
CS 330

Advanced Meta-Learning Topics:  
Large-Scale Meta-Optimization



Course Reminders

Please submit high-resolution feedback!

Optional HW4 out today, due next Wednesday.

Don’t forget to turn off your Azure machines!



Hand-designed rules

Meta-learning and Scalability

Hand-designed features

End-to-end learning

Meta-learning

Core lesson: given enough data and compute, learned components outperform 
even the best hand-designed heuristics. 

The key advantage of data-driven approaches is scalability. 
Do meta-learning methods work at scale?

Hand-designed priors

Learned priors



Plan for Today

Why consider large-scale meta-optimization? 

Applications 

Methods 
- Truncated backpropagation 
- Gradient-free optimization

Goals for by the end of lecture: 
- Know scenarios where existing meta-learning approaches fail to scale 
- Understand techniques for large-scale meta-optimization



Black-box 

Optimization-based Nonparametric 

General recipe: Consider the inner loop 
as one big computation graph, then 
backpropagate. 

+ Automatically works with any 
differentiable computation graph 
- Memory cost scales with 
computation graph size!

Direct Backpropagation



From: “Meta-Learning with Differentiable Convex Optimization”, Lee et al.

WRN-28-10 
Parameters: <4e6 

ResNet-12 
Parameters: <1e7 

How Big are Computation Graphs?

4-layer CNN 
Parameters: <1e5



From: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Toy 2-layer MLP from official 
PyTorch tutorial 
Parameters: <7e6 
Gradient steps: 5 epochs = ~4e3 

Total computation graph:  
over 20 billion parameters!

How Big are Computation Graphs?

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html


Direct Backpropagation

Question: Describe a scenario where   is too big to apply direct backpropagation. 

(pollev.com/330)
fLEARN

http://pollev.com/330


Plan for Today

Why consider large-scale meta-optimization? 

Applications 

Methods 
- Truncated backpropagation 
- Gradient-free optimization



Computation graph of   is large when: 

• It uses a big network and/or many gradient steps 
• It includes second-order optimization (meta-meta learning?) 

Meta-parameter  can be any component of  : 

• Initial parameters 
• Learning rate 
• Optimizer 
• Model architecture 
• Loss function / regularizer 
• Dataset / augmentation

fLEARN

θ fLEARN

Settings With Bigger Computation Graphs
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Unrolled Computation Graphs



Unrolled Computation Graphs

Initial Parameters Loss, Regularizer, Optimizer

ArchitectureSynthetic Dataset, Augmentation



Goal: Optimize hyperparameters for validation set performance

Application: Hyperparameter Optimization

From: “Optimizing Millions of Hyperparameters by Implicit Differentiation”, Lorraine et al. (2019)

LSTM Hyperparameters

From: “Population Based Training of Neural Networks”, Jaderberg et al. (2017)

“Hyper”parameters of a data augmentation 
network

Benefits over random search in many domains



Goal: Optimize an architecture for validation set performance

Application: Architecture Search

Zoph and Le, “Neural Architecture Search with Reinforcement Learning” (2017)

An RNN parameterizes a neural network

A generated cell for an RNN



Goal: Optimize an optimizer for validation set performance

Application: Optimizer Learning

From: “Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves”, Metz et al. (2020)

Can even train itself

Works in long training loops
Simple learned optimizer

More complex optimizer



Goal: optimize a synthetic training set for validation set performance

Application: Dataset Distillation

Method: Match training data gradients at each timestep

From: “Dataset Condensation with Gradient Matching”, Zhao et al. (2020)



Plan for Today

Why consider large-scale meta-optimization? 

Applications 

Approaches 
- Truncated backpropagation 
- Gradient-free optimization

Our poor GPU



Truncated Backpropagation

T=3



Truncated Backpropagation

Split the full sequence into shorter slices, and 
backpropagate after processing each slice. 

Question: what could happen if we use short T?

+ Simple: autograd handles everything 
- Biased estimator 
- Cannot take long-range dependencies 
into account 
- Sequence length introduces a tradeoff 
between correctness and memory cost

T=3



Plan for Today

Why consider large-scale meta-optimization? 

Applications 

Methods 
- Truncated backpropagation 
- Gradient-free optimization



Backpropagation is costly for large computation graphs… 
   Optimization does not necessarily require gradients! 

Evolution Strategies: Estimates gradients using stochastic finite differences. 

Gradient-free Optimization

From: Khan Academy: Darwin, evolution, & natural selection

https://www.khanacademy.org/science/biology/her/evolution-and-natural-selection/a/darwin-evolution-natural-selection


Evolution Strategies
Initialize parameters  . Repeat: 

1. Sample particles:   

2. Evaluate and get best:   

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

Example: optimizing learning rate 

Initialize lr and noise  

1. Sample lr:   
2. Run SGD, get runs with best val accuracy:  

 

3.

(α, σ) ← (α0, σ0)

α1, α2, …, αN ∼ 𝒩(α, σ2)

{e1, …, en} ⊂ {α1, …, αN}
α, σ2 ← Avg(e1, …, en), Var(e1, …, en)

From: Wikipedia CMA-ES page

https://en.wikipedia.org/wiki/CMA-ES


Evolution Strategies

+ Constant memory cost 
+ Parallelizable across particles 
+ Inner steps can be non-differentiable 
- Struggles with high-dimensional covariates and/or complex loss surfaces

Initialize parameters  . Repeat: 

1. Sample particles:   

2. Evaluate and get best:   

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

From: Wikipedia CMA-ES page

https://en.wikipedia.org/wiki/CMA-ES


Other Methods for Large-Scale Meta-Optimization

Finds the derivative of a function that is not 
explicitly defined. 

Computes a derivative by propagating derivatives from 
the inputs to the outputs, following the chain rule.

Forward-mode Differentiation

From: “Forward Mode Automatic Differentiation & Dual Numbers”, Lange

Implicit Differentiation

From: “Meta-Learning with Implicit Gradients”, Rajeswaran et al. (2019)



Plan for Today

Goals for by the end of lecture: 
- Know scenarios where existing meta-learning approaches fail due to scale 
- Understand techniques for large-scale meta-optimization

Why consider large-scale meta-optimization? 

Applications 

Methods 
- Truncated backpropagation 
- Gradient-free optimization



Course Reminders

HW4 is due next Wednesday (optional)

Next Time
Wed: Guest lecture on learned optimizers!

Next week: Domain adaptation & lifelong learning

Following week: 🦃


