
CS 330 Autumn 2021/2022 Homework 3
Few-Shot Learning with Pre-trained Language Models

Due Wednesday November 2nd, 11:59 PM PT
SUNet ID:

Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview
This assignment will explore several methods for performing few-shot (and zero-shot)
learning with pre-trained language models (LMs), including variants of fine-tuning and
in-context learning. The goal of this assignment is to gain familiarity with performing few-
shot learning with pre-trained LMs, learn about the relative strengths and weaknesses
of fine-tuning and in-context learning, and explore some recent methods proposed for
improving on the basic form of these algorithms.

We have provided you with starter code, which can be downloaded from the course web-
site.

Submission: To submit your homework, submit one PDF report to Gradescope containing
written answers and Matplotlib plots (screenshots are acceptable) to the questions below,
as well as ft.py and icl.py (files) in a single zip file. Do not modify any other files.
The PDF should also include your name and any students you talked to or collaborated
with. Any written responses or plots to the questions below must appear in your PDF
submission.

Setup: This assignment requires using the HuggingFace library for loading pre-trained
models and datasets. The required packages are provided in a requirements.txt file to
enable easy installation, which you can install using pip install -r requirements.txt.
If you have trouble installing on your laptop (e.g. some Apple Silicon machines), you can
use your Azure instance to debug. If you’re having trouble installing the requirements,
you might need a specific CUDA version; checking the PyTorch install guide might help
find the right version.

Code Overview: The code consists of several files to enable fine-tuning and in-context
learning. You are expected to write the code in the following files:

• ft.py: Fine-tuning script; you’ll implement parameter selection, loss & accuracy cal-
culation, the LoRA implementation (this will be explained in Q2!), fine-tuning batch

1

https://pytorch.org/get-started/locally/


tokenization, and the model update step.

• icl.py: In-context learning script; you’ll implement prompt assembly and model
sampling.

A detailed description for every function can be found in the comments. You are not
expected to change any code except for sections marked with YOUR CODE HERE.

Compute
For this assignment, you will complete all sections on Azure instances with GPUs. Avoid
using Azure for debugging; verify that your code runs without crashing on your own
machine, and use Azure only once you think your code is finished.

The CS330 Azure Guide has instructions for setting up and accessing an Azure GPU spot
instance.

Be sure to shut down your Azure instance when not in use!

Datasets
You’ll explore three different language datasets in this assignment. The first, Amazon
Reviews, is a classification dataset that you’ll use for the warmup. The other two, XSum
and bAbI, require generating open-ended language.

1. For the fine-tuning warmup, we’ll explore a simple text classification problem, a
subset of the Amazon Reviews dataset. The portion of the Amazon Reviews dataset
that we will consider contains paired video reviews and star ratings; the task we
will consider will be five-way classification of a review into the number of stars its
corresponding rating gave, among {1,2,3,4,5}. You can expect accuracy numbers
roughly in the 0.2-0.4 range for Amazon Reviews in this assignment.

2. XSum: The XSum dataset contains news articles from the BBC and corresponding
one sentence summaries. The evaluation metric typically used for summarization is
ROUGE score, which measures n-gram overlap between the target and prediction
(how many words appear in both, how many bigrams, etc.). An n-gram is a sub-
sequence of n consecutive words, in this context. You can expect ROUGE scores
roughly in the 0.1-0.3 range for XSum in this assignment.

3. bAbI is a AI benchmark suite developed by Facebook AI Research. The task that
we will use is a question-answering task that requires reasoning about contextual
information that may or may not be relevant to answer a question. A sample question
from the dataset is:

2

https://docs.google.com/document/d/10DZEFQA9qAZNMEGcrhsJ6fV_5IshbsCabMco1rKpleg/edit
https://huggingface.co/datasets/amazon_us_reviews
https://huggingface.co/datasets/xsum
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://en.wikipedia.org/wiki/N-gram#Examples
https://research.facebook.com/downloads/babi/


Mary went back to the office. John went to the bathroom. Where is Mary?

In the office

You can expect accuracy numbers roughly in the 0.25-0.9 range for bAbI QA in this
assignment.

