Bayesian Meta-Learning
CS 330



Course Reminders

Homework 3 due Monday.

Tutorial session tomorrow 4:30 pm

First guest lecture next Weds!

James Harrison on learned optimizers
(Google DeepMind)

Following up on some high-res feedback:

"Il work on managing questi

ons, repeati

2

Nng quest

on when needed.



Recap: Amortized Variational Inference

A. Formulate a lower bound on the log likelihood objective.
B. Check how tight the bound is.
C. Variational inference -> Amortized variational inference

D. How to optimize



Recap: Amortized Variational Inference

A. Formulate a lower bound on the log likelihood objective.
log p(xi) > E,q,(2)[log po(xi|z) + log p(2)] + H(q:)
B. Check how tight the bound is.
tight when Dkr,(q;(2)||p(z|x;)) is O

C. Variational inference -> Amortized variational inference

what if we learn a network q;(z) = q(z

D. How to optimize




Amortized variational inference

g (zlx) = N(pg(x), 04 (x))

L(po(zilz), qp(z|Ti))
A

Z),(]¢(Z‘.’L‘z'))2 logp(a:z-) Z Ez~q¢(z|:ci)[10gp9($i Z) + logp(Z)] T H((MD(Z ‘Ll))

for each x; (or mini-batch):

calculate VgL (pg(x;

VoL =~ Vylogpg(z;|2)
00+ aVeLl

how do we calculate this?

sample z ~ gu(z



Amortized variational inference

for each x; (or mini-batch):

calculate VgL (pg(x;|z),qe(z|x;)): look up formula for

entropy of a Gaussian
sample z ~ gy(z|x;) qp(2|x) = N(pg(x), 04(2)) oY
VoLl ~ Vglogpg(x; 2) /
00+ aVel Li = E.rq,(zlznlog po(wi|z) + log p(2)] + H(ge(z|z;))

ooVl \ , :



The reparameterization trick

J(¢> — Ezwqu(za:i)[r(x’éa Z)] (

= Eec N0, 1)[7“(51327 o (i) + €0p(T4)))

.
estimating V4J(¢):
l
sample €1, ..., ep from N (0, 1) (a single sample works well!) e ~ N(0,1)
Vel (¢) ~ ~ Z Vor (s, po(x;) + €;06(x:)) independent of ¢!
J
+ Very simple to implement Discrete latent variables:
+ Low variance - vector quantization & straight-through estimator (“VQ-VAE")

- Only continuous latent variables - policy gradients / “REINFORCE”



Another way to look at everything...

Ti))

Z)] + EZNG¢(Z|CC7:) [logp(z)] + H(Q¢(Z JJL))

\ J
|

Li = E.nq,(z|z)l0g po(zi]|2) + logp(2)] + H(gy(z

— Ez~q¢(z|a:,,') [lOg Po (J/z

—Dk1.(qs(z|xi)||p(2)) ~—— this has a convenient analytical form
for Gaussians

z)| — Dxr(qe(z|x:)||p(2))

= Ecno,1)[10g po(xi|pg(x:) + €0p(wi))] — Drr(qg(z|x:)||p(2))

— EZqug(Zlmi) [lnge("E’L

po(wi) +€eop(wi)) — Drr(ge(z/zi)|[p(2))

~ lOg Po (;L’i




Example Models



The variational autoencoder

a6 (21a) = N(uo(a).os(x) ! [P palelz) = N(us(2),00(2))

i) |lp(2))

e (i) +eop(w;)) — Drr(ge(z

 —
MAX ; log pe (w;
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Using the variational autoencoder

———a

ap(2|7) = N(ug(x),04(x)) o1 |7 polz]z) = N(uo(2),00(2))

why does this work?

ling:
sampling Li=FE,.q,z,)08po(xi|z)| — Dxr(qe(z|zi)||p(2))
2 ~ p(2)
z ~ p(z]2)

11



Conditional models

Li=FE.q,(z|z:y) 108 Po(yilTi, 2) + log p(z|zi)] + Hge(z|Ti, yi))
just like before, only now generating y; Ss(slsislelone \
and everything is conditioned on x; 2 ~ N(0,T) class 109
’ (brain coral)
at test time: - p(2)
z ~p(z|lr;) can optionally depend on x

.
T
-~

N
P
LN
—
- i

oo(xi,yi) — |
5 |
c~ /\'r(O: 1) 12

Images from Razavi, van den Oord, Vinyals. Generating Diverse High-Fidelity Images with VQ-VAE-2. ‘19




Plan for (the rest of) today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:
Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for over parameters, predictions

13



Recap: Properties of Meta-Learning Inner Loops

Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
EXxpressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

These properties are important for most applications!

