
CS 330 Autumn 2022/2023 Warmup Homework 0
Multitask Training for Recommender Systems

Due Monday October 3, 11:59 PM PST
SUNet ID:

Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all
of this is my own work.

1 Overview

In this assignment, we will implement a multi-task movie recommender system based
on the classic Matrix Factorization [1] and Neural Collaborative Filtering [2] algorithms.
In particular, we will build a model based on the BellKor solution to the Netflix Grand
Prize challenge and extend it to predict both likely user-movie interactions and potential
scores. In this assignment you will implement a multi-task neural network architecture
and explore the effect of parameter sharing and loss weighting on model performance.
The main goal of these exercises is to familiarize yourself with multi-task architectures,
the training pipeline, and coding in PyTorch. These skills will be important in the course.
Note: This assignment is a warmup, and is shorter than future homeworks will be.

Submission: To submit your work, submit one pdf report and one zip file to GradeScope,
where the report contains answers to the deliverables listed below and the zip file contains
the code with your filled-in solutions.
Code Overview: The code consists of several files; however, you will only need to interact
with two:

• main.py: To run experiments, execute this file by passing the corresponding param-
eters.

• models.py: This file contains our multi-task prediction model MultiTaskNet, which
you will need to finish implementing in PyTorch.

2 Dataset and Evaluation

Dataset. In this assignment, we will use movie reviews from the MovieLense dataset.
The dataset consists of 100K reviews of 1700 movies generated by 1000 users. Although
each user interaction contains several levels of meta-data, we’ll only consider tuples of the
type (userID, itemID, rating), which contain an anonymized user ID, movie ID and the
score assigned by the user to the movie from 1 to 5. We randomly split the dataset into

1

https://www2.seas.gwu.edu/~simhaweb/champalg/cf/papers/KorenBellKor2009.pdf
https://grouplens.org/datasets/movielens/100k

a train dataset, which contains 95% of all ratings, and a test dataset, which contains the
remaining 5%.

Problem Definition. Given the dataset defined above, we would like to train a model
f(userID, itemID) that predicts: 1) the probability p that the user would watch the movie
and 2) the score r they would assign to it from 1 to 5. For some intuition on this setting,
consider a user who only watches comedy and action movies. It would not make sense
to recommend them a horror movie since they don’t watch those. At the same time, we
would want to recommend comedy or action movies that the user is likely to score highly.

Evaluation. Once we have our trained model, we evaluate it on the test set.
Score Prediction. We will evaluate the mean-squared error of movie score prediction on
the held-out user ratings, i.e. 1

N

∑N
i=1 ||r̂i − ri||2, where r̂i is the predicted score for user-

movie pair (userIDi, itemIDi). The summation is over all pairs in the test set. Better models
achieve lower mean-squared errors.
Likelihood Prediction. To evaluate the quality of the likelihood model, we use the mean
reciprocal rank metric, which provides a higher score for highly ranking the movies the
user has seen. The metric is computed as follows: 1) for each user, rank all movies based on
the probability that the user would watch them; 2) remove movies we know the user has
watched (those in the training set); 3) compute the average reciprocal ranking of movies
the user has watched from the held-out set.

3 Problems

To install all required packages for this assignment you can run:
pip install -r requirements.txt.

In this problem, we will implement a multi-task model using Matrix Factorization [1] and
regression-based modelling:
Matrix Factorization: Consider an interaction matrix M , where Mij = 1 if userIDi has
rated movie with itemIDj and 0 otherwise. We will represent each user with a latent vector
ui ∈ Rd and each item with a latent vector qi ∈ Rd. We model the interaction probability
pij = logP (Mij = 1) in the following way:

pij = uTi qj + ai + bj (1)

where ai is a user-specific bias term and bj is a movie-specific bias term. At each training
step we sample a batch of triples (userIDi, itemID+

j , itemID−
j′) with sizeB, such thatMi,j =

1, while itemID−
j′ is randomly sampled (indicating no user preference). Let

p+ij = uTi qj + ai + bj

p−ij′ = uTi qj′ + ai + bj′
(2)

2

https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://en.wikipedia.org/wiki/Mean_reciprocal_rank

and optimize the Bayesian Personalised Ranking (BPR) [3] pairwise loss function:

LF (p+,p−) =
1

B

B∑
i=1

1− σ(p+ij − p−ij′) (3)

where σ is the sigmoid function.
Regression Model: For training the regression model, we consider only batches of tuples
(userIDi, itemID+

j , rij), such that Mi,j = 1 and rij is the numerical rating userIDi assigned
to itemID+

j . Using the same latent vector representations as before, we will concatenate
[ui,qj,ui∗qj] (where ∗ denotes element-wise multiplication) together and pass it through
a neural network with a single hidden layer:

r̂ij = fθ([ui,qj,ui ∗ qj]) (4)

We train the model using the mean-squared error loss:

LR(r̂, r) =
1

B

B∑
i=1

||r̂ij − rij||2 (5)

Your Implementation: The first part of the assignment is to implement the above model
in models.py. First you need to define each component when the model is initialized.

