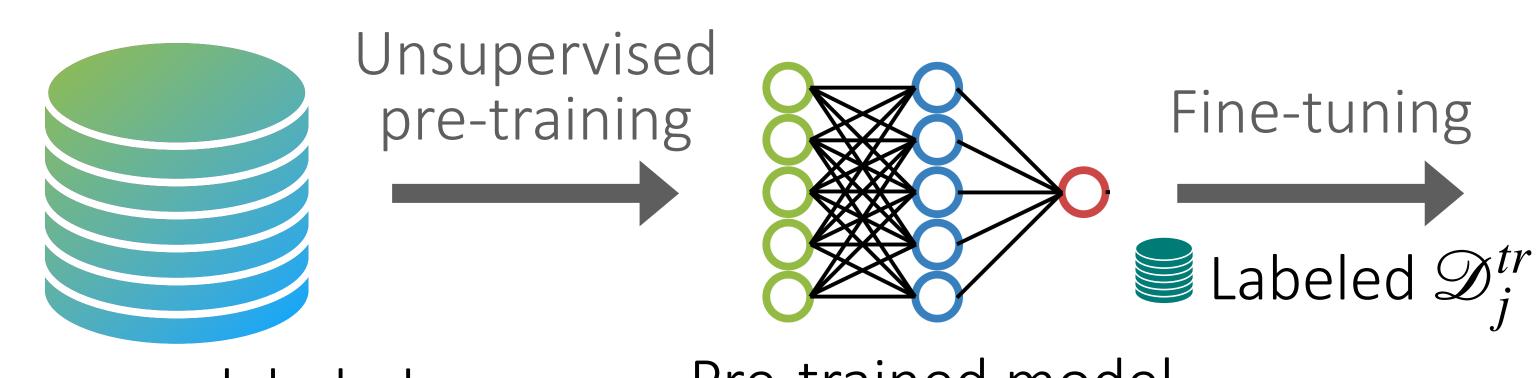
- Problem formulation
- Contrastive learning

Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo

AE amingo

Unsupervised Pre-Training Set-Up



Pre-trained model

Diverse unlabeled dataset $\{x_i\}$

Goal: Get predictor for task \mathcal{T}_j

Plan for Today

Recap

- Problem formulation
- Contrastive learning

Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo

AE amingo

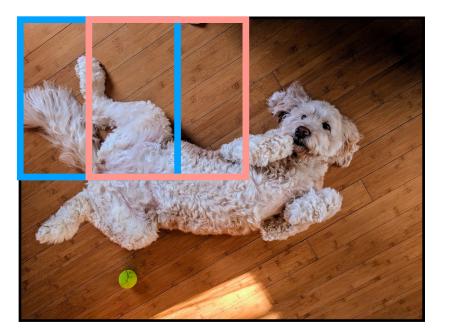
Key Idea of Contrastive Learning

Similar examples should have similar representations

Examples with the same class label

(Requires labels, related to Siamese nets, ProtoNets)

Nearby image patches



Dog credit to Maggie & Luke

van den Oord, Li, Vinyals. CPC. 2018; Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

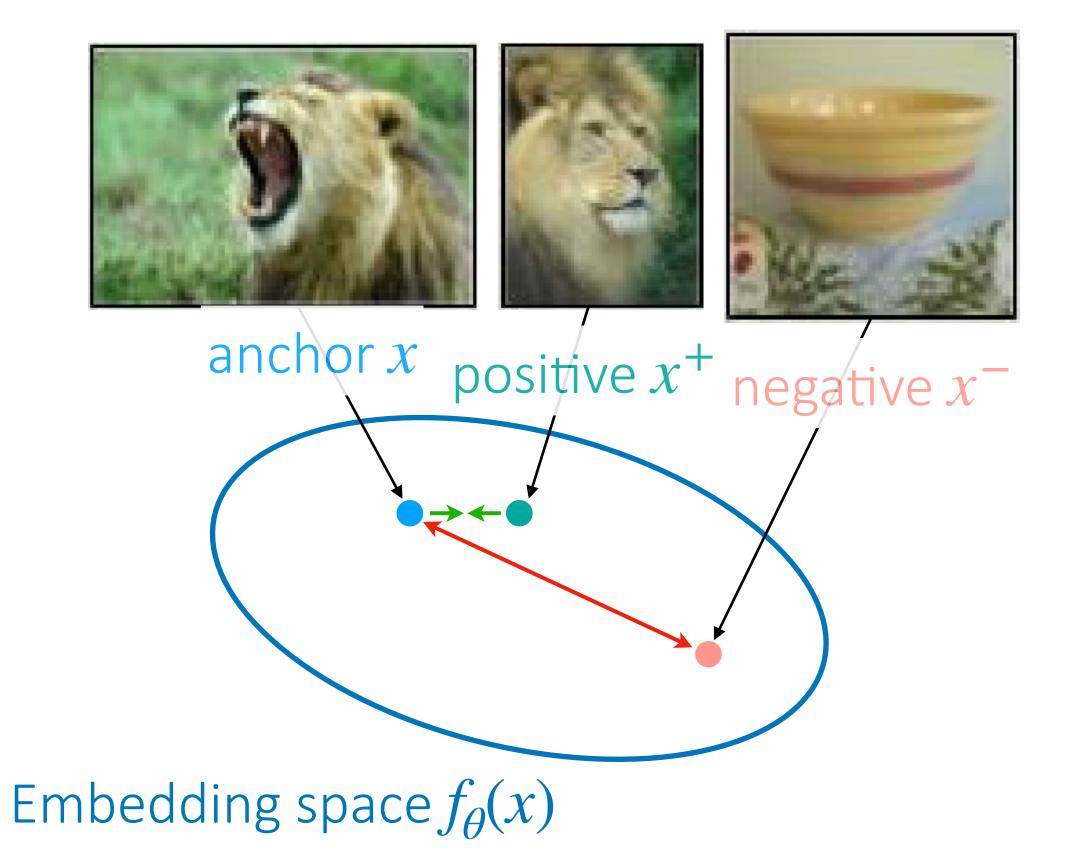
Augmented versions of the example

(flip & crop)

Nearby video frames

Contrastive Learning Implementation

Similar examples should have similar representations



Need to both **compare** & **contrast**!

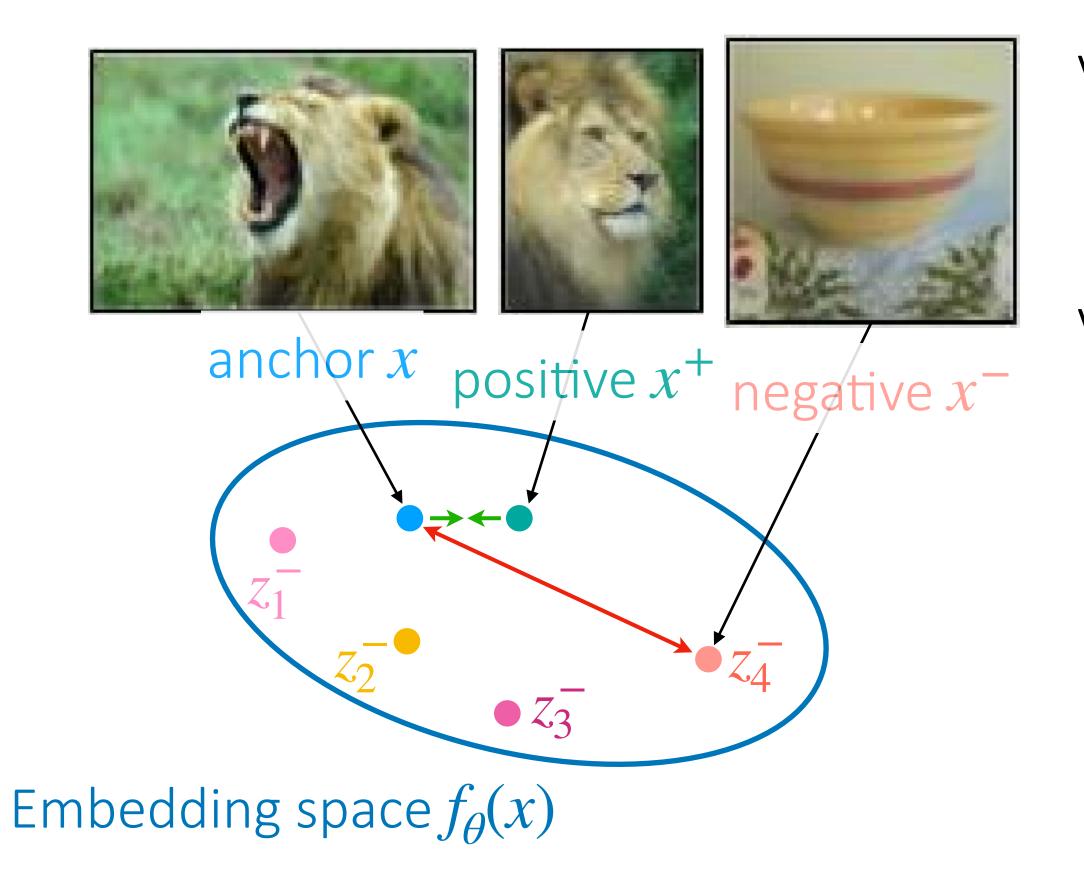
V1. Triplet loss:

 $\min_{\theta} \sum_{(x,x^+,x^-)} \max\left(0, \|f_{\theta}(x) - f_{\theta}(x^+)\|^2 - \|f_{\theta}(x) - f_{\theta}(x^-)\|^2 + \epsilon\right)$

Schroff, Kalenichenko, Philbin. CVPR 2015

Contrastive Learning Implementation

Similar examples should have similar representations



Sohn. N-Pair Loss Objective. NIPS 2016; Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Need to both **compare** & **contrast**!

V1. Triplet loss:

 $\min_{\Delta} \sum_{x \in \mathcal{A}} \max\left(0, \|f_{\theta}(x) - f_{\theta}(x^{+})\|^{2} - \|f_{\theta}(x) - f_{\theta}(x^{-})\|^{2} + \epsilon\right)$ (x,x^+,x^-)

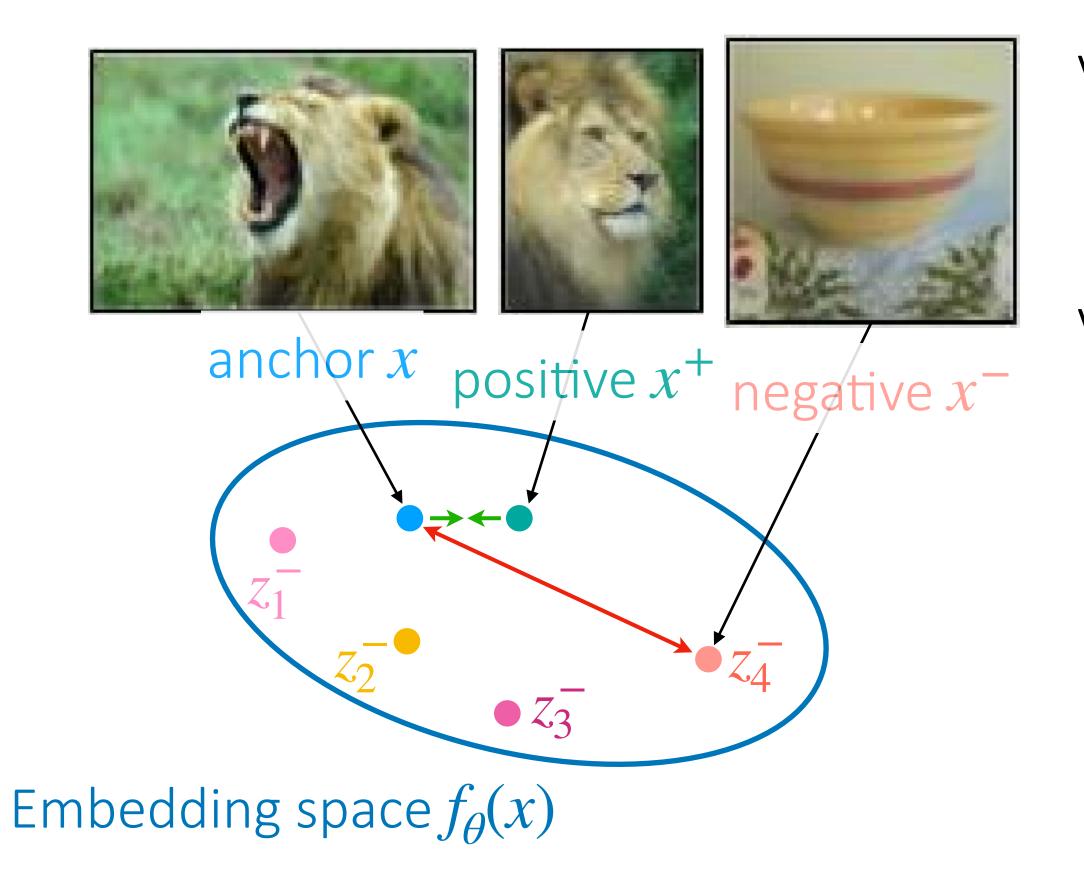
V2. From binary to N-way classification (aka **simCLR***):

$$\mathscr{L}_{\text{N-way}}(\theta) = -\sum_{z} \log \frac{\exp(-d(z, z^+))}{\sum_{i} \exp(-d(z, z_i^-))}$$

*also known as the **NT-Xent** loss, when $d(\cdot, \cdot)$ is scaled cosine similarity

Contrastive Learning Implementation

Similar examples should have similar representations



Sohn. N-Pair Loss Objective. NIPS 2016; Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Need to both **compare** & **contrast**!

