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Science of Deep Learning

Our understanding of modern neural networks lags behind their practical successes. This
growing gap poses a challenge to the pace of progress.

Although there has been some progress in this area, still we are far from answering many
fundamental questions such as generalization capabilities of deep models and how to
ensure successful transfer to new domains.

I believe this understanding helps us extend beyond our current use of deep learning in a
reliable way.

Principled approaches to investigate deep learning phenomena.

To understand when and why DNNs generalize, improve training and generalization
performance in state of the art deep learning models and extend the current success of
our models to new domains.
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Part I

What is being transferred in transfer learning?
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What is being transferred in transfer learning?

One desired capability of machines is to transfer their knowledge or understanding of a
domain it is trained on (source domain) to another domain (target domain) where data is
(usually) scarce or a fast speed of convergence is needed.

Plethora of works using transfer learning in di↵erent applications.

We would like to understand:

I what enables a successful transfer?

I which parts of the network are responsible for that?

What is being transferred in transfer learning?, B. Neyshabur*, H. Sedghi*, C. Zhang* , NeurIPS 2020
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Problem Setup

Target domains that are intrinsically di↵erent and
diverse:

I CheXpert: a medical imaging dataset of chest
x-rays considering 5 di↵erent diseases.

I DomainNet: designed to probe transfer learning for
diverse visual representations. The domains range
from real images to sketches, clipart and painting
samples. 345 classes

Two initialization scenarios:
I Pre-trained on ImageNet (Finetune)

I Start from random initialization (RandInit)
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Role of feature reuse

Comparing learning curves
I Largest performance boost on the real domain, which contains natural images.

I Even for the most distant target domains, we still observe performance boosts from transfer
learning.

I The optimization for Finetune also converges much faster than Randinit in all cases.

The benefits of transfer learning are generally believed to come from reusing the
pre-trained feature hierarchy.

But, why in many successful applications of transfer learning, the target domain could be
visually very dissimilar to the source domain?
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Role of feature reuse

Experiment: We partition the image of the downstream tasks into equal sized blocks and
shu✏e the blocks randomly. The shu✏ing disrupts visual features in those images.
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Role of feature reuse

Feature reuse plays a very important role!
especially when the downstream task shares similar
visual features with the pre-training domain.

There are other factors at play!
low-level statistics of the data that are not ruined in
the shu✏ing lead to the significant benefits of
transfer learning, especially on optimization speed.
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Performance barriers in the loss landscape

Any two minimizers of a deep network can be connected
via a non-linear low-loss path.

We evaluate a series of models along the linear
interpolation of the two weights.

Performance barriers are generally expected between two
unrelated NN models.

When the two solutions belong to the same flat basin of
the loss landscape, performance barrier is absent.

Finetune models reside in the same basin.

RandInits end up in a di↵erent basin, even if starting
from same random seed.
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Performance barriers in the loss landscape

Figure: The left and middle panes show performance barrier measured by test accuracy on
DomainNet real and quickdraw, respectively. The right pane shows the performance barrier
measured by test AUC on CheXpert.
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Cross-domain weight interpolation on DomainNet

when directly evaluated on a di↵erent
domain that the models are trained from,
we could still get non-trivial test
performance.

P-T consistently outperforms RI-T even in
the cross-domain cases.

when interpolating between P-T models,
(instead of performance barrier) we
observe performance boost in the middle
of the interpolation.

This suggests that all the trained P-T
models on all domains are in one shared
basin.
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Model Soups

Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time, Wortsman et al 2022
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Model Soups

No barrier between di↵erent fune-tuned model ! possible to combine fine-tuned models
by interpolating their weights.

Simply averaging the weights of multiple models fine-tuned with di↵erent
hyperparameters can improve performance

Achieving most of the accuracy gain of ensembling outputs without any added
computational cost at inference time.

Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time, Wortsman et al 2022
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Which pre-trained checkpoint is most useful for transfer learning?

Significant improvements are observed when we start from the checkpoints where the
pre-training performance has been plateauing.

Independence between the improvements on optimization speed and final performance.

You can start from earlier checkpoints in pre-training.
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Not all layers are created equal!

Experiment:

Consider a deep neural network (at any training epoch).

Pick one of the layers and rewind its value back to its value at initialization.

Keep the value of all other layers fixed.

Notice the change in performance.

Observation: In a deep neural network, some modules are more critical than others, i.e.,
rewinding their parameter values back to initialization, while keeping other modules fixed at
the trained parameters, results in a large drop in the network’s performance.

C. Zhang, S. Bengio, Y. Singer, Are all layers created equal?, Feb 2019
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Role of di↵erent layers: Module Criticality

Loss values in the valleys that connect the initial weights ✓0 to the final weights ✓F .

