
CS 330 Autumn 2022 Homework 2
Prototypical Networks and Model-Agnostic Meta-Learning

Due Monday October 24, 11:59 PM PST
SUNet ID:

Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview

In this assignment, you will experiment with two meta-learning algorithms, prototypical
networks (protonets) [1] and model-agnostic meta-learning (MAML) [2], for few-shot
image classification on the Omniglot dataset [3], which you also used for Homework 1.
You will:

1. Implement both algorithms (given starter code).

2. Interpret key metrics of both algorithms.

3. Investigate the effect of task composition during protonet training on evaluation.

4. Investigate the effect of different inner loop adaptation settings in MAML.

5. Investigate the performance of both algorithms on meta-test tasks that have more
support data than training tasks do.

Expectations

• We expect you to develop your solutions locally (i.e. make sure your model can run
for a few training iterations), but to use GPU-accelerated training (e.g. Azure) for
your results.

• Submit to Gradescope

1. a .zip file containing your modified version of hw2/starter/

2. a .pdf report containing your responses

• You are welcome to use TensorBoard screenshots for your plots. Ensure that indi-
vidual lines are labeled, e.g. using a custom legend, or by text in the figure caption.

• Figures and tables should be numbered and captioned.

1

Preliminaries

Notation

• x: Omniglot image

• y: class label

• N (way): number of classes in a task

• K (shot): number of support examples per class

• Q: number of query examples per class

• cn: prototype of class n

• fθ: neural network parameterized by θ

• Ti: task i

• Dtr
i : support data in task i

• Dts
i : query data in task i

• B: number of tasks in a batch

• J (θ): objective function parameterized by θ

2

Part 1: Prototypical Networks (Protonets) [1]

Algorithm Overview

Figure 1: Prototypical networks in a nutshell. In a 3-way 5-shot classification task, the class
prototypes c1, c2, c3 are computed from each class’s support features (colored circles). The
prototypes define decision boundaries based on Euclidean distance. A query example x
is determined to be class 2 since its features (white circle) lie within that class’s decision
region.

As discussed in lecture, the basic idea of protonets is to learn a mapping fθ(·) from images
to features such that images of the same class are close to each other in feature space.
Central to this is the notion of a prototype

cn =
1

K

∑
(x,y)∈Dtr

i :y=n

fθ(x), (1)

i.e. for task i, the prototype of the n-th class cn is defined as the mean of the K feature
vectors of that class’s support images. To classify some image x, we compute a measure of
distance d between fθ(x) and each of the prototypes. We will use the squared Euclidean
distance:

d(fθ(x), cn) = ‖fθ(x)− cn‖22. (2)
We interpret the negative squared distances as logits, or unnormalized log-probabilities,
of x belonging to each class. To obtain the proper probabilities, we apply the softmax
operation:

pθ(y = n|x) = exp(−d(fθ(x), cn))∑N
n′=1 exp(−d(fθ(x), cn′))

. (3)

Because the softmax operation preserves ordering, the class whose prototype is closest to
fθ(x) is naturally interpreted as the most likely class for x. To train the model to generalize,
we compute prototypes using support data, but minimize the negative log likelihood of

3

the query data

J (θ) = ETi∼p(T),(Dtr
i ,Dts

i)∼Ti

 1

NQ

∑
(xts,yts)∈Dts

i

− log pθ(y = yts|xts)

 . (4)

Notice that this is equivalent to using a cross-entropy loss.

We optimize θ using Adam [4], an off-the-shelf gradient-based optimization algorithm.
As is standard for stochastic gradient methods, we approximate the objective (4) with
Monte Carlo estimation on minibatches of tasks. For one minibatch withB tasks, we have

J (θ) ≈ 1

B

B∑
i=1

 1

NQ

∑
(xts,yts)∈Dts

i

− log pθ(y = yts|xts)

 . (5)

Problems

1. We have provided you with omniglot.py, which contains code for task construction
and data loading.

(a) (5 pt) Recall that for training black-box meta-learners in the previous homework
we needed to shuffle the query examples in each task. This is not necessary for
training protonets. Explain why.

Your answer goes here.

4

2. In the protonet.pyfile, complete the implementation of the ProtoNet. stepmethod,
which computes (5) along with accuracy metrics. Pay attention to the inline com-
ments and docstrings.