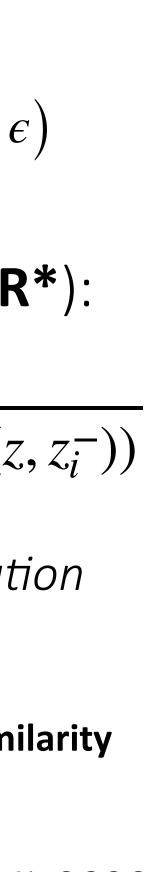
V1. Triplet loss:

$$\min_{\theta} \sum_{(x,x^+,x^-)} \max\left(0, \|f_{\theta}(x) - f_{\theta}(x^+)\|^2 - \|f_{\theta}(x) - f_{\theta}(x^-)\|^2 + \frac{1}{2} +$$

V2. From binary to N-way classification (aka **simCLR***): $\mathscr{L}_{\text{N-way}}(\theta) = -\sum_{z} \log \frac{\exp(-d(z, z^+))}{\exp(-d(z, z^+)) + \sum_{i} \exp(-d(z, z_i^-))}$

Positive score in denominator \rightarrow loss read as "*classification*" loss when discriminating positive pair from negatives"

*also known as the **NT-Xent** loss, when $d(\cdot, \cdot)$ is scaled cosine similarity



Plan for Today

Recap

- Problem formulation
- Contrastive learning

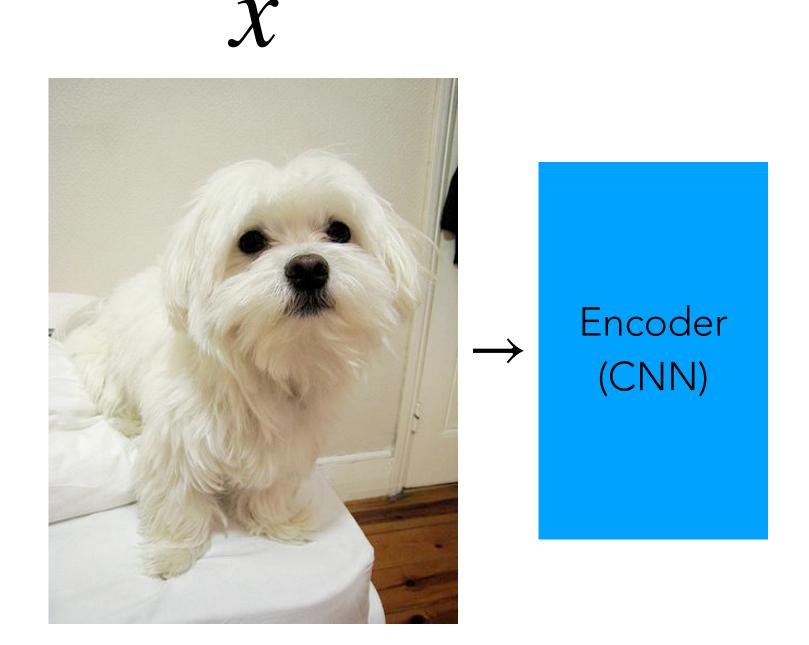
Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo
- Emergent behaviors in large models

AE amingo odels

Why reconstruction?

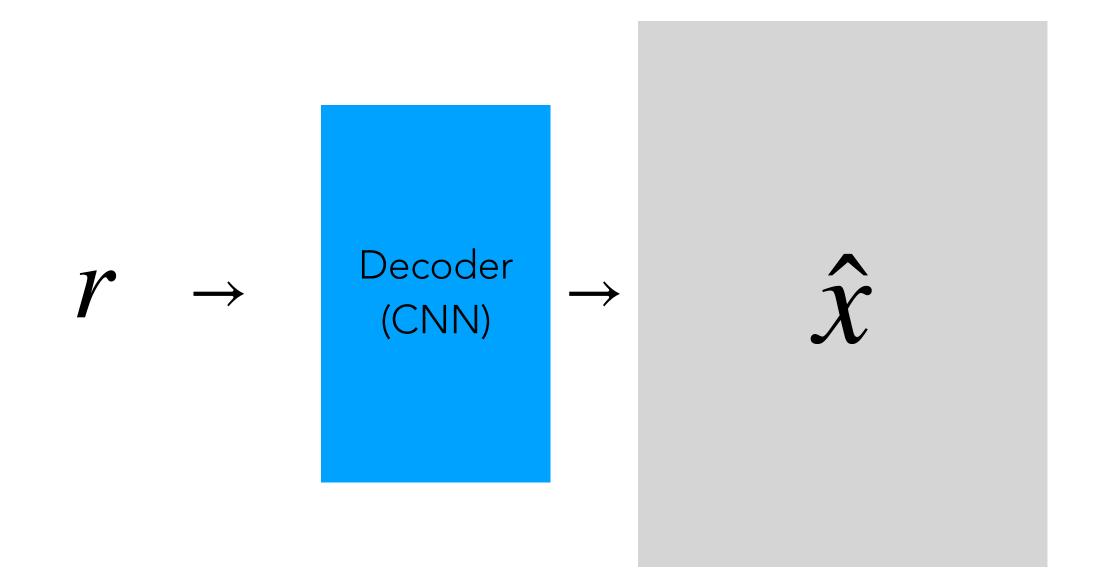
Simple intuition: a good representation of an input should be sufficient to **reconstruct** it



Input image, sentence, audio signal, etc.

If the encoder is producing a "good" representation, a reasonably-sized decoder should be able to produce **reconstruction** \hat{x} very close to **input** x from **representation** r

Bonus: no need to worry about pesky things like sampling negatives or large batch sizes!



Reconstruction of input image

Plan for Today

Recap

- Problem formulation
- Contrastive learning

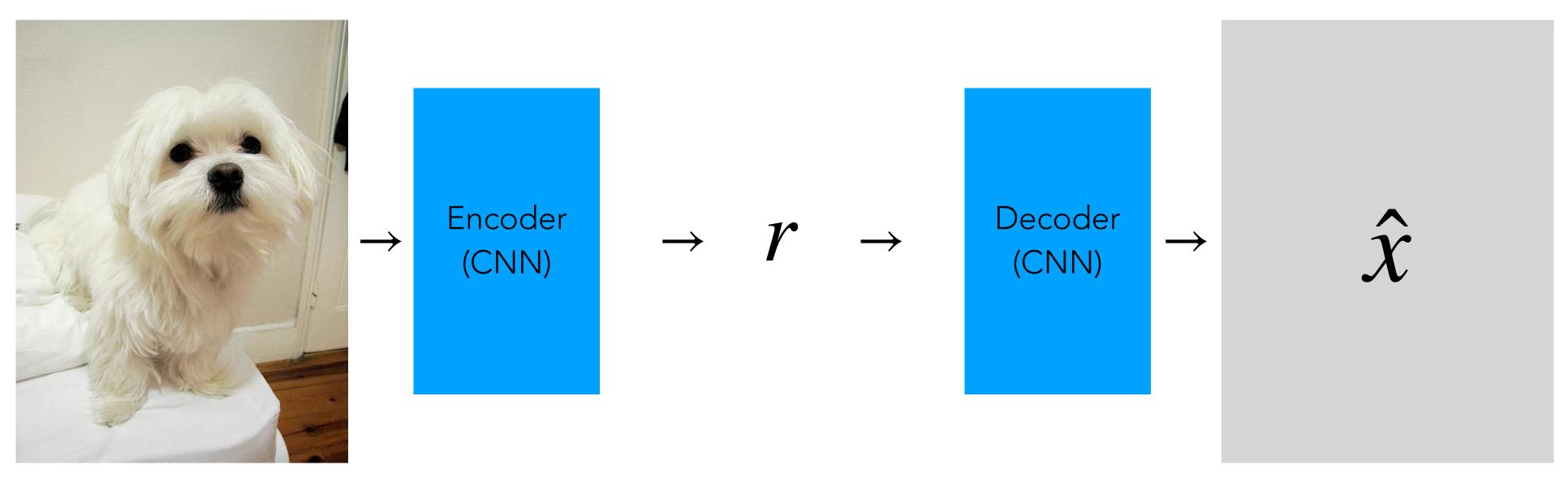
Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo
- Emergent behaviors in large models

AE amingo odels

Autoencoders: a first attempt

Simple intuition: a good representation lets us reconstruct the input



Input image, sentence, audio signal, etc.

What can go wrong here?

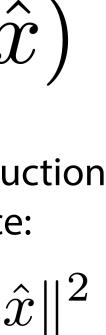
Is the identity function a good encoder/decoder?

Reconstruction of input image

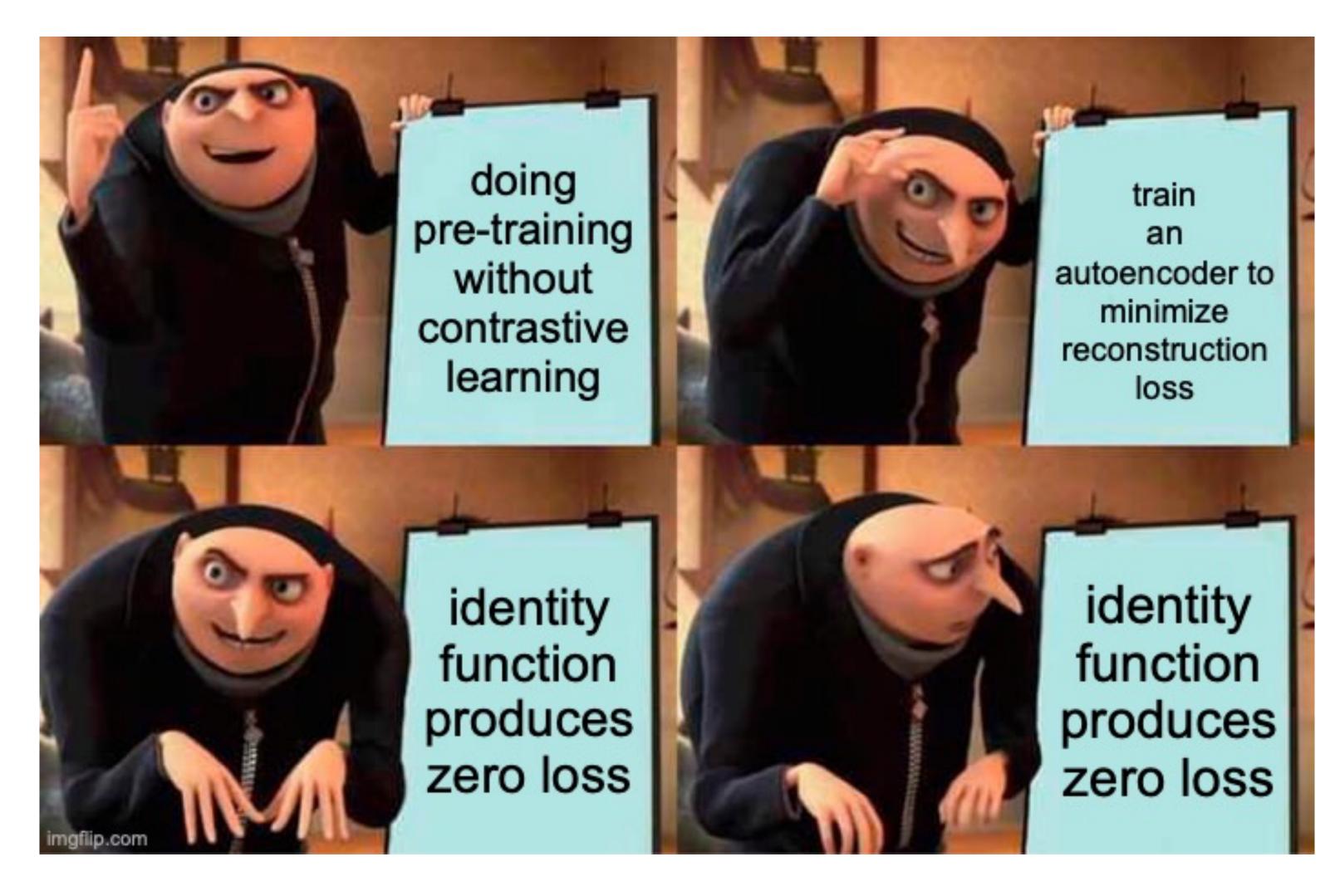
$\mathcal{L} = d(x, \hat{x})$

Loss function is reconstruction error, e.g. L2 distance:

 $d(x, \hat{x}) = \|x - \hat{x}\|^2$



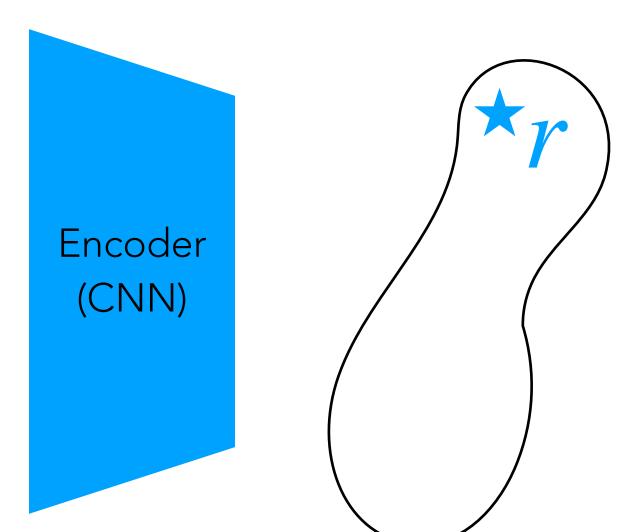
Autoencoders: a first attempt



How to fix???

