Bayesian Meta-Learning CS 330

Homework 3 due Monday.

Tutorial session tomorrow 4:30 pm

First guest lecture next Weds! James Harrison on learned optimizers (Google DeepMind)

Following up on some high-res feedback: - I'll work on managing questions, repeating question when needed.

Course Reminders

Recap: Amortized Variational Inference

- B. Check how tight the bound is.
- C.
- D. How to **optimize**

A. Formulate a lower bound on the log likelihood objective.

Variational inference -> *Amortized* variational inference

Recap: Amortized Variational Inference

- A. Formulate a lower bound on the log likelihood objective.
- Check how tight the bound is. Β.

tight when $D_{\mathrm{KL}}(q_i(z) \| p(z|x_i))$ is 0 Variational inference -> *Amortized* variational inference what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

How to **optimize** D.

 $\log p(x_i) \ge E_{z \sim q_i(z)}[\log p_\theta(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$

 $\begin{cases} \begin{cases} q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \end{cases} \end{cases}$

Amortized variational inference

for each x_i (or mini-batch): $\log p(x_i) \ge E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z) + \log p(z)] + \mathcal{H}(q_\phi(z|x_i))$ calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$: sample $z \sim q_{\phi}(z|x_i)$ $\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$ $\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}$ \sim how do we calculate this?

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

$$\mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$$

Amortized variational inference

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$: sample $z \sim q_{\phi}(z|x_i)$ $\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$ $\mathcal{L}_i = E$

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

$$E_{z \sim q_{\phi}(z|x_{i})}[\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i}))$$

$$J(\phi) = E_{z \sim q_{\phi}(z|x_{i})}[r(x_{i}, z)]$$

an

The reparameterization trick

$$J(\phi) = E_{z \sim q_{\phi}(z|x_i)}[r(x_i, z)]$$

= $E_{\epsilon \sim \mathcal{N}(0,1)}[r(x_i, \mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i))]$

estimating $\nabla_{\phi} J(\phi)$:

sample $\epsilon_1, \ldots, \epsilon_M$ from $\mathcal{N}(0, 1)$ (a single sample

$$\nabla_{\phi} J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} r(x_i, \mu_{\phi}(x_i) + \epsilon_j \sigma_{\phi}(x_i))$$

- + Very simple to implement + Low variance
- Only continuous latent variables

$$\begin{aligned} q_{\phi}(z|x) &= \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \\ z &= \mu_{\phi}(x) + \epsilon \sigma_{\phi}(x) \\ & & \downarrow \\ \\ \text{works well!}) & \epsilon \sim \mathcal{N}(0, 1) \\ & \text{independent of } \phi! \end{aligned}$$

Discrete latent variables:

vector quantization & straight-through estimator ("VQ-VAE") policy gradients / "REINFORCE"

Another way to look at everything...

$$\mathcal{L}_{i} = E_{z \sim q_{\phi}(z|x_{i})} [\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}_{z}$$
$$= E_{z \sim q_{\phi}(z|x_{i})} [\log p_{\theta}(x_{i}|z)] + E_{z \sim q_{\phi}(z|x_{i})} [D_{\mathrm{KL}}]$$
$$-D_{\mathrm{KL}}$$

$$= E_{z \sim q_{\phi}(z|x_i)} [\log p_{\theta}(x_i|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x_i|z))]$$
$$= E_{\epsilon \sim \mathcal{N}(0,1)} [\log p_{\theta}(x_i|\mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i))]$$
$$\approx \log p_{\theta}(x_i|\mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i)) - D_{\mathrm{KL}}(q_{\phi}(x_i))]$$

 $\mathcal{H}(q_{\phi}(z|x_{i}))$ $[\log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i}))$ $L(q_{\phi}(z|x_{i})||p(z)) \qquad \text{this has a convenient analytical form} for Gaussians$ $x_{i})||p(z))$ $[-D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z))$ $(z|z_{i})||z(z_{i}))$

 $(z|x_i)||p(z))$

Example Models

 $p_{\theta}(x|z)$ θ

Using the variational autoencoder

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \quad \phi \underbrace{\begin{pmatrix} \mathbf{z} \\ \mathbf{\theta} \\ \mathbf{x} \end{pmatrix}}_{\mathbf{x}} p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \sigma_{\theta}(z))$$

$$p(x) = \int p(x|z)p(z)dz$$

why does this work?

sampling: $z \sim p(z)$ $x \sim p(x|z)$ $\mathcal{L}_i = E_{z \sim q_\phi(z|x_i)} [\log p$ $\mathcal{L}_i = E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z)] - D_{\mathrm{KL}}(q_\phi(z|x_i)||p(z))$

Conditional models

$$\mathcal{L}_i = E_{z \sim q_\phi(z|x_i, y_i)} [\log p_\theta(y_i|x_i, z) + \log p(z|x_i)]$$

just like before, only now generating y_i and *everything* is conditioned on x_i

Images from Razavi, van den Oord, Vinyals. Generating Diverse High-Fidelity Images with VQ-VAE-2. '19

Plan for (the rest of) today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches

optimization-based approaches (time permitting) How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:

- Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for representing uncertainty over parameters, predictions

Recap: Properties of Meta-Learning Inner Loops Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

These properties are important for most applications!