14



Recap: Properties of Meta-Learning Inner Loops

Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
Expressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

ability to reason about ambiguity during learning
active learning, calibrated uncertainty, RL

orincipled Bayesian approaches

Why?

*this lecture®

15



Plan for Today

Why be Bayesian?
Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

16



Recall parametric approaches: Use deterministic p(¢;|D;",6) (i.e.a point estimate)

Why/when is this a problem?

Few-shot learning problems may be ambiguous.
(even with prior)

~ Smiling, Can we learn to generate hypotheses
v Wearing Hat,

X Young about the underlying function?
.e. sample from p(¢;|D;", 0)

re—
t__j - safety-critical few-shot learning

(e.g. medical imaging)

S e Hat Important for:
 VYoung - learning to actively learn
v Smiling, - learning to explore in meta-RL
v/ Wearing Hat, Active learning w/ meta-learning: Woodward & Finn ’16,
v/ Young

Konyushkova et al. '17, Bachman et al. 17

17



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

18



Meta-learning algorithms as computation graphs

Black-box Optimization-based Non-parametric
y*= = fo(Di"2%)  y* = fuamn(D;", ) y* = fen(D5", )
z{s = fy. (z%) = softmax(—d (fo(x"), c,))
| , 1
: — T — T — : where ¢; = 0 — aVoL(0,D;") where c, = e > ) I(y =n)fo(x)
(r1,y1) (w2, y2) (w3,93) o (z,9)€D;

Version 0: Let f output the parameters of a distribution over ys.

For example: - probability values of discrete categorical distribution

- mean and variance of a Gaussian

- means, variances, and mixture weights of a mixture of Gaussians

- for multi-dimensional y': parameters of a sequence of
distributions (i.e. autoregressive model)

Then, optimize with maximum likelihood.

19



Version 0: Let f output the parameters of a distribution over v,

probability values of discrete categorical distribution

For example:
mean and variance of a Gaussian
means, variances, and mixture weights of a mixture of Gaussians
- for multi-dimensional y'S: parameters of a sequence of

distributions (i.e. autoregressive model)
Then, optimize with maximum likelihood.

Pros:

+ simple

+ can combine with variety of methods

Cons:

- can't reason about uncertainty over the underlying function
to determine how uncertainty across datapoints relate]

- limited class of distributions over ytS can be expressed
- tends to produce poorly-calibrated uncertainty estimates

Thought exercise #4: Can you do the same maximum likelihood training for ¢?
20




The Bayesian Deep Learning Toolbox

a broad one-slide overview
(CS 236 provides a thorough treatment)

Goal: represent distributions with neural networks

Latent variable models + variational inference (Kingma & Welling ‘13, Rezende et al. ‘14):

v

approximate likelihood of latent variable model with variational lower bound , \
Bayesian ensembles (Lakshminarayanan et al. ‘17): O:@W79

particle-based representation: train separate models on bootstraps of the data @
Bayesian neural networks (Blundell et al. “15): P N

- explicit distribution over the space of network parameters

Normalizing Flows (Dinh et al. ‘16): )
invertible function from latent distribution to data distribution

Energy-based models & GANSs (LeCun et al. ‘06, Goodfellow et al. ‘14):
We'll see how we can leverage

- estimate unnormalized density aata )
J the first two.
T everything

The others could be useful in
developing new methods.

else



Recap: The Variational Lower Bound

9 Observed variable x, latent variable 7

/’““ V
)
\+ |

®/ F1B0: logp(x) > Eyq, [logp(x. )] + #(q(z] 1))

Can also be written as: = (2l [logp(x | z)] — Dpy (q(z\x)Hp(z))

p(x|z) represented w/ neural net,

: model del ters 0,
P p(z) represented as A(0, I) MOAET PATAITIELErS

variational parameters @
q(z| x): inference network, variational distribution

Problem: need to backprop through sampling Reparametrization trick For Gaussian g(z | x):

.e. compute derivative of E_ w.rt. g q(z|x) = p,+ 0., wheree ~ N (0,])

Can we use amortized variational inference for meta-learning?
22



Bayesian black-box meta-learning
with standard, deep variational inference

N\ )
Dt . ( tr .
] o{oroF) -

Standard VAE: o maxE oy [logp@19)] - Dy (a(#12') Ip@))

Observed variable x, latent variable Z

ELBO: E, (1 [logp(x|2)| — Dgy (g(z10)1Ip(2))

p: model, represented by a neural net

What should g condition on”?