Autoencoders: adding a bottleneck

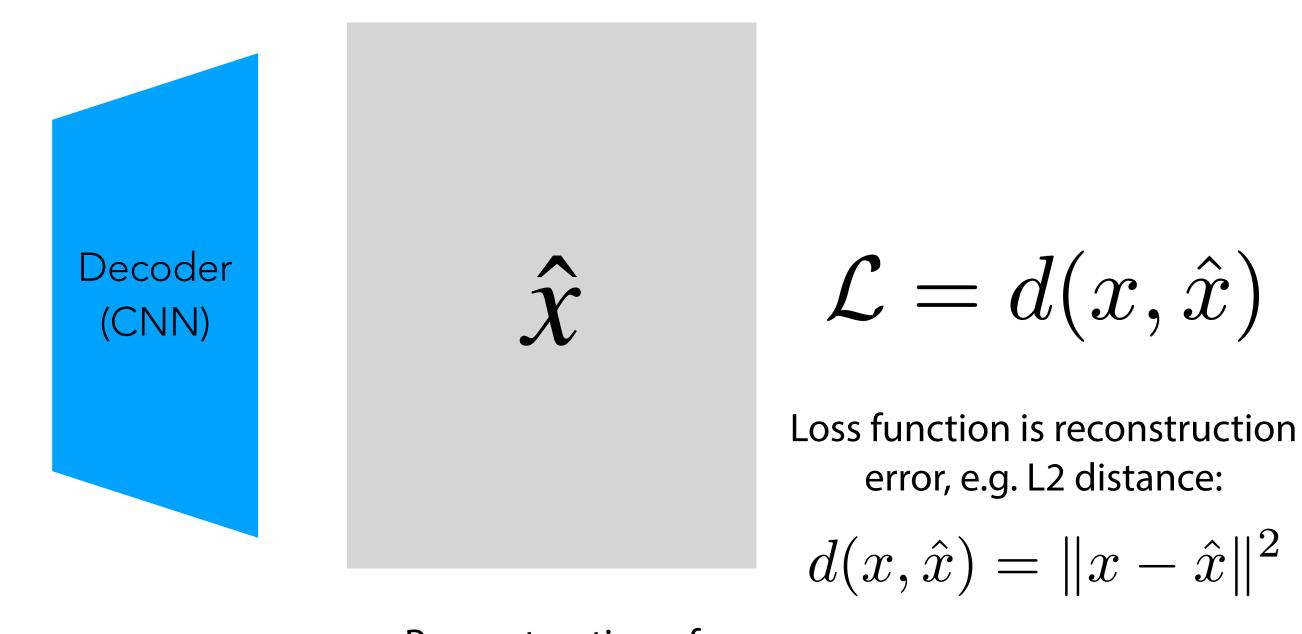
X



Input image, sentence, audio signal, etc.

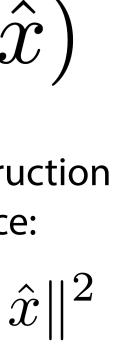
Compact, latent representation of input image

Key idea: latent representation is **bottlenecked**, e.g., lower-dimensional than the input



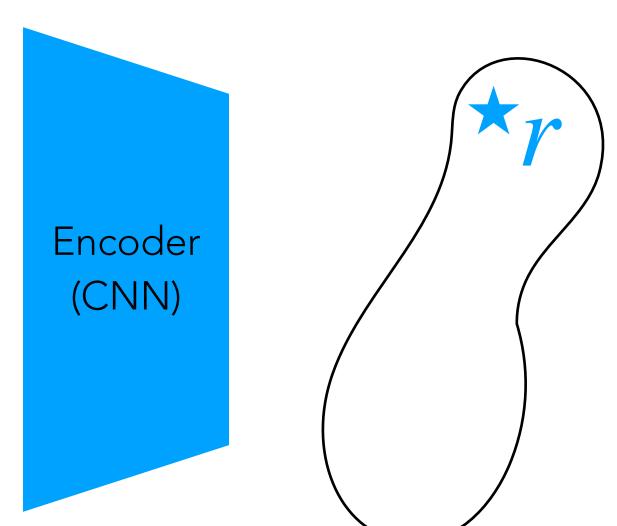
Reconstruction of input image

Hope: latent dimensions are forced to represent high-level concepts that generalize to other tasks

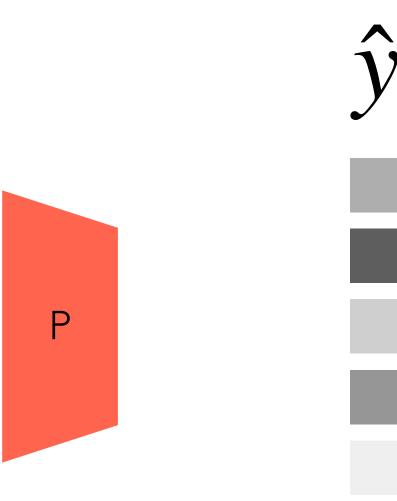


Autoencoders: few-shot learning

X



Few-shot learning recipe: freeze encoder, fine-tune prediction head using our few-shot data (e.g., a linear layer)



V

Prediction head mapping *r* to output space

Autoencoders

X

-

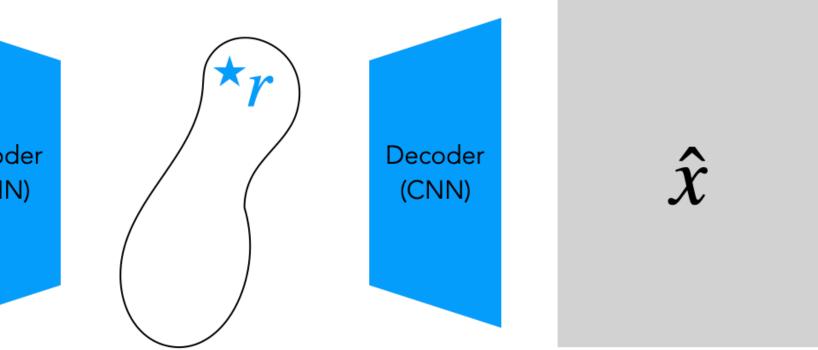
Pros:

- Simple, general
- Just need to pick $d(x, \hat{x})$
- No need to select positive/negative pairs

How do we encourage the encoder to extract high-level features?

One strategy is **other types of bottlenecks**:

- **information** bottlenecks (adding noise)
- **sparsity** bottlenecks (zero most dimensions)
- **capacity** bottlenecks (weak decoder)



Cons:

Need to design a bottlenecking mechanism Relatively poor few-shot performance

Why?

r is more like a **hash** of *x* than a conceptual summary

In practice, we'll stop worrying about designing bottlenecks and just make the task a little harder

Plan for Today

Recap

- Problem formulation
- Contrastive learning

Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo

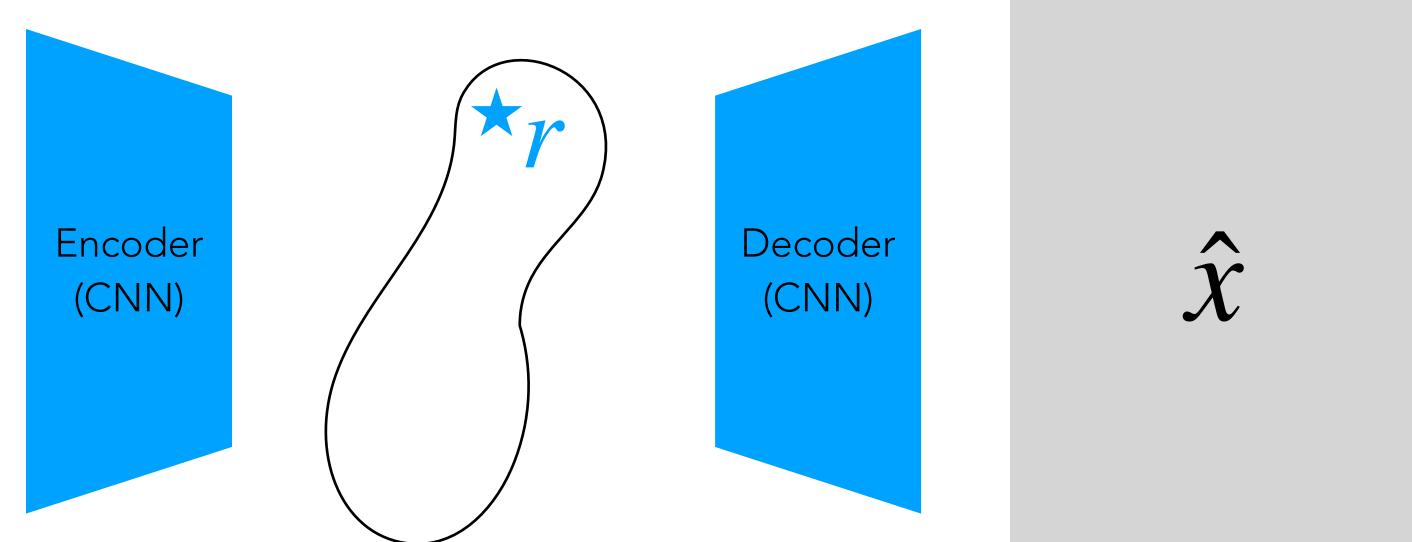
MAE amingo

Beyond the bottleneck: *masked* autoencoders

<u>Ultimately</u>, **regular** autoencoders are trying to predict x from ... x (through r)

 ${\mathcal X}$

Input image, sentence, audio signal, etc.



- We bottleneck z to avoid **totally degenerate** solutions, but what if the task is just "too easy", admitting unhelpful solutions?
- Masked autoencoders use a more difficult learning task to encourage the encoder to extract more meaningful features

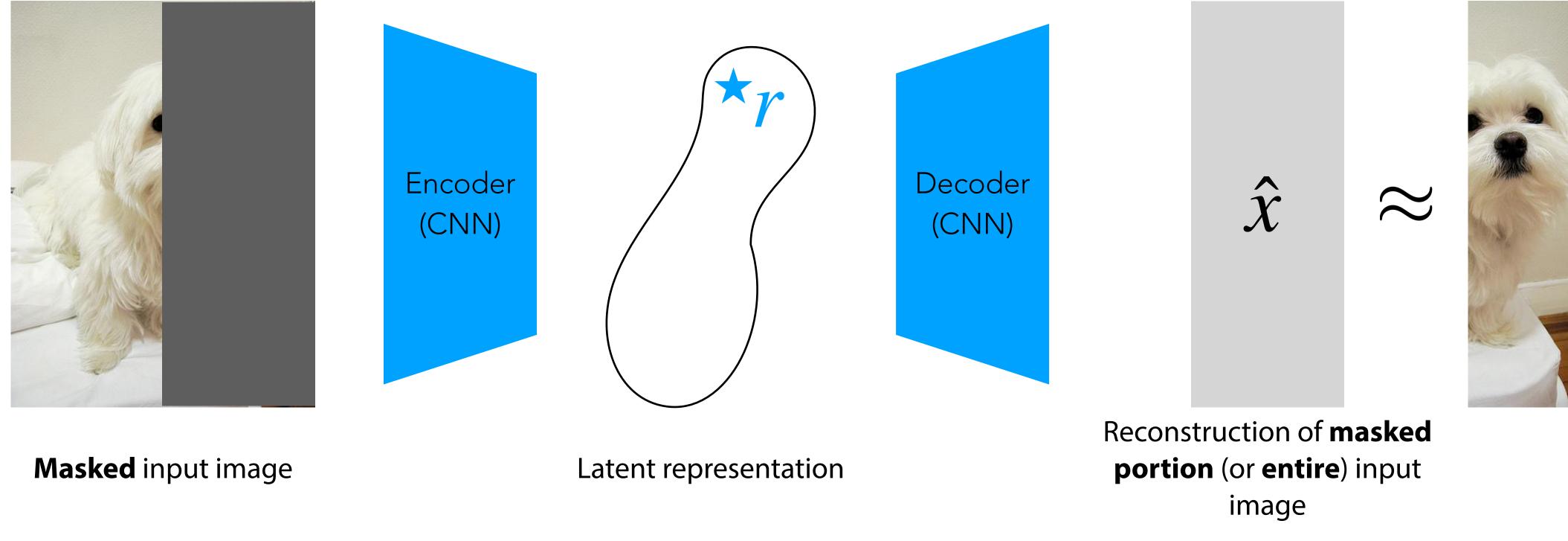
Compact, latent representation of input image **Reconstruction of** input image

Beyond the bottleneck: *masked* autoencoders

<u>Ultimately</u>, **regular** autoencoders are trying to predict x from ... x (through z)

We bottleneck z to avoid **totally degenerate** solutions, but what if the task is just "too easy", admitting unhelpful solutions?

