
CS 330 Autumn 2022 Homework 4
Advanced Meta-Learning Topics

Due Monday, November 14th, 11:59 PM PT
SUNet ID:

Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview

This assignment will explore advanced meta-learning topics. In particular, you will an-
swer conceptual questions about whether memorization can occur in a few realistic meta-
learning scenarios. You will also derive an objective for a Bayesian meta-learning setting
where, in addition to a dataset, metadata is available for all tasks. This assignment does
not involve programming.

Grading policy: This assignment is optional, and accounts for up to 15% of your grade.
Your grade for this homework will replace the grade of either one prior homework or part
of the final project, whichever choice results in the highest final grade. Attempting this
homework will never harm your grade.

Submission: To submit your homework, submit one PDF report to Gradescope containing
written answers to the questions below. The PDF should also include your name and any
students you talked to or collaborated with.

Problem 1: Memorization in Meta-Learning (6 Points)

In this problem, we will examine four task distributions in a meta-learning problem setting
to determine whether or not memorization can occur. Specifically, we denote tasks as Ti
and the task distribution as p(T ). We denote the dataset corresponding to the ith meta-
training task as Di = (xi,yi) and the dataset corresponding to the ith meta-testing task
as D∗

i = (x∗
i ,y

∗
i ). Here, xi = (xi1, . . . , xiK) ,yi = (yi1, . . . , yiK), and p(T ) determines the

distributions that the datasets are sampled from. We denote the collection of all meta-
training and meta-testing datasets asM = {D1,D2, . . .} ∪ {D∗

1,D∗
2, . . . , }.

We adopt the definition of complete meta-learning memorization from [1]. We say that a
task distribution can suffer from complete memorization if a meta-learning algorithm can
achieve perfect performance for all meta-training datasets D1,D2, . . . while ignoring the
task training data (i.e. the support set).
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For each of the following meta-learning task settings, answer two questions and explain
your reasoning for each answer. First, state whether or not complete memorization can
occur. Second, would the performance on the meta-test set be (1) equal or worse than
random guessing (2) worse than meta-train but better than random guessing (3) as good
as meta-train? For both questions, you are not required to provide a formal mathematical
proof but you should explain your reasoning in one or two sentences. Some of the ques-
tions may have multiple plausible answers depending on how you interpret the scenario
and what additional assumptions you make. Any logically consistent answer will receive
a full grade.

(a) Regression tasks from basis functions. Consider regression tasks where the input
and output domains are X = R and Y = R, respectively. Each task contains 10
train and 10 test datapoints, and is constructed from a finite set of basis functions
φi : R → R for i ∈ {1, . . . , n} that are linearly independent, i.e., there does not exist
w1, . . . , wn such that

∑
iwiφi = 0. Let p(w) be a distribution over Rn. Each task is

constructed by sampling w ∼ p(w) and then using x 7→
∑

iwiφi(x) as the ground-
truth function, where the inputs x are sampled from Unif([0, 1]). (2 points)
Your two-part answer goes here.

(b) Medical image classification. Consider a meta-learning dataset for medical imag-
ing, where the goal is for a model to be able to recognize a novel disease given a small
number of labeled cases. The input is a medical image, such as an X-ray or CT scan.
The output is a binary label y ∈ {0, 1} where 0 represents a sample from a healthy
person and 1 represents a sample with a specific disease. Assume we have a large
dataset of images corresponding toN different diseases, whereN is a large number.
To construct a meta-training task, we randomly sample one of the N diseases, then
sample 5 healthy and 5 diseased images. Meta-testing tasks are constructed similarly
from images corresponding to a set of M held-out diseases. (2 points)
Your two-part answer goes here.

(c) Robotic grasping. Consider a simplified robotic grasping task, where the goal is to
predict the three-dimensional coordinates (∈ R3) of a target object to grasp. The
robot is a movable arm firmly attached to a desk. Many different objects are placed
on the desk, and each task consists of grasping a specific object. The meta-testing
tasks correspond to held-out objects on the desk. The input is an image that shows
everything in the robot’s field of view, including multiple objects on a desk and a
computer monitor. The target object for each task is written on a computer monitor,
inside the camera’s field of view. As task-specific adaptation, the robot is allowed
K = 5 attempts to predict the grasp location; i.e. the support set includes 5 grasp
attempts. During each attempt, the robot makes object coordinate predictions and
receives a reward signal based on how close its prediction was to the object. At meta-
test time, we test the robot on novel objects with the monitor turned off, and measure
the average grasping success rate after the initial 5 trials. (2 points)
Your two-part answer goes here.
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Figure 1: Plate notation diagram of Neural Processes.

Problem 2: Bayesian Meta-Learning (9 Points)

In this problem, we consider a two-level variant of Neural Processes [2]. A novel compo-
nent in our setup is a task metadata variable m ∈ RD which succinctly summarizes aspects
of each task. We assume that m is available for all tasks in the meta-training set.

Our probabilistic model involves two latent variables z1 ∈ RD and z2 ∈ RD and an observ-
able task metadata variable m ∈ RD. We assume a prior p(z2) over the top-level variable
z2, and that z1 is sampled according to the conditional distribution p(z1|z2,m). The la-
bel corresponding to an example x follows the distribution p(y|z1, x). We use networks
q(z1|x1:N , y1:N) and q(z2|z1,m) to perform amortized inference of the two hidden variables
z1 and z2.

(a) Draw a plate notation diagram for this model. Your diagram should include all
variables z1, z2, x, y,m with node colors reflecting whether each node is hidden or
observable, and a plate representing the N examples inside each dataset. You can
hand-draw a diagram or modify the provided tikz diagram for Neural Processes
(Figure 1). (2 points)
Your answer goes here.

(b) Complete the following derivation of an evidence lower bound (ELBO) for this model,
given the dataset (x1:N , y1:N) and metadata m from each task. Your final objective
must only involve terms that can be directly computed. Your derivation can use
standard lemmas such as Jensen’s inequality without proof. (7 points)
(Hint 1: related derivations appear in section 2.1 of [2] and section 2∼2.1 of [3].)

(Hint 2: introducing new symbols such as X = x1:N and Y = y1:N can simplify your equations.)

Your answer goes here. It should be possible to rearrange your final objective into
the structure below:

log p(y1:N |x1:N ,m) = · · · ≥ E··· [· · ·]−DKL ( · · ·|| · · ·) . (1)
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