Expressive power

Consistency

Recap: Properties of Meta-Learning Inner Loops Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

ability to reason about ambiguity during learning active learning, calibrated uncertainty, RL principled Bayesian approaches Why?

Expressive power

Consistency

Uncertainty awareness

this lecture

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting) -How to evaluate Bayesian meta-learners.

 Smiling, ✓ Wearing Hat, ✓ Young

✓ Smiling,

× Young

✓ Wearing Hat,

✓ Wearing Hat, ✓ Young

Recall parametric approaches: Use deterministic $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$ (i.e. a point estimate)

Why/when is this a problem?

Few-shot learning problems may be *ambiguous*. (even with prior)

> Can we learn to *generate hypotheses* about the underlying function? i.e. sample from $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

safety-critical few-shot learning (e.g. medical imaging) Important for:

- learning to **actively learn**
- learning to **explore** in meta-RL

Active learning w/ meta-learning: Woodward & Finn '16, Konyushkova et al. '17, Bachman et al. '17

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches

optimization-based approaches (time permitting) -How to evaluate Bayesian meta-learners.

Meta-learning algorithms as computation graphs **Black-box Optimization-based Non-parametric** $y^{\mathrm{ts}} = f_{\mathrm{PN}}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$ $y^{\text{ts}} = f_{\theta}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}}) \qquad y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$ $= \operatorname{softmax}(-d\left(f_{\theta}(x^{\operatorname{ts}}), \mathbf{c}_n\right))$ $= f_{\phi_i}(x^{\mathrm{ts}})$ where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$ where $\mathbf{c}_n = \frac{1}{K} \sum \mathbb{1}(y = n) f_{\theta}(x)$

 x^{ts}

 $(x_1, y_1) (x_2, y_2) (x_3, y_3)$

- For example:
 - mean and variance of a Gaussian
 - means, variances, and mixture weights of a mixture of Gaussians
 - for multi-dimensional y^{ts}: parameters of a sequence of **distributions** (i.e. autoregressive model)

 $(x,y) \in \mathcal{D}_{i}^{\mathrm{tr}}$

Version 0: Let f output the parameters of a distribution over y^{ts} .

- probability values of discrete categorical distribution

- Then, optimize with maximum likelihood.

For example:

- probability values of discrete categorical distribution
- mean and variance of a Gaussian
- means, variances, and mixture weights of a mixture of Gaussians -
- for multi-dimensional y^{ts}: parameters of a sequence of
 - **distributions** (i.e. autoregressive model)
 - Then, optimize with maximum likelihood.

Pros:

- + simple
- + can combine with variety of methods

Cons:

- can't reason about uncertainty over the underlying function [to determine how uncertainty across datapoints relate]
- limited class of distributions over y^{ts} can be expressed
- tends to produce poorly-calibrated uncertainty estimates

Version 0: Let f output the parameters of a distribution over y^{ts} .

Thought exercise #4: Can you do the same maximum likelihood training for ϕ ?

The Bayesian Deep Learning Toolbox

a broad one-slide overview (CS 236 provides a thorough treatment)

Goal: represent distributions with neural networks

- approximate likelihood of latent variable model with variational lower bound

Bayesian ensembles (Lakshminarayanan et al. '17):

particle-based representation: train separate models on bootstraps of the data —

Bayesian neural networks (Blundell et al. '15):

explicit distribution over the space of network parameters

Normalizing Flows (Dinh et al. '16):

invertible function from latent distribution to data distribution _

Energy-based models & GANs (LeCun et al. '06, Goodfellow et al. '14):

estimate unnormalized density

Latent variable models + variational inference (Kingma & Welling '13, Rezende et al. '14):

data everything else

We'll see how we can leverage the first two.

The others could be useful in developing new methods.