Masked autoencoders use a more difficult learning task to encourage the encoder to extract more meaningful features ${\mathcal X}$



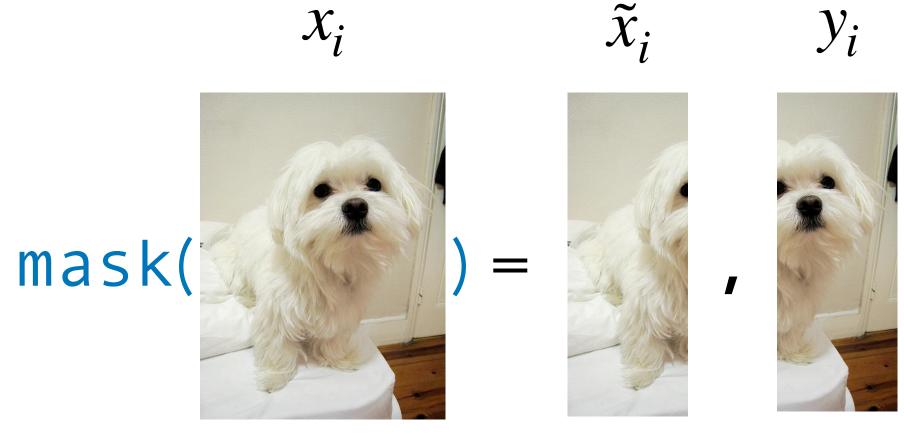
Beyond the bottleneck: *masked* autoencoders

<u>General recipe</u> for **pre-training** masked autoencoder f_{θ} :

- 1. Choose distance function $d(\cdot, \cdot) \rightarrow \mathbb{R}$
- 2. For **train batch** examples x_i :

These pieces are our design choices/control knobs

- **A.** Sample \tilde{x}_i , $y_i \sim \text{mask}(x_i)$
- **B.** Make prediction $\hat{y}_i = f_{\theta}(\tilde{x}_i)$
- **C.** Compute loss $\mathcal{L}_i = d(y_i, \hat{y}_i)$



 f_{θ} : CNN or **Transformer** (stay tuned)

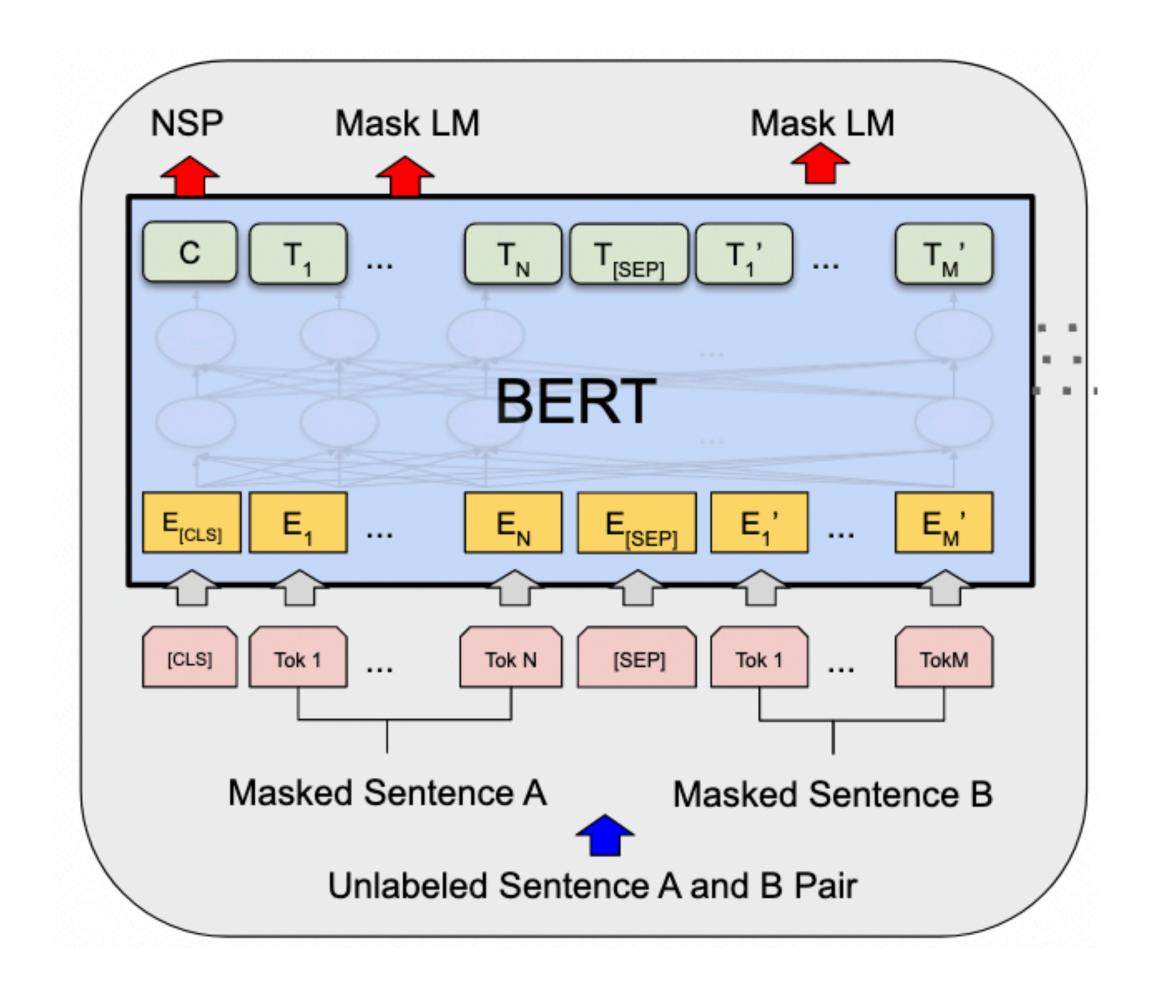
 $d(y, \hat{y}) = ||y - \hat{y}||^2$

 \tilde{x}_i , y_i are typically two **disjoint** sub-regions of x_i

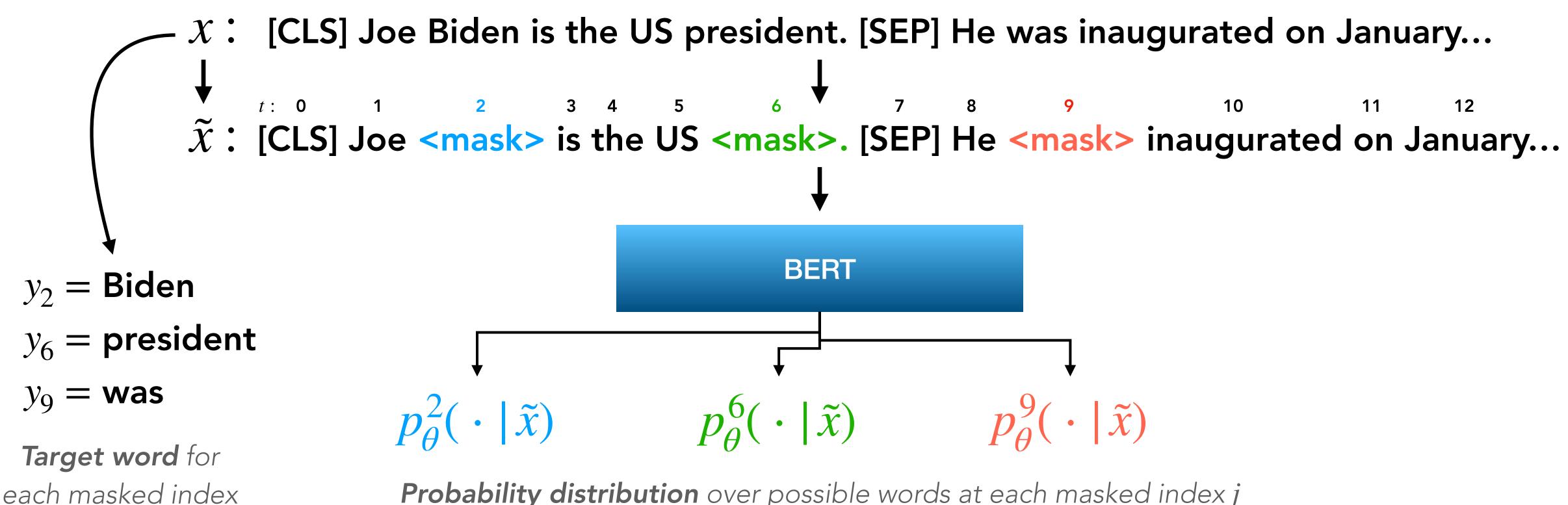
in some cases, the target y_i may be all of x_i

 X_i mask(Joe Biden is the US president) = y_i Joe <mask> is the US <mask>, { Biden; president } f_{θ} : Transformer (e.g., BERT; stay tuned) $d(y, \hat{y}) = \mathsf{KL}\left(y \| \hat{y}\right)$

Masked autoencoders for language: **BERT** (Devlin et al, 2017)



Case study: **BERT** as a masked autoencoder



$d(y, \hat{y}) = \sum \operatorname{KL}(y_i \| \hat{y}_i) = -\log p_{\theta}^2(\operatorname{Biden} | \tilde{x}) - \log p_{\theta}^6(\operatorname{president} | \tilde{x}) - \log p_{\theta}^9(\operatorname{was} | \tilde{x})$ **Details of BERT masking:**

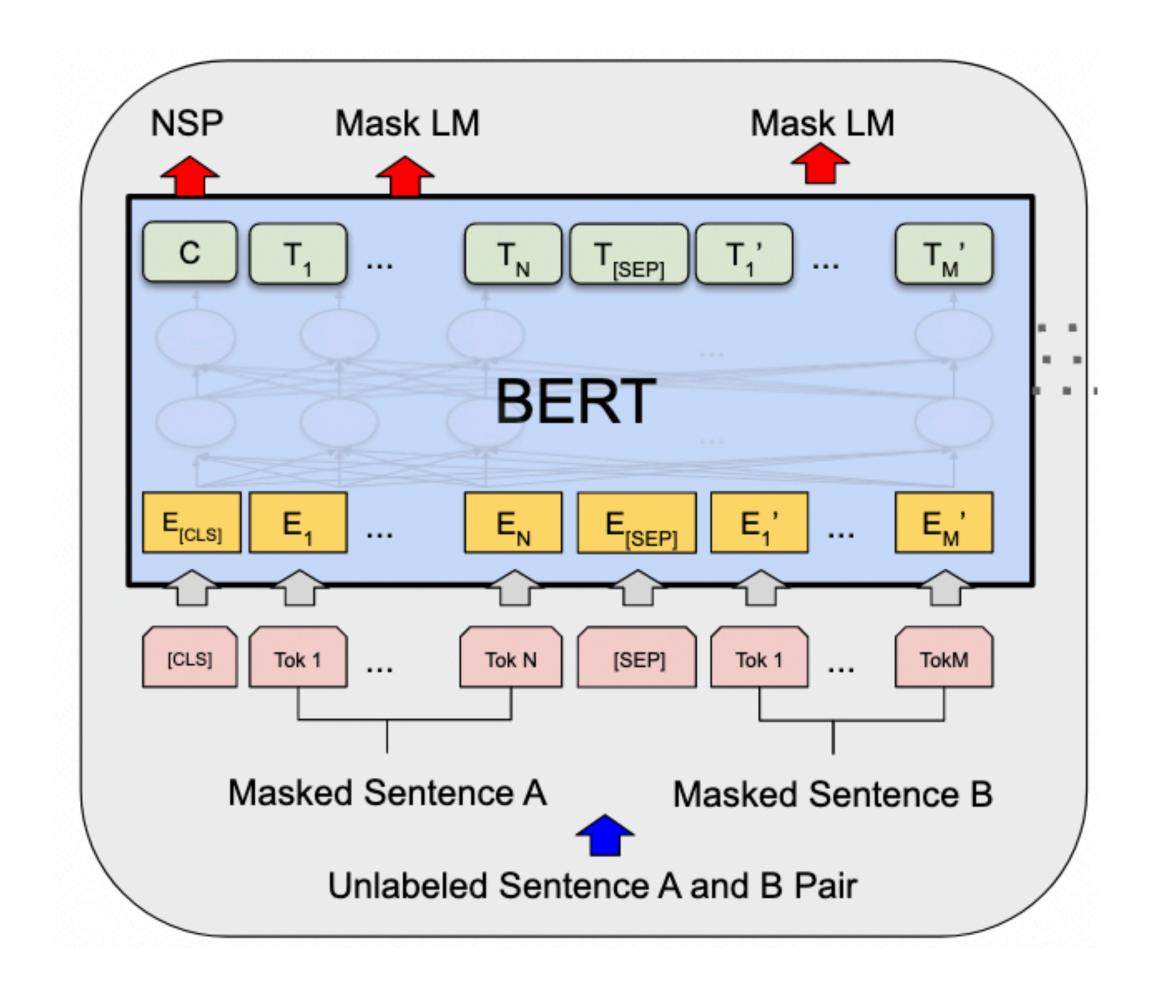
- 1. Choose **random 15%*** of input timesteps
- 2. Of these, **80%** are replaced with <mask> token
- 3. Replace **other 20%** with a **random** token