—_— —

maxE () oty oep (+515%.4)] - Dis (a (12 1)

g: inference network, variational distribution What about the meta-parameters 9?
Veta-learning: ¥ maxE, i) g2 (V0131 0) | = D (4 (0197.0) 1610))
Observed variable &, latent variable ¢ \
max E_, [1ng(@ | ¢)] — D, (q(qb)llp(gb)) Can also condition on 6 here

Final objective (for completeness): max Eg, l_q(cbil%tr,e) [logp (Y}S\X}S» ¢i>] —DKL< (q/) \tar 9) \\p(gbi\e))]

23



Bayesian black-box meta-learning
with standard, deep variational inference

VAN :
|

DYl o{195) i

S

Meta-learning:  Observed variable &, latent variable ¢

Final objective (for completeness): max Eg, l-q@il@}rﬁ) [10gp <yits‘xits, ¢i>] —DKL( (qb = 9) Hp(gbiw))l

Question: Can you get non-Gaussian distributions over ¢, with this approach?

24



max

Bayesian black-box meta-learning
lonal inference

AN

with standard,

Dy [rwmnet|— o(01917) #i—

_97,- [_q<¢i|@}:r,g> [logp <y

Pros:

+ can represent non-Gaussian d

+ produces distribL

Cons:

deep variat

€S ,.LS
51385, ¢,)| -

tion over fur

ct

yts

T

rts

k(4 (412 0) \\p(qb,-\e)):

istributions over yts

ons

- Can only represent Gaussian distributions p(¢, | )

(okay when ¢, is latent vector)

25




Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches (time permitting)
How to evaluate Bayesian meta-learners.

20



What about Bayesian optimization-based meta-learning?

Recasting Gradient-Based Meta-Learning as Hierarchical Bayes (Grant et al. "18)

task-specific parameters max log Hp(D 0

L b, ! X; ) = IOgH/P(Di\Cbi)p(qbilH)d(bi (empirical Bayes)
0 OO ~long (Di|$:)p(:16)

N \I\/IAP estimate

. 7:.)  How to compute MAP estimate?
Gradient descent with early stopping = MAP inference under

Gaussian prior with mean at initial parameters [Santos "96]
(exact in linear case, approximate in nonlinear case)

meta-parameters

Provides a Bayesian interpretation of MAMIL.
But, we can’t sample from p (qbl- | 6, @}r>!

27



What about Bayesian optimization-based meta-learning?

Recall: Bayesian black-box meta-learning
with standard, deep variational inference

VAN "
D[] (1) $i—L

.CIZ‘tS

max Eg l_q(qbiI@,tr,H) [logp (yits \xl.ts, 45,-)] — Dy <C] (Cbz‘ | QZ}T, «9) (] 6’))]

N

g: an arbitrary function

g can include a gradient operator!

Amortized Bayesian Meta-Learning g corresponds to SGD on the mean & variance

(Ravi & Beatson '19) of neural network weights (g, 02), w.r.t. @}r

Pro: Running gradient descent at test time. Con: p(¢; | 8) modeled as a Gaussian.

Can we model non-Gaussian posterior? 28



What about Bayesian optimization-based meta-learning?

Can we use ensembles?
Kim et al. Bayesian MAML "18

Ensemble of MAMLs (EMAML)

Train M independent MAML models. Note: Can also use

Won't work well it ensemble ensembles w/ black-box,
members are too similar. non-parametric methods!

: 5
£

mals

)

L hree

An ensemble of mam

Stein Variational Gradient (BMAML)
Use stein variational gradient (SVGD) to ~ Optimize for distribution of M particles

L=~ 455 push particles away from one another to produce high likelihood.
e T 1 M | , . 1 M ]
A more diverse ensemble  ¢(0¢) = = > [k(f)?: 0¢)V pi log p(0z) + Vegk(f)i,@t)] Lora(©-(€0); D) =log | - > p(DF|67")
=1 — Y m=1 .

of mammals

Pros: Simple, tends to work well,

. S Con: Need to maintain M model instances.
non-Gaussian distributions.