All of these datasets are available through the HuggingFace library.

(10 pt) Question 0: Fine-tuning warmup
As a warmup, we will perform perhaps the most straightforward form of k-shot learning
with a pre-trained model: directly fine-tuning the entire model on the k examples. We
will use two different sizes of smaller BERT models that have been compressed through
distillation.1

1. Implement the logic for fine-tuning, including selecting the parameters that will
be fine-tuned (only the case for ‘all’ for this question) in ft.py:parameters to

fine tune(), and computing the loss and accuracy in ft.py:get loss and ft.py:

get acc. You only need to complete the loss/accuracy calculations under if logits.dim()

== 2: for this question.

2. (8 pt) Run the command:
python3 ft.py --task ft --model bert-tiny,bert-med --dataset amazon --k 1,8,128

to fine-tune two sizes of BERT models on the Amazon Reviews dataset for various
values of k. While debugging, you can pass only one value for each of the argu-
ments to run only that subset, e.g. python3 ft.py --task ft --model bert-tiny

--dataset amazon --k 1.
If you see a log message like Some weights of the model checkpoint..., this is
expected, since the pre-trained model does not contain a prediction head for our
task (this is why we need to fine-tune!).
To plot your results, run the command:
python3 ft.py --task plot --model bert-tiny,bert-med --dataset amazon --k 1,8,128

In one sentence, what do you notice about the performance of the two model scales?
Include your plot and answer here.

3. (1 pt) If we fine-tune the all of our model parameters for each task, we must save
a new complete copy of the model’s parameters for each new task. As an example,
a BERT-mini model similar to the ones you just fine-tuned has approximately 11.2

1See here to learn more about this class of distilled BERT models. For final projects involving language
models, these smaller BERT models may be useful for performing compute-friendly experiments!

3

https://arxiv.org/pdf/1908.08962.pdf


million parameters; assuming parameters are represented as 4-byte floats, after fine-
tuning on a new task, how much disk space do we need to store the new fine-tuned
model parameters?
Write your answer here.

4. (1 pt) Google’s recent large language model PaLM has 540 billion parameters. How
much disk space would be needed to store a new fine-tuned version of this model,
assuming parameters are represented as 4-byte floats?
Write your answer here.

(15 pt) Question 1: In-context learning
A surprising property of large language models is their emergent ability to learn in-context,
that is, their ability to learn a task without updating any parameters at all. The name ‘in-
context’ comes from the fact that the learning is done by simply including several examples
or a task description (or both!) prepended to a test input present to the model

For example, for a question-answering task, to make a 2-shot prediction for a test input
‘Why is the sky blue?’, rather than presenting the input:

Why is the sky blue?<generate>

we would simply prepend our 2 examples to the input:

Who is the US president? Joe Biden What is earth’s tallest mountain? Mount...

Everest Why is the sky blue?<generate>

In addition to few-shot in-context learning, models can often improve their zero-shot gen-
eralization if the input is formatted in a particular manner; for example, adding a Q: and
A: prefix to the input and label, respectively:

Q: Why is the sky blue? A:<generate>

Finally, these two approaches can be combined, for example adding the Q: and A: markers
to each example in the context as well as the test input.

1. Complete the code for in-context learning in icl.py.

(a) Implement prompt creation for the XSum and bAbI tasks, which is found in
icl.py:get icl prompts(). You will implement 4 prompt format modes:

i. qa [only for bAbI]: Add “ In the ” after the question (including the final
test question that we want to generate an answer for!) and before each
answer, since this task involves answering questions about the physical

4

https://storage.googleapis.com/pathways-language-model/PaLM-paper.pdf


whereabouts of a person. In addition, add a period after the answer (omit-
ting the period can significantly impact your results!). Be sure to include
a space between the question and In the, as well as a space before the an-
swer (though keep in mind Note 1!). Note the Q: and A: prompts in the
example earlier don’t apply here.

ii. none [only for XSum]: In this case, we use the raw k examples without any
additional formatting; that is, we just concatenate [x1; y1; ...;xk; yk;x

∗] with
a space between each element (but no space at the end), where x∗ is the
input that we want to generate an answer for.

iii. tldr [only for XSum]: Add the text “ TL;DR: ” after each article/input
(including the final test article) and before the summary/target.

iv. custom [only for XSum]: Come up with your own prompt format for article
summarization (different from the ones we’ve shown!).