Assess your implementation on 5-way 5-shot Omniglot. To do so, run

python protonet.py

with the appropriate command line arguments. These arguments have defaults
specified in the file. To specify a non-default value for an argument, use the fol-
lowing syntax:

python protonet.py --argument1 value1 --argument2 value2

Use 15 query examples per class per task. Depending on how much memory your
GPU has, you may want to adjust the batch size. Do not adjust the learning rate from
its default of 0.001.

As the model trains, model checkpoints and TensorBoard logs are periodically saved
to a log dir. The default log dir is formatted from the arguments, but this can be
overriden. You can visualize logged metrics by running

tensorboard --logdir logs/

and navigating to the displayed URL in a browser. If you are running on a remote
computer with server capabilities, use the --bind all option to expose the web app
to the network. Alternatively, consult the Azure guide for an example of how to
tunnel/port-forward via SSH.

To resume training a model starting from a checkpoint at {some dir}/state{some step}.pt,
run

python protonet.py --log dir some dir --checkpoint step some step

If a run ended because it reached num train iterations, you may need to increase
this parameter.

5

(a) (20 pt) Submit a plot of the validation query accuracy over the course of train-
ing.
Hint: you should obtain a query accuracy on the validation split of at least 99%.

Your plot goes here.

6

3. 4 accuracy metrics are logged. For the above run, examine these in detail to reason
about what the algorithm is doing.

(a) (5 pt) Is the model placing support examples of the same class close together
in feature space or not? Support your answer by referring to specific accuracy
metrics.

Your answer goes here.

(b) (5 pt) Is the model generalizing to new tasks? If not, is it overfitting or under-
fitting? Support your answer by referring to specific accuracy metrics.

Your answer goes here.

7

4. We will now compare different settings at training time. Train on 5-way 1-shot tasks
with 15 query examples per task.

(a) (3 pt) Compare your two runs (5-way 1-shot training and 5-way 5-shot training)
by assessing test performance on 5-way 1-shot tasks. To assess a trained model
on test tasks, run

python protonet.py --test

appropriately specifying log dir and checkpoint step. Submit a table of your
results with 95% confidence intervals.

Your table goes here.

(b) (2 pt) How did you choose which checkpoint to use for testing for each model?

Your answer goes here.

(c) (5 pt) Is there a significant difference in the test performance on 5-way 1-shot
tasks? Explain this by referring to the protonets algorithm.

Your answer goes here.

8

Part 2: Model-Agnostic Meta-Learning (MAML) [2]

Algorithm Overview

Figure 2: MAML in a nutshell. MAML tries to find an initial parameter vector θ that can
be quickly adapted via task gradients to task-specific optimal parameter vectors.

As discussed in lecture, the basic idea of MAML is to meta-learn parameters θ that can be
quickly adapted via gradient descent to a given task. To keep notation clean, define the
loss L of a model with parameters φ on the data Di of a task Ti as

L(φ,Di) =
1

|Di|
∑

(xj ,yj)∈Di

− log pφ(y = yj|xj) (6)

Adaptation is often called the inner loop. For a task Ti and L inner loop steps, adaptation
looks like the following:

φ1 = φ0 − α∇φ0L(φ0,Dtr
i)

φ2 = φ1 − α∇φ1L(φ1,Dtr
i)

...
φL = φL−1 − α∇φL−1L(φL−1,Dtr

i)

(7)

where we have defined θ = φ0.

Notice that only the support data is used to adapt the parameters to φL. (In lecture, you
saw φL denoted as φi.) To optimize θ in the outer loop, we use the same loss function (6)
applied on the adapted parameters and the query data:

J (θ) = ETi∼p(T),(Dtr
i ,Dts

i)∼Ti
[
L(φL,Dts

i)
]

(8)

For this homework, we will further consider a variant of MAML [5] that proposes to ad-
ditionally learn the inner loop learning rates α. Instead of a single scalar inner learning
rate for all parameters, there is a separate scalar inner learning rate for each parameter

9

group (e.g. convolutional kernel, weight matrix, or bias vector). Adaptation remains the
same as in vanilla MAML except with appropriately broadcasted multiplication between
the inner loop learning rates and the gradients with respect to each parameter group.

The full MAML objective is

J (θ, α) = ETi∼p(T),(Dtr
i ,Dts

i)∼Ti
[
L(φL,Dts

i)
]

(9)

Like before, we will use minibatches to approximate (9) and use the Adam optimizer.