1. Consider the matrixU = [u1|, . . . , |uNusers] ∈ RNusers×d,Q = [q1|, . . . , |qNitems] ∈ RNitems×d,
A = [a1, . . . , aNusers] ∈ RNusers×1, B = [b1, . . . , bNitems] ∈ RNitems×1. Implement U and
Q as ScaledEmbedding layers with parameter d = embedding dim and A and B as
ZeroEmbedding layers with parameter d = 1 (defined in models.py). These are in-
stances of PyTorch Embedding layers with a different weight initialization, which
facilitates better convergence.

2. Next implement fθ([ui,qj,ui ∗ qj]) as an MLP network. The class MultiTaskNet has
layer sizes argument, which is a list of the input shapes of each dense layer. Notice
that by default embedding dim=32, while the input size of the first layer is 96, since
we concatenate [ui,qj,ui ∗ qj] before processing it through the network. Each layer
(except the final layer) should be followed by a ReLU activation. The final layer
should output the final user-item predicted score in and have an output size of 1.

3. The MultiTaskNet class has an embedding sharing attribute. Implement your model
in such a way that when embedding sharing=True a single latent vector representa-
tion is used for both the factorization and regression tasks and vice versa.

In the second part of the problem you need to implement the forward method of the
MultitaskNetmodule. The forwardmethod receives a batch of (userIDi, itemIDj) of user-
item pairs. The model should output a probability pij of shape (batch size,) that user i
would watch movie j, given by Eq. 1 and a predicted score r̂ij of shape (batch size,) the
user i would assign to movie j, given by Eq. 4. Be careful with output tensor shapes!

3

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

4 Write-up

To execute experiments run the main.py script, which will automatically log training MSE
loss, BPR loss and test set MSE loss and MRR scores to TensorBoard. Once you’re done
with your implementation run the following 4 experiments:

1. Evaluate a model with shared representations and task weights λF = 0.99, λR = 0.01.
You can run this experiment by running:
python main.py --factorization weight 0.99 --regression weight 0.01

--logdir run/shared=True LF=0.99 LR=0.01

Here the --factorization weight and --regression weight arguments correspond
to λF and λR respectively.

2. Evaluate a model with shared representations and task weights λF = 0.5, λR = 0.5.
You can run this experiment by running:
python main.py --factorization weight 0.5 --regression weight 0.5

--logdir run/shared=True LF=0.5 LR=0.5

3. Evaluate a model with separate representations and task weights λF = 0.5, λR = 0.5.
You can run this experiment by running:
python main.py --no shared embeddings --factorization weight 0.5

--regression weight 0.5 --logdir run/shared=False LF=0.5 LR=0.5

4. Evaluate a model with separate representations and task weights λF = 0.99, λR =
0.01. You can run this experiment by running:
python main.py --no shared embeddings --factorization weight 0.99

--regression weight 0.01 --logdir run/shared=False LF=0.99 LR=0.01

Your plots go here:
For each experiment include a screenshot of Tensorboard graphs for the training and

test set losses in your write up. Answer the following questions:

1. Consider the case with λF = 0.99 and λR = 0.01. Based on the train/test loss curves,
does parameter sharing outperform having separate models?

2. Now consider the case with λF = 0.5 and λR = 0.5. Based on the train/test loss
curves, does parameter sharing outperform having separate models?

3. In the shared model setting compare results for λF = 0.99 and λR = 0.01 and λF =
0.5 and λR = 0.5, can you explain the difference in performance?

Your answers go here:

4

References

[1] Koren Yehuda, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42, 2009.

[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of the 26th international conference on world
wide web, pages 173–182, 2017.

[3] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. Conference on Uncertainty
in Artificial Intelligence, 2009.

5

	Overview
	Dataset and Evaluation
	Problems
	Write-up