In general, the idea of in-context learning is to format the support examples
in the same way as the test example, to leverage the model’s tendency toward
imitation.
Note 1: Due to a quirk with GPT-2 tokenization, you should not include a
space at the end of your prompt before generation.
Note 2: Be sure to shuffle the order of the support inputs/targets when you
construct the prompt (we will need this randomization later).

(b) Implement greedy sampling in icl.py:do sample(). The GPT-2 models used
in this and the following questions use an autoregressive factorization of the
probability of a sequence, i.e. pθ(x) =

∏
t pθ(xt|x<t). ‘Greedy’ sampling means

that given a context x<t producing a distribution over next tokens pθ(xt|x<t), we
deterministically choose the next token xt to be the token with highest proba-
bility.
Note 3: Be sure you understand what each dimension of the model’s output
logits represents. Misinterpreting the dimensions of this output can lead to
subtle bugs.

(c) Finally, put the pieces together by completing the implementation of icl.py:
run icl(), using your get icl prompts() and do sample() functions, as well
as the HuggingFace tokenizer defined in the loop.
Hint: Your solution here should be less than 5 lines of code.

2. (10 pt) First, evaluate k-shot in-context performance on bAbI for GPT-2-medium
(355M parameters) and full-size GPT-2 (1.5B parameters) for various values of k
with the command:
python3 icl.py --task icl --model med,full --dataset babi --k 0,1,16

Plot the results with the command:
python3 icl.py --task plot --model med,full --dataset babi --k 0,1,16

What relationship(s) do you notice between model scale and few-shot performance?
Include your plot and answer here.

5



3. (5 pt) Now let’s evaluate several different prompt formats on the XSum dataset. With
and without a task description in the prompt, evaluate zero-shot and few-shot per-
formance for XSum on GPT-2-Medium with the command:
python3 icl.py --task icl --model med,full --dataset xsum --k 0,1,4 \

--prompt none,tldr,custom

Note that we use much smaller k than in the previous problem, because we must
fit all k examples into the model’s context window, which is only 1024 tokens. The
fixed context window length is one limitation of in-context learning.
The k = 4 XSum evaluation on full-size GPT-2 may take approximately 40 min-
utes on your Azure instance for each prompt mode; this is expected, and is another
downside of in-context learning (we need to process a much longer input, containing
the prompt, compared to a fine-tuned model that just processes the test input).
Plot the zero-shot and few-shot performance of GPT-2 on XSum:
python3 icl.py --task plot --model med,full --dataset xsum --k 0,1,4 \

--prompt none,tldr,custom

How does the performance of the TL;DR: prompt compare with no prompt format-
ting? What was your custom prompt format, and how did it compare with TL;DR:?
Discuss the relative performance of the different prompts in the zero-shot, one-shot,
and few-shot settings.
Include your plot and answer here.

(15 pt) Question 2: Parameter-efficient fine-tuning
As we observed in question 1, fine-tuning the entire model can become extremely costly
for very large models. In this question, we’ll explore more methods for parameter-efficient
fine-tuning, i.e., methods that enable fine-tuning while creating fewer new parameters and
are less prone to overfitting.

1. Finish the implementation for each version of parameter-efficient fine-tuning for
GPT-2-Medium in ft.py:parameters to fine tune():

(a) last: Fine-tune only the last 2 transformer blocks
(b) first: Fine-tune only first 2 transformer blocks
(c) middle: Fine-tune only middle 2 transformer blocks

This step simply requires selecting the correct subset of parameters for each version
listed above in parameters to fine tune(). Keep in mind you should be returning
an iterable of nn.Parameter here, not nn.Module.