Recap: The Variational Lower Bound

 $\log p(x)$ ELBO:

Can also be written as:

 $p: model \quad \begin{aligned} p(x \mid z) \text{ represented w/ neural net,} \\ p(z) \text{ represented as } \mathcal{N}(\mathbf{0}, \mathbf{I}) \end{aligned}$

model parameters θ , variational parameters ϕ q(z | x): inference network, variational distribution

Problem: need to backprop through sampling i.e. compute derivative of \mathbb{E}_q w.r.t. q

Observed variable *x*, latent variable *z*

$$\geq \mathbb{E}_{q(z|x)} \left[\log p(x, z) \right] + \mathcal{H}(q(z|x))$$
$$= \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL} \left(q(z|x) || p(z) \right)$$

Reparametrization trick For Gaussian q(z | x): $q(z | x) = \mu_q + \sigma_q \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Can we use amortized variational inference for meta-learning?

Bayesian black-box meta-learning with standard, deep variational inference

Standard VAE:

Observed variable *x*, latent variable *z* ELBO: $\mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL} \left(q(z|x) || p(z) \right)$ *p*: model, represented by a neural net *q*: inference network, variational distribution **Meta-learning:** Observed variable \mathcal{D} , latent variable ϕ max $\mathbb{E}_{q(\phi)} \left[\log p(\mathcal{D} | \phi) \right] - D_{KL} \left(q(\phi) || p(\phi) \right)$

Final objective (for completeness): $\max_{\theta} \mathbb{E}_{\mathcal{T}_i} \left[\mathbb{E}_{q} \right]$

What should
$$q$$
 condition on?

$$\max \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right)} \left[\log p(\mathscr{D} \mid \phi)\right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right) \mid \mid p(\phi)\right)$$

$$\max \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right)} \left[\log p\left(y^{\mathrm{ts}} \mid x^{\mathrm{ts}}, \phi\right)\right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\mathrm{tr}}\right) \mid p(\phi)\right)$$

What about the meta-parameters θ ?

$$\max_{\theta} \mathbb{E}_{q\left(\phi \mid \mathscr{D}^{\text{tr},\theta}\right)} \left[\log p\left(y^{\text{ts}} \mid x^{\text{ts}}, \phi\right) \right] - D_{KL} \left(q\left(\phi \mid \mathscr{D}^{\text{tr}}, \theta\right) || p(q) \right)$$

Can also condition on θ here

$$\int_{Q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}, \phi_{i}\right) \right] - D_{KL}\left(q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right) \parallel p(\phi_{i} \mid \mathcal{D}_{i}^{\mathrm{tr}}, \theta) \right)$$

Bayesian black-box meta-learning with standard, deep variational inference

Meta-learning: Observ

Final objective (for completeness): $\max_{\theta} \mathbb{E}_{\mathcal{T}_i} \mathbb{E}_{\mathcal{T}_i}$

Question: Can you get non-Gaussian distributions over ϕ_i with this approach?

Observed variable ${\mathscr D}$, latent variable ϕ

$$\frac{1}{q\left(\phi_{i}|\mathscr{D}_{i}^{\mathrm{tr}},\theta\right)}\left[\log p\left(y_{i}^{\mathrm{ts}}|x_{i}^{\mathrm{ts}},\phi_{i}\right)\right] - D_{KL}\left(q\left(\phi_{i}|\mathscr{D}_{i}^{\mathrm{tr}},\theta\right)\|p(\phi_{i}|\phi_{i}|)\right)\right]$$

Bayesian black-box meta-learning with standard, deep variational inference

$$\mathcal{D}_i^{\mathrm{tr}} \longrightarrow$$
 neural net

$$\max_{\theta} \mathbb{E}_{\mathcal{T}_{i}} \left[\mathbb{E}_{q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}, \phi_{i}\right) \right] - D_{KL} \left(q\left(\phi_{i} \mid \mathscr{D}_{i}^{\mathrm{tr}}, \theta\right) \mid \mid p(\phi_{i} \mid \theta) \right) \right]$$

Pros:

- + produces distribution over functions Cons:

Can only represent Gaussian distributions $p(\phi_i | \theta)$ _ (okay when ϕ_i is latent vector)

+ can represent non-Gaussian distributions over y^{ts}

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

What about Bayesian **optimization-based** meta-learning?

Provides a Bayesian interpretation of MAML. But, we can't **sample** from $p\left(\phi_i | \theta, \mathscr{D}_i^{\mathsf{tr}}\right)!$

Recasting Gradient-Based Meta-Learning as Hierarchical Bayes (Grant et al. '18)

 $= \log \prod_{i=1}^{i} \int p(\mathcal{D}_{i}|\phi_{i}) p(\phi_{i}|\theta) d\phi_{i} \quad \text{(empirical Bayes)}$

 $\approx \log \prod_{i} p(\mathcal{D}_i | \hat{\phi}_i) p(\hat{\phi}_i | \theta)$ MAP estimate

How to compute MAP estimate?