Probability distribution over possible words at each masked index j

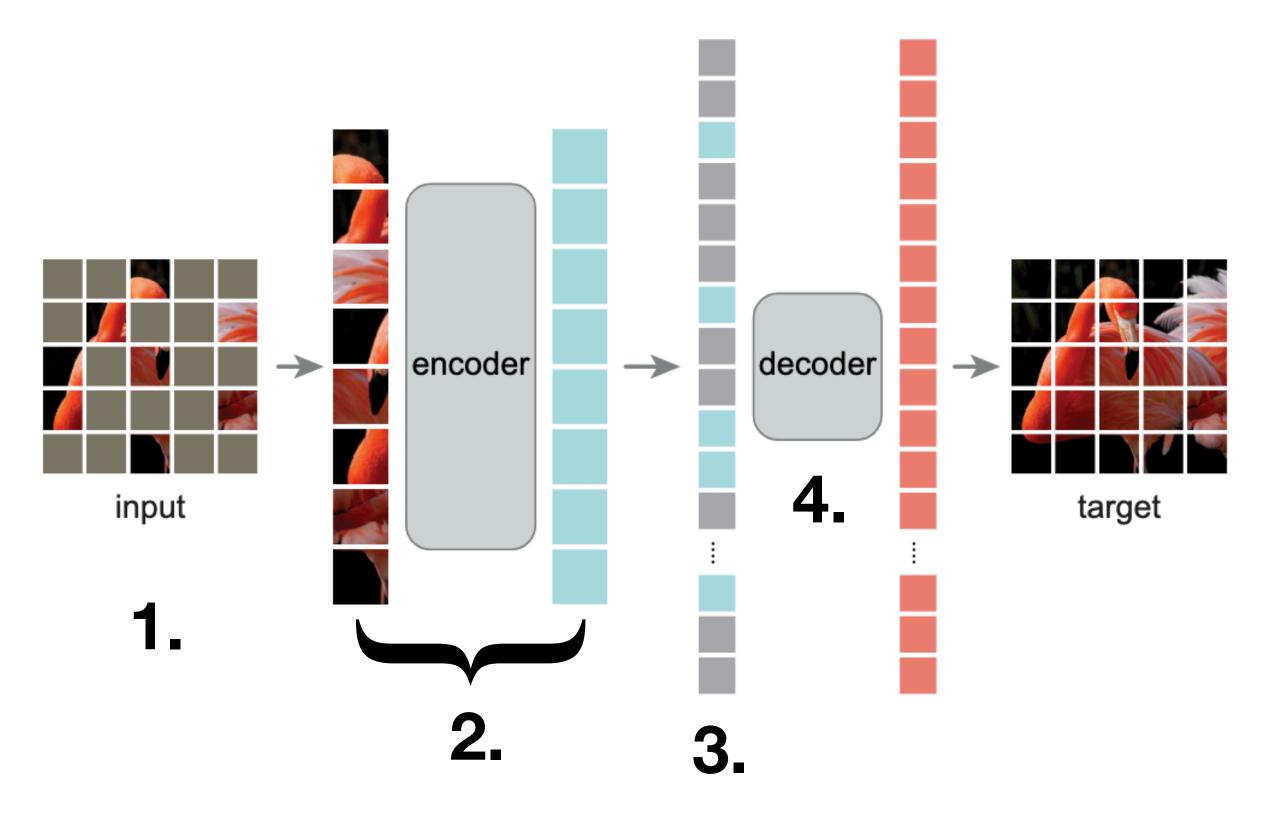
*It's possible we can do better than just picking **random** timesteps:

- Mask **longer** spans of text
- Selecting for **information-dense** spans

Masked autoencoders for language: **BERT** (Devlin et al, 2017)



For **images**: **MAE** (He et al, 2021)



Instead of words, we have a sequence of **image patches**

- 1. Mask ~75% of image patches
- 2. Compute representations of **only** unmasked patches
- 3. Insert **placeholder** patches at masked locations
- 4. Decode back into original image

Fine-tune on top of the output of **step 2**

More recently: Masked AEs give state-of-the-art few-shot image classification performance

The unsupervised masked autoencoding recipe works better than pre-training with labels on the same data!

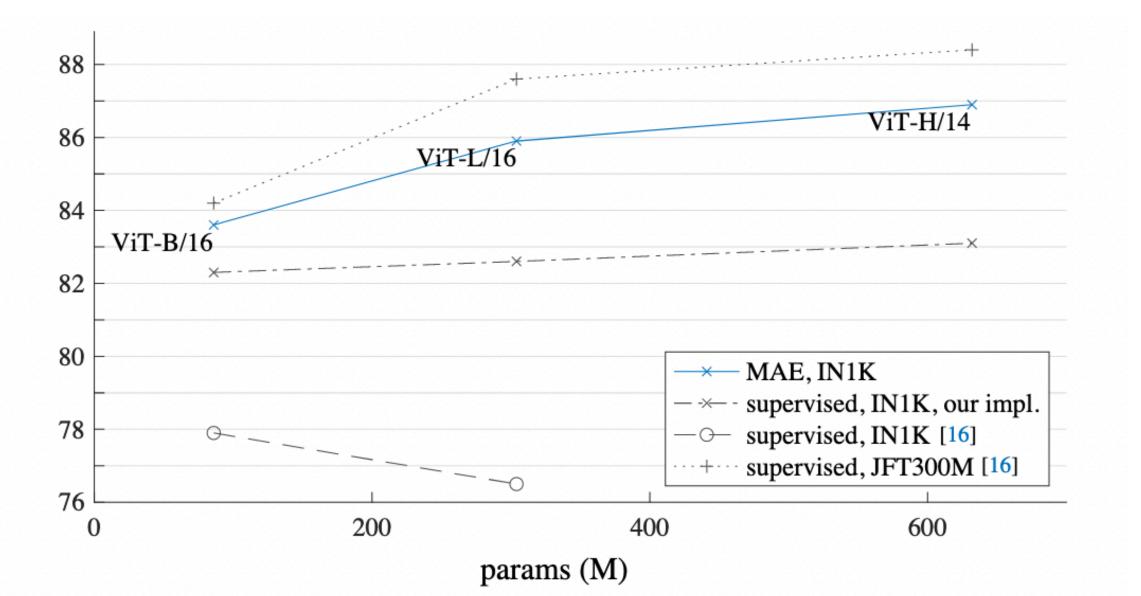
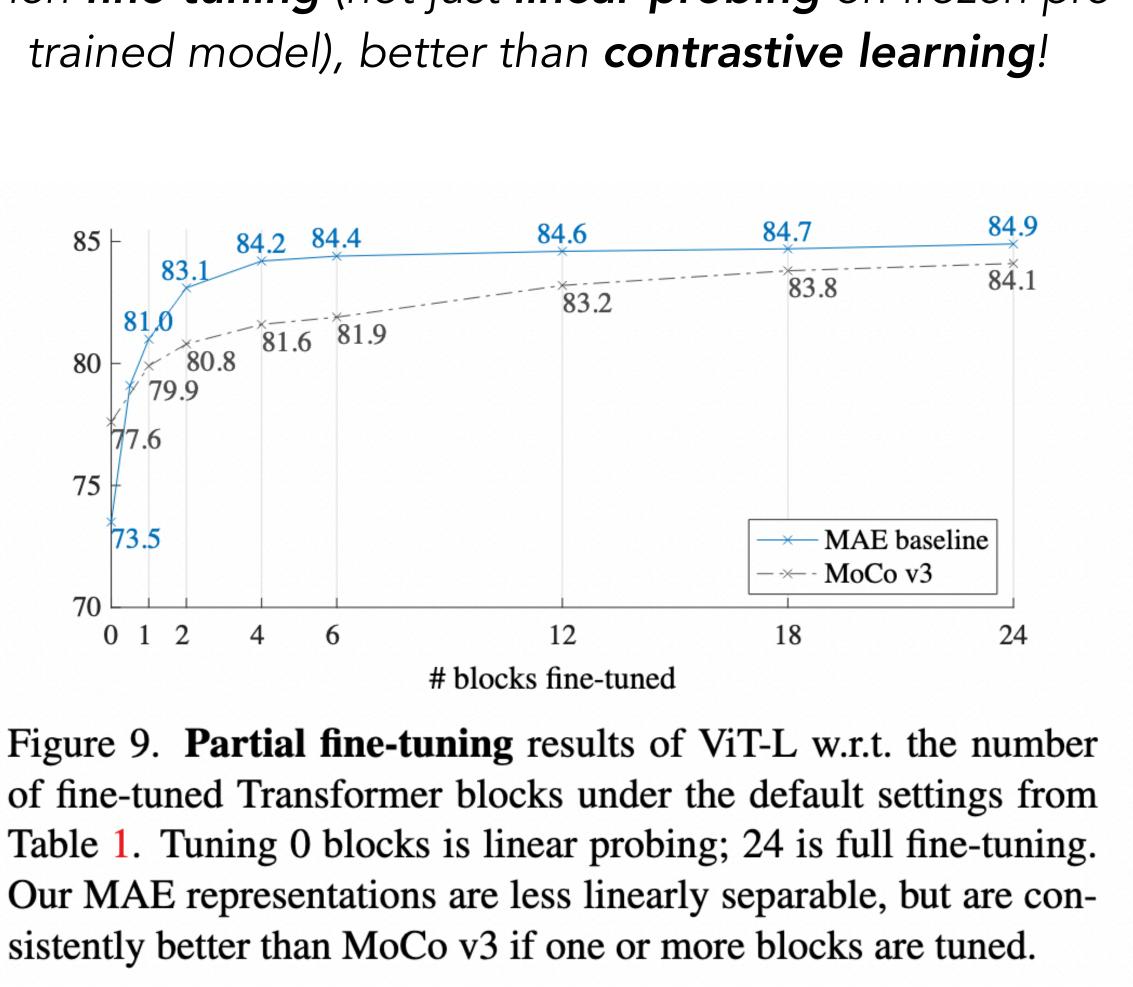


Figure 8. MAE pre-training vs. supervised pre-training, evaluated by fine-tuning in ImageNet-1K (224 size). We compare with the original ViT results [16] trained in IN1K or JFT300M.