Can we model non-Gaussian posterior over all parameters? #



What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?
Finn* Xu*, Levine. Probabilistic MAML ‘18

. Intuition: Learn a prior where a random kick can put us in different modes

x

>

£(¢7 Dtrain) - v

:

+
&
: -
| e
= s ”o &
: o |
k- ’ = J '
i %
o

smiling, young

> ¢
O+ 0+ €
v Smiling, 1
JWearit?g Hat, Q< ¢ av¢£(¢a Dtrain)

v/ Young
30



What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?
Finn* Xu*, Levine. Probabilistic MAML ‘18

O ~p(0) =N(up,20)  ¢;i ~ plo;|0)
(not single parameter vector anymore)

train ,,train .Nest
7Ii

Goal: sample o&; ~ p(p;|x™™, y:

p(gbilw‘;rain ) tra.in) x /p(e)p(gbie)p(y’;rainuﬁ;rain’ sz)de

ayi

= this is completely intractable!

what if we knew p(¢;|0, xtram, ytram)?

= now sampling is easy! just use ancestral sampling!

key idea: p(¢p;|0,xta™, ytr2in) = §( ;) —
this is extremely crude approximate with MAP e

but extremely convenient! b; ~ 0+ aVy 1ng(yl;rain‘x‘;rain’ 0)
(Santos '92, Grant et al. ICLR "18)

31

Training can be done with amortized variational inference.




What about Bayesian optimization-based meta-learning?

Sample parameter vectors with a procedure like Hamiltonian Monte Carlo?

Finn* Xu*, Levine. Probabilistic MAML ‘18
0 ~ p(0) = N (po, o)

key idea: p(¢;|0, 2™, yiin) ~ 6(¢;) ¢ & 0+ aVg log p(y{ ™|z, 0)

What does ancestral sampling look like?

1. 0 ~ N(uy,X0)

2. B; ~ p(gbi‘e’xgrain, y;prain) ~ (/gi — 0+ aVy logp(y;::rain‘x’;rain’ 9)
t L(p, Dirain) Ho

4_

>

Pros: Non-Gaussian posterior, simple
at test time, only one model instance.

Con: More complex training procedure.
miling, young

\Snﬁling, ha

32



Methods Summary

Version 0: f outputs a distribution over y'.

Pros: simple, can combine with variety of methods

Cons: can’t reason about uncertainty over the underlying function,

imited class of distributions over yts can be expressed

Black box approaches: Use latent variable models + amortized variational inference

ts
Y
/\ f Pros: can represent non-Gaussian distributions over yts
Dl;r > 4 <¢i|9}r) ;i —_ Cons: Can only represent Gaussian distributions p(¢; | 6)
thS (okay when ¢, is latent vector)

Optimization-based approaches:

Amortized inference Ensembles Hybrid inference
Pro: Simple Pros: Simple, tends to work well, Pros: Non-Gaussian posterior, simple
| | non-Gaussian distributions. at test time, only one model instance.

Con: p(¢;| ) modeled as a Gaussian. Con: maintain M model instances.

- Con: More complex training procedure.
(or do inference on last layer only) P 5P

33



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches
- black-box approaches

- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

34



How to evaluate a Bayesian meta-learner?

Use the standard benchmarks?
(i.e. Minilmagenet accuracy)

+ standardized

+ real images

+ good check that the approach didn’t break anything
- metrics like accuracy don't evaluate uncertainty

- tasks may not exhibit ambiguity
- uncertainty may not be useful on this dataset!

What are better problems & metrics?
't depends on the problem you care about!