Gradient descent with early stopping = MAP inference under Gaussian prior with mean at initial parameters [Santos '96] (exact in linear case, approximate in nonlinear case)

What about Bayesian optimization-based meta-learning?

 $\mathcal{D}_{i}^{\mathrm{tr}} \longrightarrow$ neural net - $\max_{\theta} \mathbb{E}_{\mathcal{T}_{i}} \left| \mathbb{E}_{q\left(\phi_{i} \mid \mathcal{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}\right) \right] \right|$

Amortized Bayesian Meta-Learning (Ravi & Beatson '19)

Recall: Bayesian black-box meta-learning with standard, deep variational inference

$$\rightarrow q\left(\phi_{i}|\mathscr{D}_{i}^{\mathrm{tr}}\right) \quad \phi_{i} \rightarrow \begin{array}{c} & & & \\ & & & \\ & & & \\$$

q: an arbitrary function

- q can include a gradient operator!
 - q corresponds to SGD on the mean & variance of neural network weights ($\mu_{\phi}, \sigma_{\phi}^2$), w.r.t. $\mathscr{D}_i^{\mathrm{tr}}$
- **Pro:** Running gradient descent at test time. Con: $p(\phi_i | \theta)$ modeled as a Gaussian.
 - Can we model **non-Gaussian** posterior?

What about Bayesian optimization-based meta-learning? Can we use **ensembles**? Kim et al. Bayesian MAML '18

Ensemble of MAMLs (EMAML) Train M independent MAML models. Won't work well if ensemble members are too similar.

An ensemble of mammals

A more diverse ensemble of mammals

Stein Variational Gradient (BMAML)

Use stein variational gradient (SVGD) to push particles away from one another $\phi(\theta_t) = \frac{1}{M} \sum_{j=1}^{M} \left[k(\theta_t^j, \theta_t) \nabla_{\theta_t^j} \log p(\theta_t^j) \right]$

Pros: Simple, tends to work well, non-Gaussian distributions.

Can we model **non-Gaussian** posterior over **all parameters**?

Note: Can also use ensembles w/ black-box, non-parametric methods!

$$)+ \nabla_{\theta_{t}^{j}}k(\theta_{t}^{j},\theta_{t})\Big]$$

$$\mathcal{L}_{\text{BFA}}(\Theta_{\tau}(\Theta_{0}); \mathcal{D}_{\tau}^{\text{val}}) = \log\left[\frac{1}{M}\sum_{m=1}^{M} p(\mathcal{D}_{\tau}^{\text{val}} | \theta_{\tau}^{m})\right]$$

Con: Need to maintain M model instances.

What about Bayesian **optimization-based** meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18

✓ Young

Intuition: Learn a prior where a random kick can put us in different modes

 $\mathcal{L}(\phi, \mathcal{D}_{ ext{train}})$

 $\phi \leftarrow \theta + \epsilon$ $\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}(\phi, \mathcal{D}_{\text{train}})$

What about Bayesian optimization-based meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18 $\theta \sim p(\theta) = \mathcal{N}(\mu_{\theta}, \Sigma_{\theta}) \qquad \phi_i \sim p(\phi_i | \theta)$ (not single parameter vector anymore)

Goal: sample $\phi_i \sim p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}})$ $p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}) \propto \int p(\theta) p(\phi_i | \theta) p$

 \Rightarrow this is completely intractable!

what if we knew $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}})?$

 \Rightarrow now sampling is easy! just use ancestral sampling!

key idea: $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i)$ approximate with MAP this is **extremely** crude $\hat{\phi}_i \approx \theta + \alpha \nabla_\theta \log p(y_i^{\text{train}} | x_i^{\text{train}}, \theta)$ but **extremely** convenient! (Santos '92, Grant et al. ICLR '18)

Training can be done with **amortized variational inference**.

$$p(y_i^{\text{train}}|x_i^{\text{train}},\phi_i)d\theta$$

31

What about Bayesian optimization-based meta-learning? Sample parameter vectors with a procedure like Hamiltonian Monte Carlo? Finn*, Xu*, Levine. Probabilistic MAML '18 $\theta \sim p(\theta) = \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$

key idea: $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i) \qquad \hat{\phi}_i \approx \theta + \alpha \nabla_\theta \log p(y_i^{\text{train}} | x_i^{\text{train}}, \theta)$

What does ancestral sampling look like? 1. $\theta \sim \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$ 2. $\phi_i \sim p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \hat{\phi}_i = \theta + \alpha \nabla_\theta \log \theta$ $\mathcal{L}(\phi, \mathcal{D}_{ ext{train}})$ smiling, hat

$$p(y_i^{\text{train}}|x_i^{\text{train}}, \theta)$$

Pros: Non-Gaussian posterior, simple at test time, only one model instance.