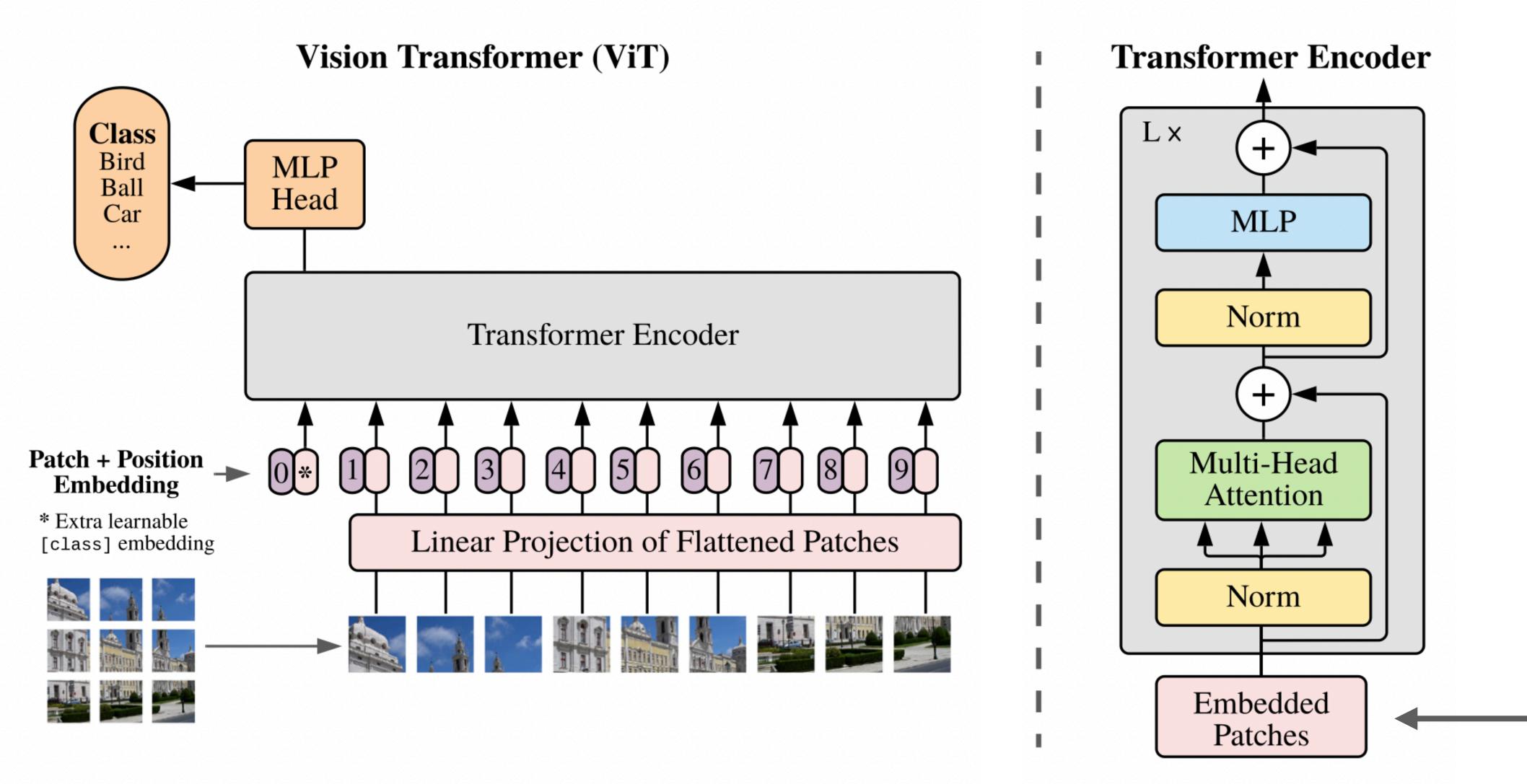
When **fine-tuning** (not just **linear probing** on frozen pre-



He et al, 2021

A (very quick) overview of Transformers

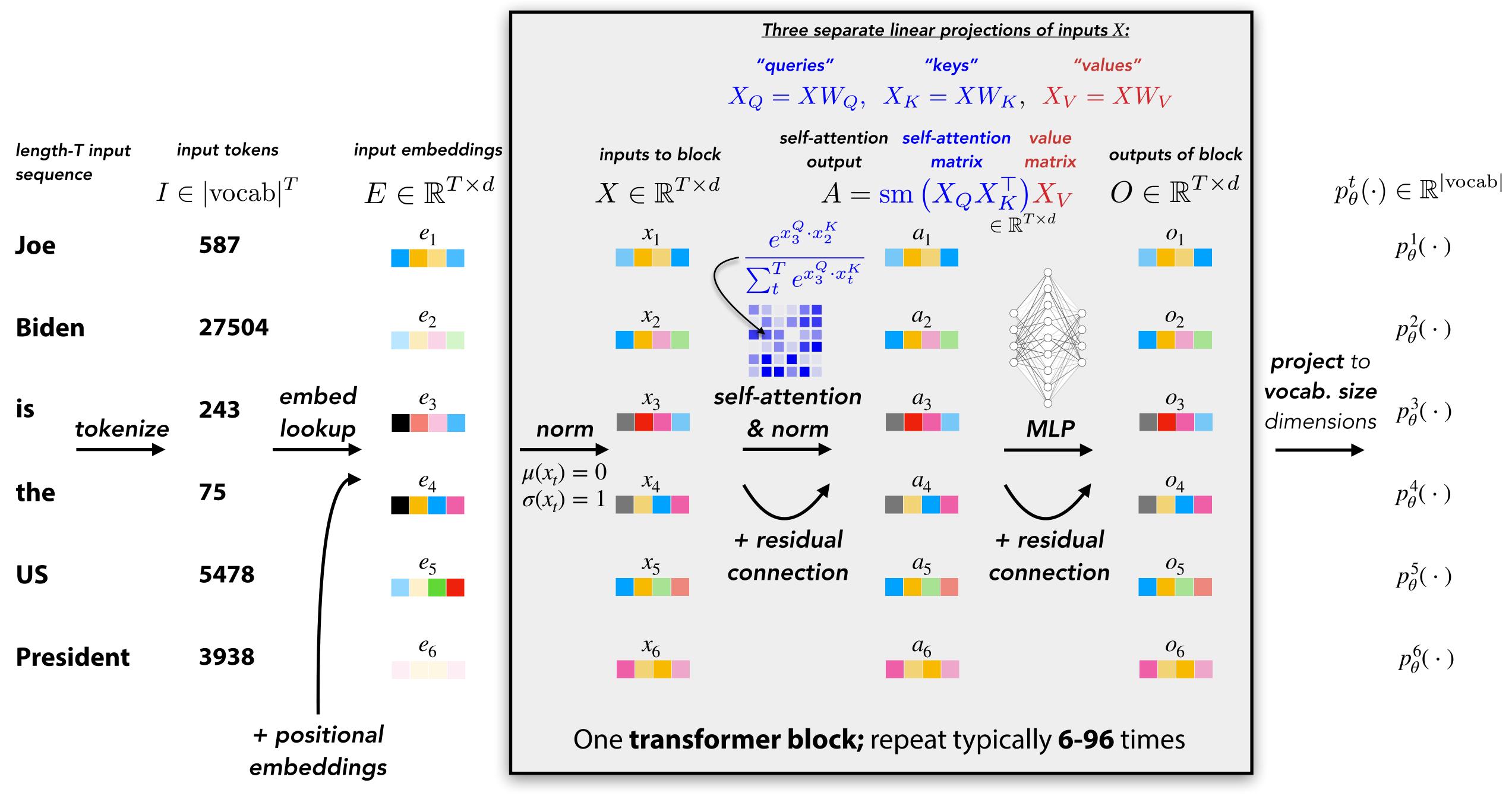
A (very quick) overview of Transformers



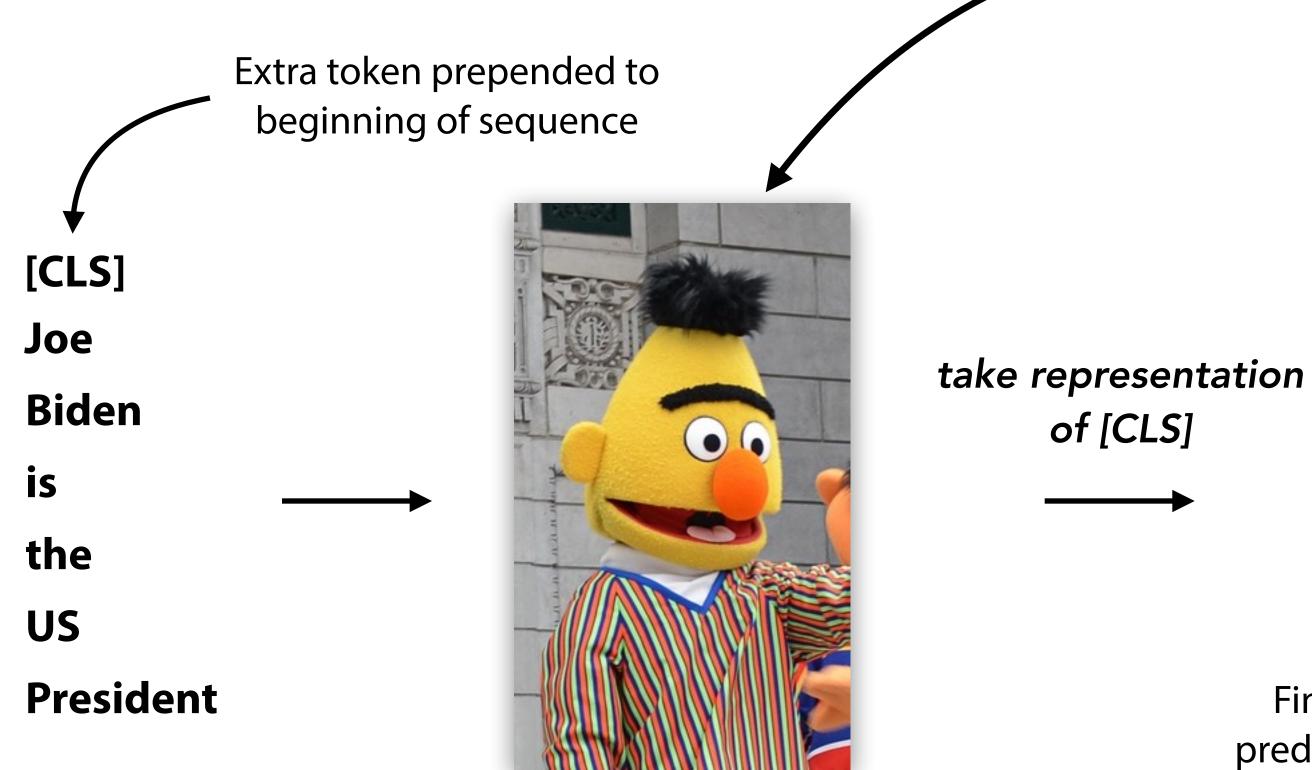
ViT; Dosovitskiy, Beyer, Kolesnikov, et al. (2021)

The ~only difference between Transformers for vision/language/RL/molecules/etc. is what we do for this initial embedding step -

Transformers in a bit more detail



So... how do we pre-train fine-tune Transformers?



What should we do with the parameters of **this** guy during fine-tuning?

Fine-tune new prediction head on top of [CLS] rep.

Options:

- 1. Freeze them
- 2. Fine-tune them
- 3. **Something** else???
 - a. Fine-tune **some** of them?
 - b. Freeze and inject **new** parameters?

LoRA: Low-rank adaptation of language models (Hu et al., 2021)

What if we just want to fine-tune our model... "a little bit"? What does "a little bit" even mean? <discuss>

- Preserve the knowledge in the pre-trained model (to avoid overfitting)
- 2. Avoid needing to store a **new version** of **every single** parameter in the model (to save space)

LoRA: Low-rank adaptation of language models (Hu et al., 2021)

What does "a little bit" even mean? <discuss> What if we just want to fine-tune our model... "a little bit"?

> Associative [key-value] memory view of linear transform (Kohonen, 1972)

Consider the **linear transform**, the building block of NNs & Transformers

 $W = \sum_{r} v_r u_r^{T}$ For rank-r matrix, we have this decomposition (with orthogonal u_r by SVD) *r* Therefore, $Wx = \left(\sum_{r} v_{r} u_{r}^{\mathsf{T}}\right) x = \sum_{r} v_{r} \left(u_{r}^{\mathsf{T}} x\right) \rightarrow \begin{array}{c} Wx \text{ produces a sum over the 'memories' } v_{r} \\ \text{weighted by the relevance } u_{r}^{\mathsf{T}} x \text{ (each } u_{r} \text{ is a 'key')} \end{array}$

р

"A little bit" means only add a few memories \rightarrow only make a low-rank change to W

LoRA:
$$W_{ft} = W_0 + A$$

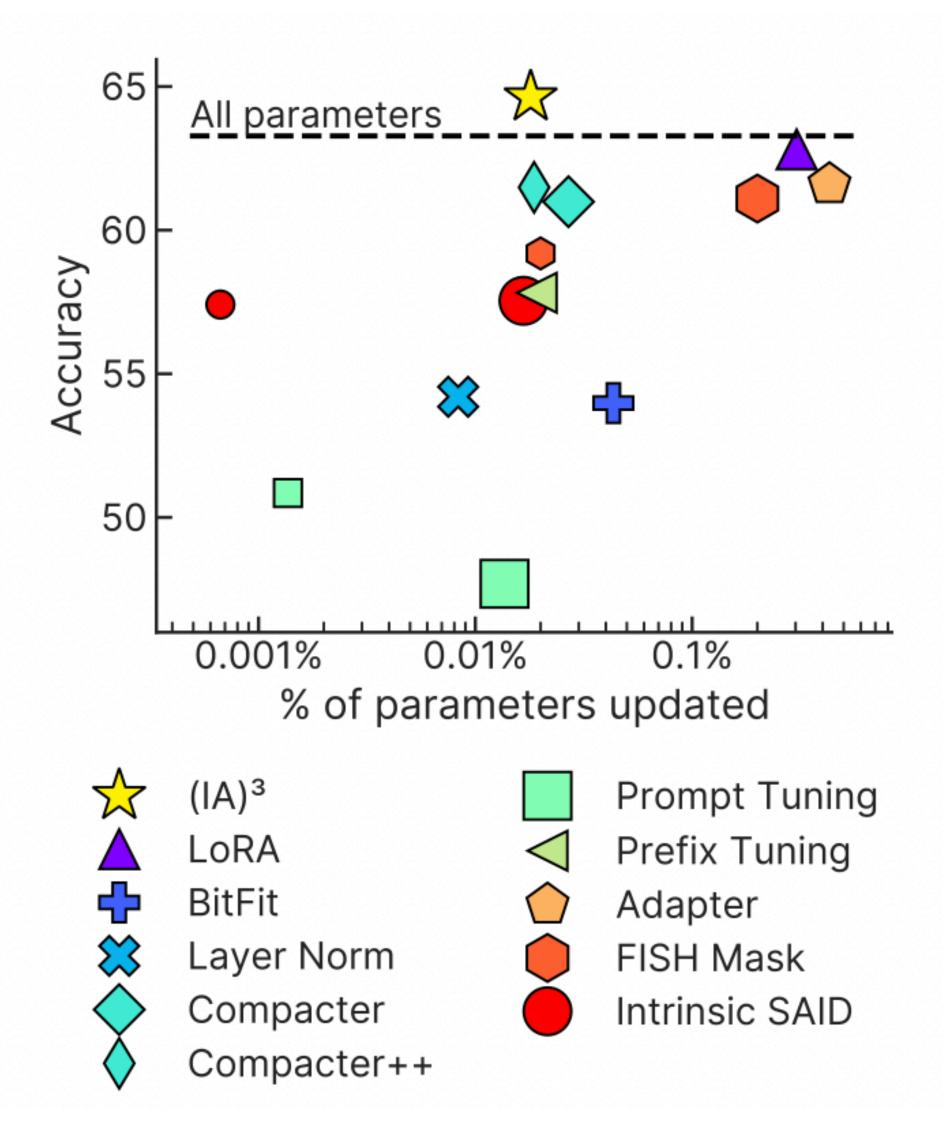
re-trained weights (frozen)

