
CS 330

Advanced Meta-Learning Topics:
Large-Scale Meta-Optimization

Course Reminders

Please submit high-resolution feedback!

Optional HW4 out today, due next Wednesday.

Don’t forget to turn off your Azure machines!

Hand-designed rules

Meta-learning and Scalability

Hand-designed features

End-to-end learning

Meta-learning

Core lesson: given enough data and compute, learned components outperform
even the best hand-designed heuristics.

The key advantage of data-driven approaches is scalability.
Do meta-learning methods work at scale?

Hand-designed priors

Learned priors

Plan for Today

Why consider large-scale meta-optimization?

Applications

Methods
- Truncated backpropagation
- Gradient-free optimization

Goals for by the end of lecture:
- Know scenarios where existing meta-learning approaches fail to scale
- Understand techniques for large-scale meta-optimization

Black-box

Optimization-based Nonparametric

General recipe: Consider the inner loop
as one big computation graph, then
backpropagate.

+ Automatically works with any
differentiable computation graph
- Memory cost scales with
computation graph size!

Direct Backpropagation

From: “Meta-Learning with Differentiable Convex Optimization”, Lee et al.

WRN-28-10
Parameters: <4e6

ResNet-12
Parameters: <1e7

How Big are Computation Graphs?

4-layer CNN
Parameters: <1e5

From: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Toy 2-layer MLP from official
PyTorch tutorial
Parameters: <7e6
Gradient steps: 5 epochs = ~4e3

Total computation graph:
over 20 billion parameters!

How Big are Computation Graphs?

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

Direct Backpropagation

Question: Describe a scenario where is too big to apply direct backpropagation.

(pollev.com/330)
fLEARN

http://pollev.com/330

Plan for Today

Why consider large-scale meta-optimization?

Applications

Methods
- Truncated backpropagation
- Gradient-free optimization

Computation graph of is large when:

• It uses a big network and/or many gradient steps
• It includes second-order optimization (meta-meta learning?)

Meta-parameter can be any component of :

• Initial parameters
• Learning rate
• Optimizer
• Model architecture
• Loss function / regularizer
• Dataset / augmentation

fLEARN

θ fLEARN

Settings With Bigger Computation Graphs

HW2 min
θ ∑

taski

(θ − α∇θL (θ, Dtr
i), Dts

i)
min
θ,α ∑

taski

(θ − α∇θL (θ, Dtr
i), Dts

i)
min
θ,ψ ∑

taski

(θ − α∇θLψ (θ, Dtr
i), Dts

i)
min

ω ∑
θ∼p(θ0)

(θ − α∇θL (θ, Dω), Dts
i)

Unrolled Computation Graphs

Unrolled Computation Graphs

Initial Parameters Loss, Regularizer, Optimizer

ArchitectureSynthetic Dataset, Augmentation

Goal: Optimize hyperparameters for validation set performance

Application: Hyperparameter Optimization

From: “Optimizing Millions of Hyperparameters by Implicit Differentiation”, Lorraine et al. (2019)

LSTM Hyperparameters

From: “Population Based Training of Neural Networks”, Jaderberg et al. (2017)

“Hyper”parameters of a data augmentation
network

Benefits over random search in many domains

Goal: Optimize an architecture for validation set performance

Application: Architecture Search

Zoph and Le, “Neural Architecture Search with Reinforcement Learning” (2017)

An RNN parameterizes a neural network

A generated cell for an RNN

Goal: Optimize an optimizer for validation set performance

Application: Optimizer Learning

From: “Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves”, Metz et al. (2020)

Can even train itself

Works in long training loops
Simple learned optimizer

More complex optimizer

Goal: optimize a synthetic training set for validation set performance

Application: Dataset Distillation

Method: Match training data gradients at each timestep

From: “Dataset Condensation with Gradient Matching”, Zhao et al. (2020)

Plan for Today

Why consider large-scale meta-optimization?

Applications

Approaches
- Truncated backpropagation
- Gradient-free optimization

Our poor GPU

Truncated Backpropagation

T=3

Truncated Backpropagation

Split the full sequence into shorter slices, and
backpropagate after processing each slice.

Question: what could happen if we use short T?

+ Simple: autograd handles everything
- Biased estimator
- Cannot take long-range dependencies
into account
- Sequence length introduces a tradeoff
between correctness and memory cost

T=3

Plan for Today

Why consider large-scale meta-optimization?

Applications

Methods
- Truncated backpropagation
- Gradient-free optimization

Backpropagation is costly for large computation graphs…
 Optimization does not necessarily require gradients!

Evolution Strategies: Estimates gradients using stochastic finite differences.

Gradient-free Optimization

From: Khan Academy: Darwin, evolution, & natural selection

https://www.khanacademy.org/science/biology/her/evolution-and-natural-selection/a/darwin-evolution-natural-selection

Evolution Strategies
Initialize parameters . Repeat:

1. Sample particles:

2. Evaluate and get best:

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

Example: optimizing learning rate

Initialize lr and noise

1. Sample lr:
2. Run SGD, get runs with best val accuracy:

3.

(α, σ) ← (α0, σ0)

α1, α2, …, αN ∼ 𝒩(α, σ2)

{e1, …, en} ⊂ {α1, …, αN}
α, σ2 ← Avg(e1, …, en), Var(e1, …, en)

From: Wikipedia CMA-ES page

https://en.wikipedia.org/wiki/CMA-ES

Evolution Strategies

+ Constant memory cost
+ Parallelizable across particles
+ Inner steps can be non-differentiable
- Struggles with high-dimensional covariates and/or complex loss surfaces

Initialize parameters . Repeat:

1. Sample particles:

2. Evaluate and get best:

3.

(μ, σ) ← (μ0, σ0)

x1, x2, …, xN ∼ 𝒩(μ, σ2I)
{e1, …, en} ⊂ {x1, …, xN}

μ, σ2 ← Avg(e1, …, en), Var(e1, …, en)

From: Wikipedia CMA-ES page

https://en.wikipedia.org/wiki/CMA-ES

Other Methods for Large-Scale Meta-Optimization

Finds the derivative of a function that is not
explicitly defined.

Computes a derivative by propagating derivatives from
the inputs to the outputs, following the chain rule.

Forward-mode Differentiation

From: “Forward Mode Automatic Differentiation & Dual Numbers”, Lange

Implicit Differentiation

From: “Meta-Learning with Implicit Gradients”, Rajeswaran et al. (2019)

Plan for Today

Goals for by the end of lecture:
- Know scenarios where existing meta-learning approaches fail due to scale
- Understand techniques for large-scale meta-optimization

Why consider large-scale meta-optimization?

Applications

Methods
- Truncated backpropagation
- Gradient-free optimization

Course Reminders

HW4 is due next Wednesday (optional)

Next Time
Wed: Guest lecture on learned optimizers!

Next week: Domain adaptation & lifelong learning

Following week: 🦃