35



Qualitative Evaluation on Toy Problems with Ambiguity

(Finn*, Xu*, Levine, NeurlPS '18)
Ambiguous regression:

PLATIPUS, K=5

—— ground truth
A datapoints

— 5
10 10
" "
10 10
7S 7S

2N 0~ 0~ -— - MAML 7o 7o
—— ground truth

15 1 LS LS
+ datapoint
12 v v v v L0 v v v v v L0 v v v v v ' Lo v v v v v Lo v v v v '
Lo i Jo bR 4.9 A3 0 as -L 15 29 1.5 S N4 4.3 o s - ia 4.9 3 10 L o0 4.5 Lo 1% <D 3 10 1t o0 4.5 Lo 1% « L 4.8 a0 " v a2



shot

shot

shot

Evaluation on Ambiguous Generation Tasks

(Gordon et al., ICLR "19)

F S s s e - C-VAE

- - Kl - - ‘ C_VAE

i ’ - : /
™ Yy YOI YW Y7 VERSA

"—*Iw \,’ (7 ‘/ ‘/'ﬁ‘\r \’ 7 ‘(ﬂ ‘/r Ground Truth

Model MSE SSIM

C-VAE 1-shot 0.0269 0.5705
VERSA 1-shot 0.0108 0.7893
VERSA 5-shot  0.0069 0.8483

Table 2: View reconstruction test results.
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Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks

(Finn*, Xu*, Levine, NeurlPS '18)

+'ve +'ve 've +'ve 've +'ve 've
example example example example example example example example

Ambiguous celebA (5-shot)
Accuracy Coverage (max=3) | Average NLL
MAML 89.00 + 1.78% 1.00 £ 0.0 0.73 + 0.06
MAML + noise 84.3 £ 1.60 % 1.89 £ 0.04 0.68 £ 0.05
PLATIPUS (ours) (KL weight =0.05) | 88.34 &+ 1.06 % 1.59 £+ 0.03 0.67+ 0.05
PLATIPUS (ours) (KL weight=0.15) | 87.8 £1.03 % 1.94 &+ 0.04 0.56 + 0.04

v/ Mouth Open Mouth Open + Mouth Open X Mouth Open
v/ Wearing Hat X Wearing Hat + Wearing Hat + Wearing Hat
v Young v Young X  Young v Young

38



minilmageNet: 1-shot, 5-class

L0

MAML

Accuracy

Reliability Diagrams & Accuracy

ECE: 0.0471

MCE: 0.1104

.0 0.1 0.2 03 0.4 0.3 0.6 0.7 0.8 0.9 1.0

0.8

Probabilistic
MAML .

ECE: 0.0472

MCE: 0.0856

0 01 0.2 0.3 0.4 Q.5 0.6 0.7 0.8 0.9 1.0

-
0.0

ECE: 0.0124

MCE: 0.0257

0.0 0.1 0.2 0.3J c.4 C.5 0.6 0.7 0.8 0.9 1.0

Confidence

(Ravi & Beatson, ICLR "19)

minilmageNet 1-shot, 5-class
MAML (ours) 47.0 £+ 0.59
Prob. MAML (ours) 47.8 £ 0.61
Our Model 45.0 £ 0.60

39



o
N

o

O

p—t
)

Ineall S(lllﬂl'ﬁ‘d eITor
—
-

o)

Active Learning Evaluation

Finn*, Xu®, Levine, NeurlIPS '18 Kim et al. NeurlPS '18
Sinusoid Regression MinilmageNet
70
Few-Shot Active Learning Experiment cens EMAML 6466
| . 0 .
\0 MAML = PLATIPUS (ours) 65 BMAML Both experiments:
< 60 - - Sequentially choose datapoint with
o . maximum predictive entropy to be labeled
(T DI 7
§ - Choose datapoint at random for non-
gV Bayesian methods
45
2 ,. 40 . ] ' ,
1 ’ ! . 0 5 10 15 20

number of additional datapoints labeled Number of Queries

40



Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
Expressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will solve task with enough data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

ability to reason about ambiguity during learning
active learning, calibrated uncertainty, RL

orincipled Bayesian approaches

Why?

41



Plan for Today

Why be Bayesian?

Bayesian meta-learning approaches

- black-box approaches
- optimization-based approaches (time permitting)

How to evaluate Bayesian meta-learners.

Goals for by the end of lecture:
Understand the interpretation of meta-learning as Bayesian inference

Understand techniques for over parameters, predictions

42



Next Time

Next week: Large-scale meta-optimization
(incl. guest lecture on learned optimizers!)

Following week: Domain adaptation & lifelong learning

Following week: Thanksgiving @@

Course Reminders

Homework 3 due Monday.

Tutorial session tomorrow 4:30 pm
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