- 1. Preserve the **knowledge** in the **pre-trained model** (to avoid overfitting)
- 2. Avoid needing to store a **new version** of **every**

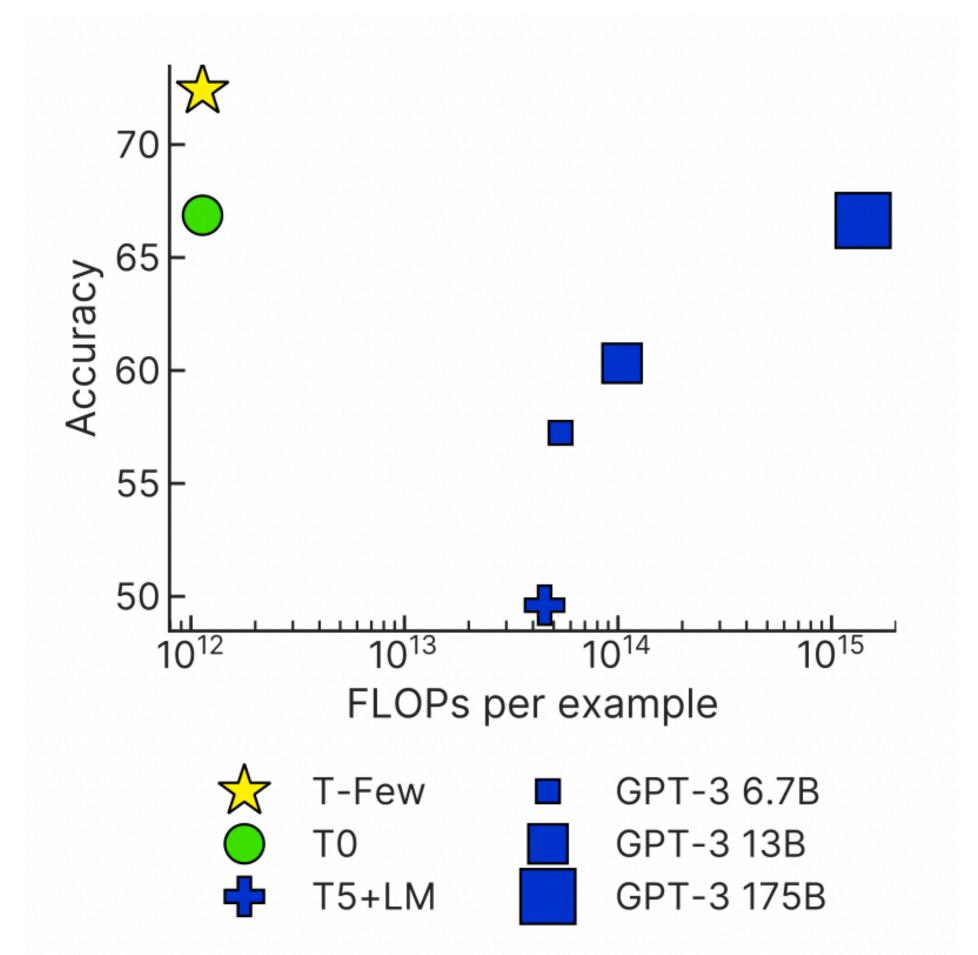
single parameter in the model (to save space)

 $\mathbf{S}^{\mathsf{T}}, A, B \in \mathbb{R}^{d \times p}$ new low-rank residual (fine-tuned) AB^{\top} should be **zero-initialized (how?)**

(Many) other approaches to "lightweight" fine-tuning

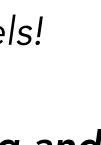


T-Few; Lu, Tam, Muqeeth, et al. (2022)



When "few-shot" means ~20-70, lightweight fine-tuning (T-Few) can outperform in-context learning in **much** larger models!

> You will compare fine-tuning and in-context learning in HW3!



Plan for Today

Recap

- Problem formulation
- Contrastive learning

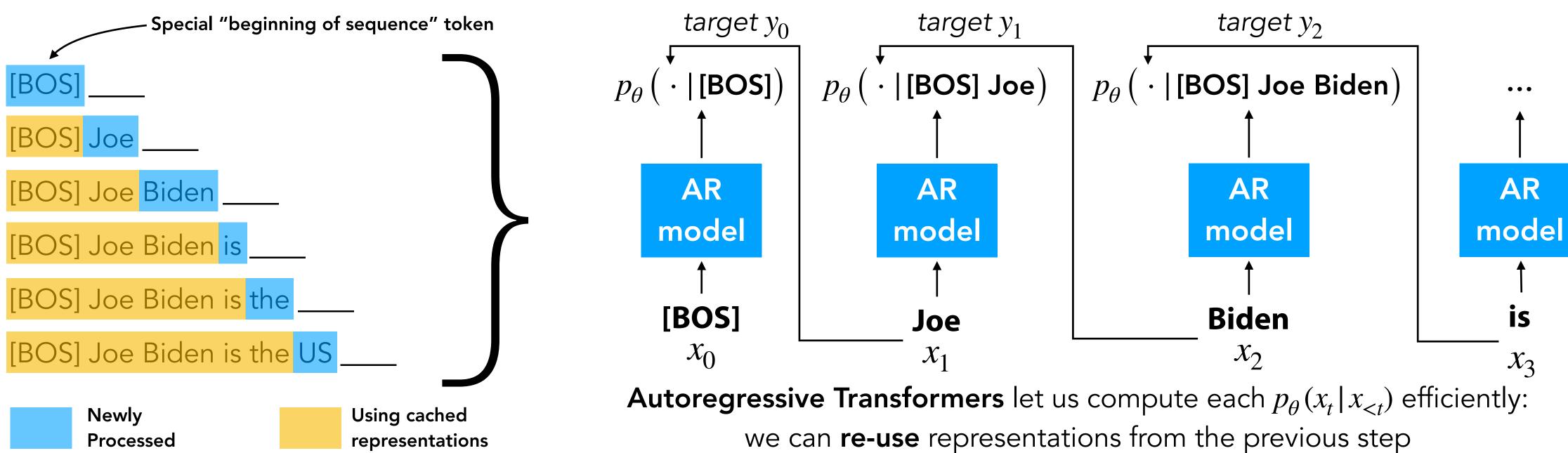
Reconstruction-based unsupervised pre-training

- Why reconstruction?
- Autoencoders
- Masked autoencoders: BERT, MAE
- Autoregressive models: GPT, Flamingo

Striving for simplicity: autoregressive models

- 1. Need to pick mask
- 2. Only using ~15% of the example for training 3. Difficult to sample from

Instead of masking a **random subset**, what if we just predict the next word/pixel/token?



(recall from the black-box meta-learning lecture!)

What are some **downsides** of masked autoencoders?

- No need to pick a masking strategy; mask every token!
- Simply learn $p_{\theta}(x_t | x_{< t})$, probability of the **next token** given the **previous tokens**

Improving Language Understanding by Generative Pre-Training

Language Models are Unsupervised Multitask Learners

Language Models are Few-Shot Learners

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

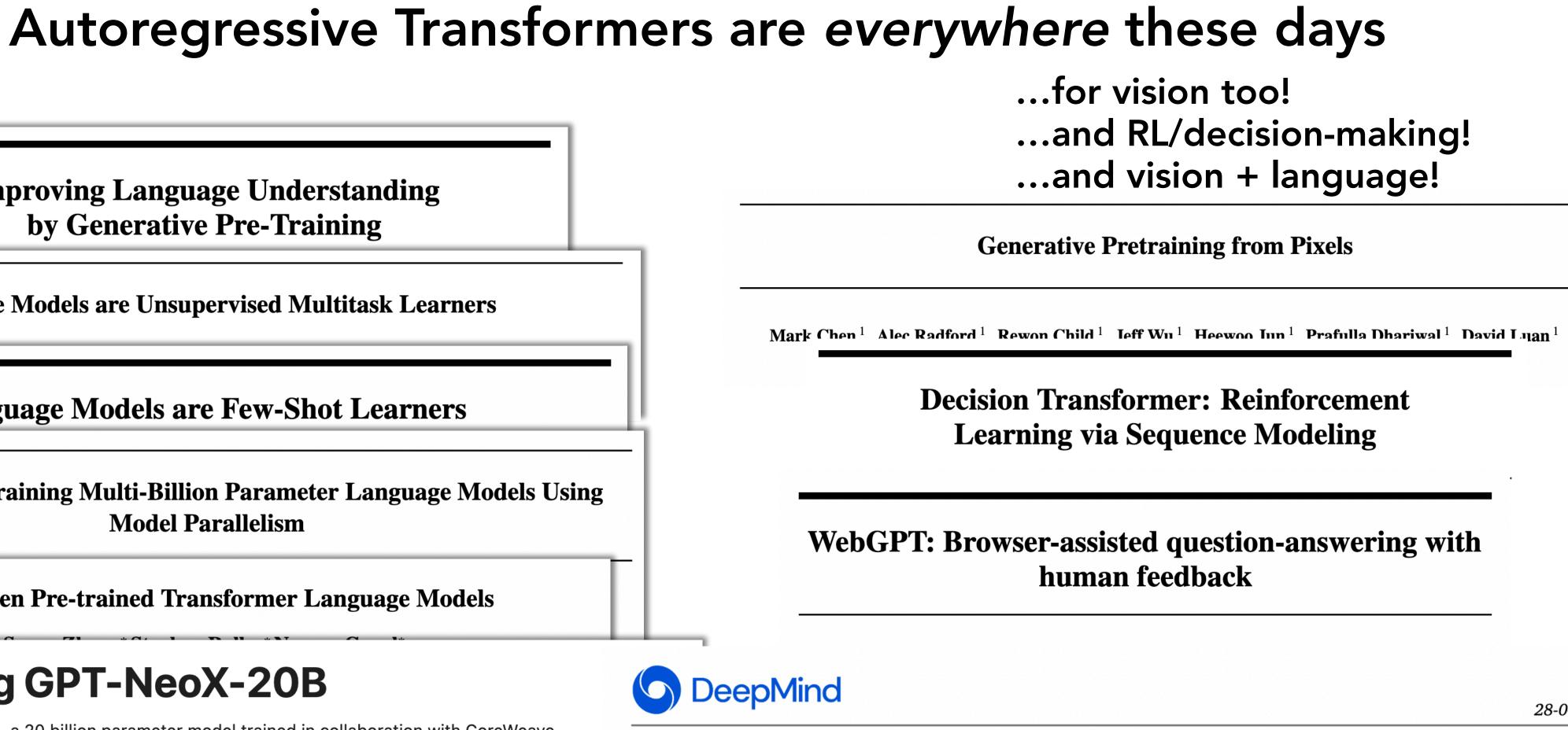
OPT: Open Pre-trained Transformer Language Models

Announcing GPT-NeoX-20B

Announcing GPT-NeoX-20B, a 20 billion parameter model trained in collaboration with CoreWeave. February 2, 2022 · Connor Leahy

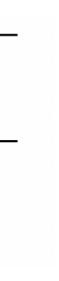
As of February 9, 2022, GPT-NeoX-20B checkpoints are available for download from The Eye unde Apache 2.0. More in-depth information on GPT-NeoX-20B can be found in the associated technical report on arXiv.

Looking for a demo? Try GPT-NeoX-20B via CoreWeave and Anlatan's inference service, GooseAI!