2. In addition to selecting only a subset of layers to fine-tune, more sophisticated meth-
ods for parameter-efficient fine-tuning exist; one such method is LoRA: Low-rank

6

https://arxiv.org/pdf/2106.09685.pdf
https://arxiv.org/pdf/2106.09685.pdf


adaptation. For each layer ` in the network, rather than fine-tune the pre-trained
weight matrix W 0

` ∈ Rd1×d2 into an arbitrary new weight matrix W ft
` , LoRA con-

strains the space of fine-tuned parameters such that W ft
` = W 0

` + AB>, where A ∈
Rd1×p and B ∈ Rd2×p, and p << d1, d2. That is, we force the difference between W 0

` and
W ft
` to be rank p, keeping W 0

` frozen and only fine-tuning the rank-p residual matrix
AB>. We will apply this form of fine-tuning to both the MLP weight matrices and
the self-attention weight matrices in the model.

(a) For a single layer, what are the parameter savings we achieve by using LoRA?
i.e., what is the ratio of parameters fine-tuned by LoRA (for arbitrary p) to the
number of parameters in W 0

` ? In terms of p, d1, d2, when will LoRA provide the
greatest savings in newly-created parameters?

(b) Finish the LoRAConv1DWrapper in ft.py, which wraps a pre-trained Conv1D
layer with LoRA parameters. Conv1D is equivalent to a Linear layer; it’s a 1D
conv because we apply the same linear transform at each time step of the se-
quence. You can extract the shape of the pre-trained weight matrix from the
base module.weight.shape tuple. You don’t need to worry about biases here,
just the low-rank weight matrix residual.

(c) Add the corresponding logic for LoRA in ft.py:parameters to fine tune().
Hint: consider using the .modules() function of nn.Module and checking for
modules that are an instance of LoRAConv1DWrapper.

(d) Implement the 3-dim version of the loss and accuracy in ft.py:get loss() and
ft.py:get acc().

(e) Implement batch construction for fine-tuning GPT-2 in function ft.py:tokenize

gpt2 batch(). Read the instructions in the code carefully!
(f) Finally, put it all together by filling out the logic for one step of training in

ft.py:ft gpt2(). Note that we use gradient accumulation, meaning that accu-
mulate gradients over grad accum steps, and only update our model’s parame-
ters after each grad accum steps.

3. (15 pt) Run fine-tuning for each parameter-efficient fine-tuning method, using p =
4, 16 for LoRA (so, 5 variants in total); run the commands:
python3 ft.py --task ft --model med --mode first,last,middle,lora4,lora16 \

--dataset xsum,babi --k 0,1,8,128

Plot k-shot performance as k is varied for GPT-2-medium, one plot for each dataset;
run the commands:
python3 ft.py --task plot --model med --mode first,last,middle,lora4,lora16 \

--dataset xsum --k 0,1,8,128

python3 ft.py --task plot --model med --mode first,last,middle,lora4,lora16 \
--dataset babi --k 0,1,8,128

Include your plots and describe the results here.

7

https://arxiv.org/pdf/2106.09685.pdf
https://arxiv.org/pdf/2106.09685.pdf


(10 pt) Question 3: Comparing in-context learning and fine-
tuning

1. (5 pt) Plot the few-shot performance of LoRA-16 and in-context learning for XSum
in the same plot with the command:
python3 q3 plot.py

When does in-context learning seem like the better choice, with respect to the amount
of data available? What about fine-tuning? What limitation of in-context learning
does this result highlight?
Include your plot and write your answer here.

2. (5 pt) One potential disadvantage of in-context learning is that we must choose an
ordering for the examples in our prompt, and that ordering can sometimes impact per-
formance negatively. Run the command:
python3 icl.py --task icl --model med --dataset babi --k 16 --repeats 5

to compute the evaluation performance of in-context few-shot performance for 5 ran-
dom orderings of the prompt. Report the number you get; the standard deviation
of performance for fine-tuning is approximately 0.013. Does in-context learning or
fine-tuning have a higher standard deviation?
Write your answer here.
(5 pt) Extra credit: See this paper for multiple heuristics for picking a prompt or-
dering. Implement either the globalE or localE heuristic, and report the accuracy
you find for that ordering for 16-shot bAbI on GPT-2-medium. Compare it with the
accuracy you found with random prompt orderings in question 1.
Write your answer here.

8

https://arxiv.org/pdf/2104.08786.pdf