Module criticality: how far one can push the ball of radius r in the valley towards
initialization divided by the radius.

The intriguing role of module criticality in the generalization of deep networks,
N. Chatterji, B. Neyshabur, H. Sedghi, Spotlight in ICLR2020
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Module Criticality

Non-critical modules ⌘ wide valley
Critical modules ⌘ sharp valley

Module criticality as a generalization measure correlates well with model performance.

The intriguing role of module criticality in the generalization of deep networks,
N. Chatterji, B. Neyshabur, H. Sedghi, Spotlight in ICLR2020
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Role of di↵erent layers

As we move from the input towards the output, we see tighter valleys, i.e., modules
become more critical.

This is in agreement with observation of [Yosinski+2014, Raghu+2019] that lower layers
are in charge of more general features while higher layers have features that are more
specialized for the target domain.

(g) Module Criticality Layer1 (h) Module Criticality Layer4
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So far...

Both feature-reuse and low-level statistics of the data are important.

There is no performance barriers between finetune models, while models trained from
random initialization are in a di↵erent basins in the loss landscape.

Lower layers are in charge of general features and higher layers are more sensitive to
perturbation of their parameters.

What is being transferred in transfer learning?, B. Neyshabur*, H. Sedghi*, C. Zhang* , NeurIPS 2020
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Part II

Exploring the limits of large scale pre-training
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E↵ect of Scale: A prelude

Recent impressive progress on transfer and few-shot learning: scaling up model and data

Prominent examples: GPT-3, CLIP

Massive datasets: Instagram images and JFT-300
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E↵ect of scale: current narrative

These developments implicitly encourage two consistent views:
1 Scaling up the model and data size improves the performance significantly;

2 The performance improvement transfers to downstream tasks in a desirable way.

Non-saturating performance.

Linear relationship between imagenet pre-training and downstream accuracy.

Figure: Kornblith et al, 2019
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Shortcomings of earlier works

Performance for di↵erent choices of hyper-parameter values are not reported.

When studying scaling, we are concerned about the best performance of models given all
possible values for the hyper-parameters!

Limited accuracy range

Focusing on improving SOTA and limited computational budget.

Simply extrapolating scaling without understanding of the dynamics of scaling can be
detrimental.
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This work

Systematic large scale study

Investigate the transferability of improvements on a large-scale upstream task to a wide
range of downstream tasks.

More than 4800 experiments

Image recognition task

Vision Transformers, ResNets, Mixers of varying size (ten million to ten billion parameters)

Trained on the largest scale of available image data (JFT, ImageNet21k)

More than 20 downstream tasks

Downstream tasks cover a wide range of standard datasets, e.g., VTAB, MetaDataset,
Wilds and medical imaging.
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Setting

Goal: Predict downstream performance for a given model.
DS-vs-US accuracy plot.
Horizontal line = Predicted accuracy as US accuracy becomes 1.

Figure: Pre-trained on JFT, 25 shot
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Recap: Convex hull

Definition (Convex hull)

A convex hull C of N points aj in a set S is given by

C ⌘

8
<

:

NX

j=1

pjaj : pj � 0 for all j,
NX

j=1

pj = 1

9
=

; .

Lemma

Consider a group of models ✓j , j 2 [N ] that reaches accuracy aj = (aUS
j , aDS

j ), j 2 [N ] on

some pair of tasks (US,DS). Construct a randomized model ✓̃ as follows: for each input xi,
with probability pj pick model ✓j and output ✓j(xi). Then the randomized model will

demonstrate accuracy
PN

j=1 pjaj .
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Choice of data for fitting the power law

Lemma

Consider a group of models ✓j , j 2 [N ] that reaches accuracy aj = (aUS
j , aDS

j ), j 2 [N ] on

some pair of tasks (US,DS). Construct a randomized model ✓̃ as follows: for each input xi,
with probability pj pick model ✓j and output ✓j(xi). Then the randomized model will

demonstrate accuracy
PN

j=1 pjaj .

) We consider the convex hull of the points in our analysis.

Large variance in DS-vs-US performance across models.

1 fit the existing points ! fit average performance

2 fit the convex hull ! fit best performing model. Robust to density of the points.
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The diminishing benefit of scaling up in transfer learning

Goal: Predict downstream performance for a given model.

DS-vs-US accuracy plot.

Saturation: even if US reaches accuracy of one, DS won’t.

Nonlinear relationship.
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The diminishing benefit of scaling up in transfer learning

DS-vs-US accuracy plot.

Saturation

Nonlinear relationship.

Consistent across di↵erent US tasks & No. of shots.
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Scaling laws for downstream accuracy

Goal: Predict DS performance

Our proposed model

eDS = k(eUS)
↵ + e1

e1
I irreducible error.