Problems

1. In the maml.py file, complete the implementation of the MAML. inner loop and
MAML. outer stepmethods. The former computes the task-adapted network param-
eters (and accuracy metrics), and the latter computes the MAML objective (and
more metrics). Pay attention to the inline comments and docstrings.
Hint: the simplest way to implement inner loop involves using autograd.grad.
Hint: to understand how to use the Boolean train argument of MAML. outer step,
read the documentation for the create graph argument of autograd.grad.

Assess your implementation of vanilla MAML on 5-way 1-shot Omniglot. Com-
ments from the previous part regarding arguments, checkpoints, TensorBoard, re-
suming training, and testing all apply. Use 1 inner loop step with a fixed inner learn-
ing rate of 0.4. Use 15 query examples per class per task. Do not adjust the outer
learning rate from its default of 0.001. Note that MAML generally needs more time
to train than protonets.

10

(a) (20 pt) Submit a plot of the validation post-adaptation query accuracy over the
course of training.
Hint: you should obtain a query accuracy on the validation split of at least 96%.

Your plot goes here.

11

2. 6 accuracy metrics are logged. Examine these in detail to reason about what MAML
is doing.

(a) (10 pt) State and explain the behavior of the train pre adapt support and
val pre adapt support accuracies. Your answer should explicitly refer to the
task sampling process.
Hint: consult the omniglot.py file.

Your answer goes here.

(b) (5 pt) Compare the train pre adapt support and train post adapt support

accuracies. What does this comparison tell you about the model? Repeat for
the corresponding val accuracies.

Your answer goes here.

(c) (5 pt) Compare the train post adapt support and train post adapt query

accuracies. What does this comparison tell you about the model? Repeat for
the corresponding val accuracies.

Your answer goes here.

12

3. Try MAML with the same hyperparameters as above except for a fixed inner learning
rate of 0.04.

(a) (3 pt) Submit a plot of the validation post-adaptation query accuracy over the
course of training with the two inner learning rates (0.04, 0.4).

Your plot goes here.

(b) (2 pt) What is the effect of lowering the inner learning rate on (outer-loop)
optimization and generalization?

Your answer goes here.

13

4. Try MAML with a fixed inner learning rate of 0.04 for 5 inner loop steps.

(a) (3 pt) Submit a plot of the validation post-adaptation query accuracy over the
course of training with the two number of inner loop steps (1, 5) with inner
learning rate 0.04.

Your plot goes here.

(b) (2 pt) What is the effect of increasing the number of inner loop steps on (outer-
loop) optimization and generalization?

Your answer goes here.

14

5. Try MAML with learning the inner learning rates. Initialize the inner learning rates
with 0.4.

(a) (3 pt) Submit a plot of the validation post-adaptation query accuracy over the
course of training for learning and not learning the inner learning rates, initial-
ized at 0.4.

Your plot goes here.

(b) (2 pt) What is the effect of learning the inner learning rates on (outer-loop)
optimization and generalization?

Your answer goes here.

15

Part 3: More Support Data at Test Time

In practice, we usually have more than 1 support example at test time. Hence, one inter-
esting comparison is to train both algorithms with 5-way 1-shot tasks (as you’ve already
done) but assess them using more shots.

1. Use the protonet trained with 5-way 1-shot tasks, and the MAML trained with learned
inner learning rates initialized at 0.4. Try K = 1, 2, 4, 6, 8, 10 at test time. Use Q = 10
for all values of K.

(a) (10 pt) Submit a plot of the test accuracies for the two models over these values
of K with the 95% confidence intervals as error bars or shaded regions.

Your plot goes here.

(b) (5 pt) How well is each model able to use additional data in a task without
being explicitly trained to do so?

Your answer goes here.

16

A Note

You may wonder why the performance of these implementations don’t match the num-
bers reported in the original papers. One major reason is that the original papers used a
different version of Omniglot few-shot classification, in which multiples of 90◦ rotations
are applied to each image to obtain 4 times the total number of images and characters. An-
other reason is that these implementations are designed to be pedagogical and therefore
straightforward to implement from equations and pseudocode as well as trainable with
minimal hyperparameter tuning. Finally, with our use of batch statistics for batch normal-
ization during test (see code), we are technically operating in the transductive few-shot
learning setting.

17

References

[1] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems, pages 4077–4087, 2017.

[2] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[3] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332–
1338, 2015.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[5] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml.
arXiv preprint arXiv:1810.09502, 2018.

18