Flamingo: a Visual Language Model for Few-Shot Learning

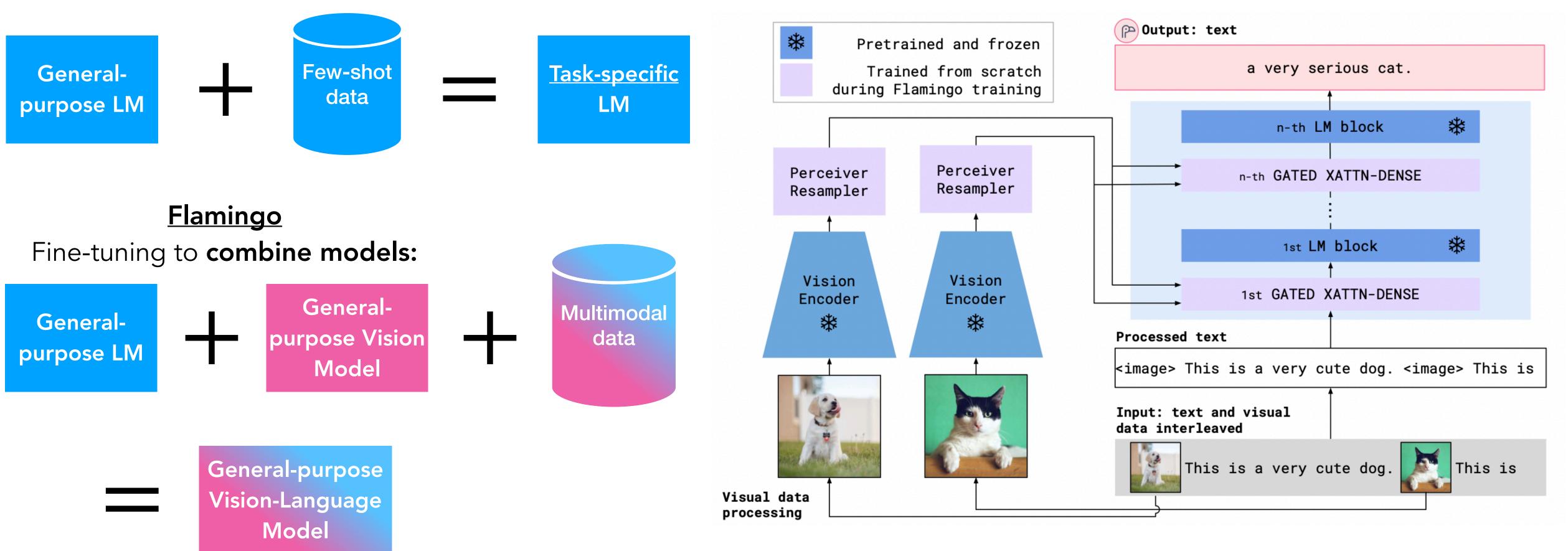
Jean-Baptiste Alayrac^{*,‡}, Jeff Donahue^{*}, Pauline Luc^{*}, Antoine Miech^{*}, Iain Barr[†], Yana Hasson[†], Karel Lenc[†], Arthur Mensch[†], Katie Millican[†], Malcolm Reynolds[†], Roman Ring[†], Eliza Rutherford[†], Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan^{*,‡} *Equal contributions, ordered alphabetically, [†]Equal contributions, ordered alphabetically, [‡]Equal senior contributions



Case study: Flamingo

How would you build a multimodal autoregressive model? From scratch? (NO)

[so far] Fine-tuning to **specialize:**



Flamingo: a Visual Language Model for Few-Shot Learning

Jean-Baptiste Alayrac^{*,‡}, Jeff Donahue^{*}, Pauline Luc^{*}, Antoine Miech^{*}, Iain Barr[†], Yana Hasson[†], Karel Lenc[†], Arthur Mensch[†], Katie Millican[†], Malcolm Reynolds[†], Roman Ring[†], Eliza Rutherford[†], Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan^{*,‡} ^{*}Equal contributions, ordered alphabetically, [†]Equal contributions, ordered alphabetically, [‡]Equal senior contributions

Case study: Flamingo

Vision to Text tasks (input=vision, output=text)

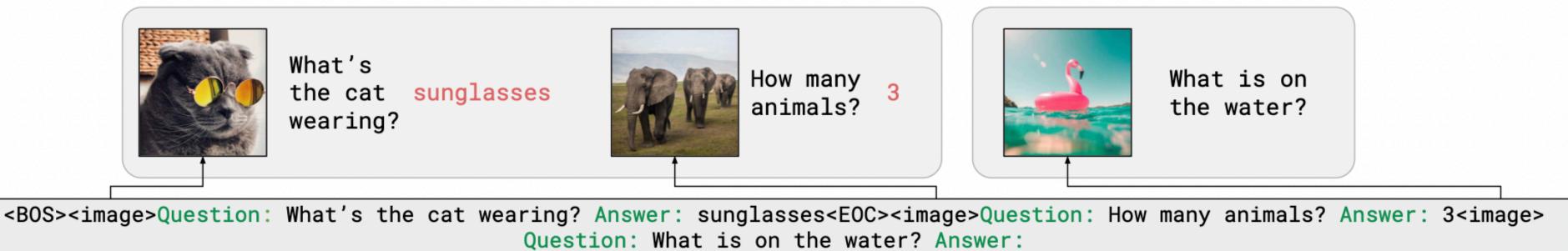
Support examples

A cat wearing sunglasses.

<BOS><image>Output: A cat wearing sunglasses.<EOC><image>Output: Elephants walking in the savanna.<EOC><image>Output:

Support examples

What's the cat sunglasses wearing?

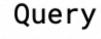


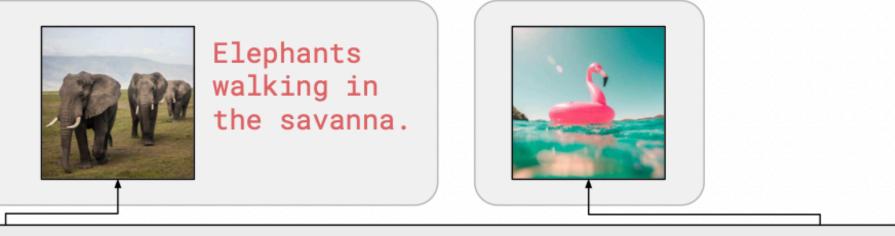
In-context few-shot learning on sequences that freely mix **text** and **images!** Enables few-shot captioning, visual question-answering, etc.

28-04-2022

Flamingo: a Visual Language Model for Few-Shot Learning

Jean-Baptiste Alayrac^{*,‡}, Jeff Donahue^{*}, Pauline Luc^{*}, Antoine Miech^{*}, Iain Barr[†], Yana Hasson[†], Karel Lenc[†], Arthur Mensch[†], Katie Millican[†], Malcolm Reynolds[†], Roman Ring[†], Eliza Rutherford[†], Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan^{*,‡} * Equal contributions, ordered alphabetically, † Equal contributions, ordered alphabetically, ‡ Equal senior contributions





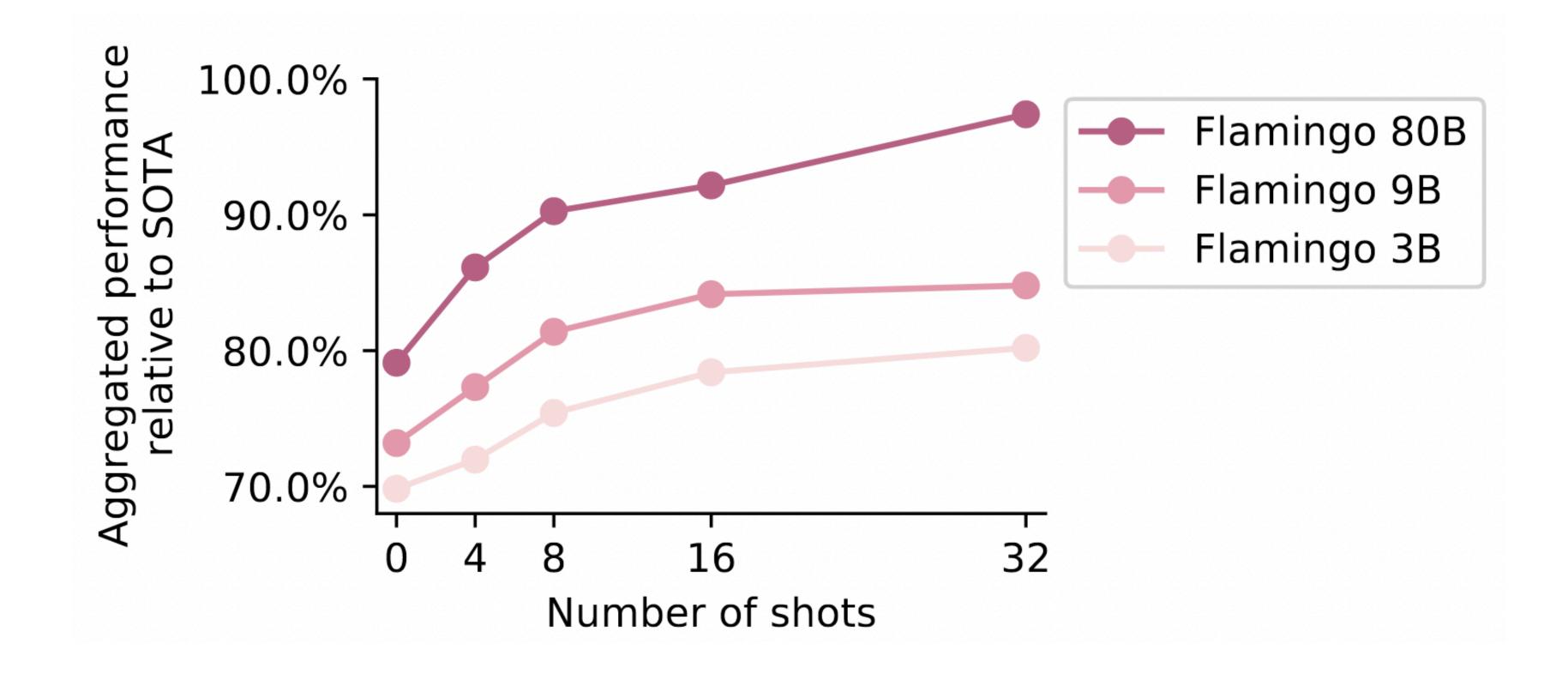
Processed prompt

```
Visual Question Answering Task (input=vision+text, output=text)
```

Query

Processed prompt

Case study: Flamingo



Flamingo: a Visual Language Model for Few-Shot Learning

Jean-Baptiste Alayrac^{*,‡}, Jeff Donahue^{*}, Pauline Luc^{*}, Antoine Miech^{*}, Iain Barr[†], Yana Hasson[†], Karel Lenc[†], Arthur Mensch[†], Katie Millican[†], Malcolm Reynolds[†], Roman Ring[†], Eliza Rutherford[†] Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan^{*,‡} *Equal contributions, ordered alphabetically, [†]Equal contributions, ordered alphabetically, [‡]Equal senior contributions

Few-shot Flamingo \approx **Non-Few-shot state of the art!**

Are AR models really **different** from masked autoencoders?

<u>General recipe</u> for training masked autoencoder f_{θ} :

- 1. Choose distance function $d(\cdot, \cdot) \rightarrow \mathbb{R}$
- 2. For **train batch** examples x_i :
 - **A.** Sample \tilde{x}_i , $y_i \sim mask(x_i)$
 - **B.** Make prediction $\hat{y}_i = f_{\theta}(\tilde{x}_i)$
 - **C.** Compute loss $= d(y_i, \hat{y}_i)$

AR models are just masked AEs with a special choice of mask

Masked autoencoder:		<u>AR model:</u>	
\tilde{x} :	у:	\tilde{x} :	у:
Joe		Joe	
<mask></mask>	Biden	Biden	
is		is	
the		the	
<mask></mask>	US	US	
President			Presi

President

- 1. Intuition for autoencoders (AEs): "A good representation lets us **reconstruct** the input"
- 2. Masked AEs learn to restore a partially-deleted input & help avoid degeneracies in unmasked AEs
- 3. State of the art in pre-training for few-shot learning in language & vision
- generative model for free at some cost to fine-tuning performance

Summary of today

4. Autoregressive models (e.g., GPT-3) are special case of masked AEs; give a

Contrastive Learning vs AEs vs Masked AEs

Contrastive learning:

- + Learns very high-quality representations
- + Don't need as large a model
- Need to select negatives carefully*
- Generally needs larger batch size*
- Cross-example dependencies can make implementation more difficult

* new methods are addressing these downsides but are more difficult to interpret/analyze

- + Simple to implement
- + No need to select pos/neg pairs; just $d(x, \hat{x})$
- Generally need a larger model
- Need to design a bottleneck
- (Comparatively) poor fewshot performance
- Not generally used in _ practice

(Bottlenecked) Autoencoders: Masked autoencoders:

- + **Few-shot** performance as good or better than contrastive
- + **AR special case** gives generative model for free
- **Raw representations** (without fine-tuning) still can be lower quality than contrastive

Reminders

- Project proposal due TODAY!
- Homework 2 due Monday, October 24

Kyle's office hours are hybrid going forward (see Ed for details)

Azure invites have been re-sent - you have one week to accept! You will need Azure for HW3, so do this today!