I captures the value of DS error if US error
reaches zero.

I captures the nonlinearity.

I is not the Bayes error.
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E↵ect of design choices on power law parameters

k, e1 correlate negatively with number of shots.

↵ is positively correlated with number of shots.

Correlation values change drastically for di↵erent choices of US, DS tasks.
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Sample size sensitivity analysis

The prediction error is very small across all these choices.

The proposed model will work well even when we have much smaller number of DS-vs-US
points.

The fitting error decreases by increasing the number of samples.
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E↵ect of scale: A closer look

Controlled experiments : model size, data size, compute
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E↵ect of scale: A closer look

Controlled experiments : model size, data size, compute

Same pattern.

Same curve for the 3 parameters.

Grid search equivalence.

Variation is due to training
hyper-parameters.
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On the prediction power of US accuracy

DS error std
birds 0.1542
caltech 0.1020
cars 0.1979
col hist 0.1552
dtd 0.0885
imagenet 0.1882
pets 0.1412
uc merced 0.1581

Conditioned on US accuracy, not much is left for the rest of parameters altogether to predict!
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Investigating di↵erent DS-vs-US trends

Overlay the convex hull of ImageNet DS-vs-US plot on all DS tasks. Observation
1 Best performing ImageNet models perform very similarly to best performing models in

several but not all DS tasks.
2 As the US performance increases, the gap between best performing ImageNet models and

best performing DS task models reduces significantly.
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Investigating di↵erent DS-vs-US trends: Experiment

Experiment: Move the head to di↵erent layers

DS versus US performance

DS performance for representation taken
from specific layer

Plots show similar trend.

For DS that saturate faster, higher layers
are not needed.

Lower layers capture lower level features
that are more common across di↵erent
dataset and tasks, whereas fine-grained
features reside at top layers in the network
We need data diversity.
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Discrepancies between US and DS performances: a case study

Recap:
training hyper-parameters cause
variation from the curve.

Now:
focus on e↵ect of head
hyper-parameters.

Decouple head from rest of
network.

weight decay, learning rate.
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E↵ect of head weight decay

Increasing head WD hurts US performance.

Increasing head WD improves DS performance for some tasks.
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Discrepancies between US and DS performances: why?

Increasing head WD

decreases head margin, increases
layer margin [Elsayed et al 2018].

decreases head norm, increases
layer norm for lower layers.

pushes the information down to
lower layers.
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On generalization of the observed phenomena

Number of shots

Transfer vs. few-shot

Scaling of plots: logit(p) = log( p
1�p), � log(1� p), linear

Architecture
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Summary

Large-scale systematic study.

Performance saturation on DS does happen.

Modeled DS-vs-US accuracy and predict DS accuracy by a power law curve.

Our model predicts saturation point and is robust to low sample size.

Data diversity matters.

Scaling model size, pre-training data size, compute leads to the same curve.

US performance has high prediction power.

Hyper-parameters used in training matter and need to be DS-specific.

Head hyper-parameters are important and can help improve DS performance.

Exploring the Limits of Large Scale Pre-training, S. Abnar, M. Dehghani, B. Neyshabur, H. Sedghi, Spotlight, ICLR 2022
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Zooming in on the role of data

Pre-training: CLIP, SimCLR

Architecture: ResNet50

4000 trained networks.

7 upstream, 9 downstream
datasets

Downstream: CIFAR100, DTD,
CALTECH101, PETS, Domainnet
REAL, Domainnet CLIPART
CameraTraps, Cassava Leaf
Disease, EuroSAT

Dataset Source Total size

YFCC Flickr 14,826,000
LAION Common Crawl 15,504,742
CC-12M Unspecified web pages 9,594,338
RedCaps Reddit 11,882,403
WIT Wikipedia 5,038,295

ShutterStock ShutterStock 11,800,000
IN1K-Captions ImageNet 463,622

The role of pretraining data in transfer learning, R. Entezari, M. Wortsman, O. Saukh, M. Shariatnia, H. Sedghi, Ludwig
Schmidt, In submission
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Role of pretraining data distribution

CLIP

the number of pretraining
images is 2.7 million.

Shutterstock is the best
performing pre-training datasets

pre-training dataset is important
for low-shot transfer.
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Role of pretraining data distribution

Same setting as before

Only change pretraining method
to SimCLR

Observe similar phenomena
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Role of data curation

Recap:
training hyper-parameters cause
variation from the curve.
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Role of pretraining method

Contrastive > supervised for low
shot setting

image-image contrastive >
image-text contrastive
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What’s next?

Data sampling module

Modeling data

Ensuring data diversity

Closing the loop

Investigating the e↵ect of curriculum learning

Thank you!
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