Con: More complex training procedure.

Methods Summary

Version 0: f outputs a distribution over y^{ts} . **Pros:** simple, can combine with variety of methods **Cons:** can't reason about uncertainty over the underlying function, limited class of distributions over y^{ts} can be expressed

Black box approaches: Use latent variable models + amortized variational inference

$$\mathcal{D}_{i}^{\mathrm{tr}} \longrightarrow \text{neural net} \longrightarrow q\left(\phi_{i} | \mathcal{D}_{i}^{\mathrm{tr}}\right) \quad \phi_{i} \longrightarrow \begin{array}{c} y^{\mathrm{ts}} \\ \uparrow \\ \uparrow \\ x^{\mathrm{ts}} \end{array}$$

Optimization-based approaches:

Amortized inference

Pro: Simple.

Con: $p(\phi_i | \theta)$ modeled as a Gaussian.

Pros: can represent non-Gaussian distributions over y^{ts} **Cons:** Can only represent Gaussian distributions $p(\phi_i | \theta)$ (okay when ϕ_i is latent vector)

Ensembles

Pros: Simple, tends to work well, non-Gaussian distributions. **Con**: maintain M model instances. (or do inference on last layer only)

Hybrid inference

Pros: Non-Gaussian posterior, simple at test time, only one model instance.

Con: More complex training procedure.

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

How to evaluate a Bayesian meta-learner?

- + standardized
- + real images
- metrics like accuracy don't evaluate uncertainty
- tasks may not exhibit ambiguity
- uncertainty may not be useful on this dataset!

It depends on the problem you care about!

Use the standard benchmarks?

(i.e. Minilmagenet accuracy)

+ good check that the approach didn't break anything

What are better problems & metrics?

Qualitative Evaluation on Toy Problems with Ambiguity (Finn*, Xu*, Levine, NeurIPS '18)

Ambiguous regression:

Ambiguous classification:

Evaluation on Ambiguous Generation Tasks (Gordon et al., ICLR '19)

C-VAE

VERSA

Ground Truth

C-VAE

VERSA

Ground Truth

Model	MSE	SSIM
C-VAE 1-shot	0.0269	0.5705
VERSA 1-shot	0.0108	0.7893
VERSA 5-shot	0.0069	0.8483

Table 2: View reconstruction test results.

C-VAE

VERSA

Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks (Finn*, Xu*, Levine, NeurIPS '18)

Ambiguous celebA (5-shot)				
	Accuracy	Coverage (max=3)	Average	
MAML	$89.00 \pm 1.78\%$	1.00 ± 0.0	$0.73 \pm$	
MAML + noise	$84.3 \pm 1.60~\%$	1.89 ± 0.04	$0.68 \pm$	
PLATIPUS (ours) (KL weight = 0.05)	$\textbf{88.34} \pm \textbf{1.06}~\%$	1.59 ± 0.03	$0.67\pm$	
PLATIPUS (ours) (KL weight = 0.15)	$\textbf{87.8} \pm \textbf{1.03}~\%$	1.94 ± 0.04	$0.56 \pm$	

Reliability Diagrams & Accuracy

(Ravi & Beatson, ICLR '19)

m
N
P
C

<i>ini</i> ImageNet	1-shot, 5-class
IAML (ours)	47.0 ± 0.59
rob. MAML (ours)	47.8 ± 0.61
ur Model	45.0 ± 0.60

Active Learning Evaluation

Both experiments:

- Sequentially choose datapoint with maximum predictive entropy to be labeled
- Choose datapoint at random for non-Bayesian methods

Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will solve task with enough data reduce reliance on meta-training tasks, Why? good OOD task performance

Uncertainty awareness

Expressive power

Consistency

ability to reason about ambiguity during learning active learning, calibrated uncertainty, RL Why? principled Bayesian approaches

Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting) How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:

- Understand the interpretation of meta-learning as Bayesian inference Understand techniques for representing uncertainty over parameters, predictions

Next Time

- **Next week**: Large-scale meta-optimization (incl. guest lecture on learned optimizers!)
- Following week: Domain adaptation & lifelong learning
 - Following week: Thanksgiving

- - Homework 3 due Monday.
- Tutorial session tomorrow 4:30 pm

Course Reminders