
CS 330

Bayesian Meta-Learning
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Course Reminders

Homework 3 due Monday.
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Tutorial session tomorrow	4:30	pm

First guest lecture next Weds!

James	Harrison	on	learned	op7mizers	
(Google DeepMind) 

Following up on some high-res feedback: 
- I’ll work on managing quesJons, repeaJng quesJon when needed.



Recap: Amortized Variational Inference

3

A. Formulate a	lower	bound on the log likelihood objective. 
B. Check how	tight the bound is. 
C. Variational inference  -> Amortized variational inference 
D. How to optimize



Recap: Amortized Variational Inference
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A. Formulate a	lower	bound on the log likelihood objective. 

B. Check how	tight the bound is. 

C. Variational inference  -> Amortized variational inference 

D. How to optimize

tight when is 0



Amortized variational inference

how do we calculate this?
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Amortized variational inference

look up formula for 
entropy of a Gaussian
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The reparameterization trick
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+ Very simple to implement 
+ Low variance 
- Only continuous latent variables

Discrete latent variables: 
- vector quantization & straight-through estimator (“VQ-VAE”) 
- policy gradients / “REINFORCE”



Another way to look at everything…

this has a convenient analytical form 
for Gaussians
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Example Models

9



The variational autoencoder
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Using the variational autoencoder
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Conditional models

class 109 
(brain coral)
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Images from Razavi, van den Oord, Vinyals. Generating Diverse High-Fidelity Images with VQ-VAE-2. ‘19



Plan for (the rest of) today

Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- opJmizaJon-based approaches (Jme permifng) 

How to evaluate Bayesian meta-learners.
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Goals	for	by	the	end	of	lecture:	
- Understand the interpretaJon of meta-learning	as	Bayesian	inference 
- Understand techniques for represen7ng	uncertainty over parameters, predicJons



Recap: ProperJes of Meta-Learning Inner Loops
Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Why?	 scalability, applicability to a range of domains

Consistency
learned learning procedure will solve task with enough data

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

These	proper7es	are	important	for	most	applica7ons!



Recap: ProperJes of Meta-Learning Inner Loops
Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Consistency

Uncertainty	awareness

learned learning procedure will solve task with enough data

ability to reason about ambiguity during learning

Why?	 scalability, applicability to a range of domains

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

Why?	

*this	lecture*

acJve learning, calibrated uncertainty, RL 
principled Bayesian approaches



Plan for Today
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Why	be	Bayesian?	
Bayesian meta-learning approaches 
- black-box approaches 
- opJmizaJon-based approaches (Jme permifng) 

How to evaluate Bayesian meta-learners.



Why/when	is	this	a	problem?+ -
Few-shot learning problems may be ambiguous. 

(even with prior)

Recall parametric approaches: Use determinis7c (i.e. a point esJmate)p(�i|Dtr
i , ✓)

Can we learn to generate	hypotheses 
about the underlying funcJon?

p(�i|Dtr
i , ✓)i.e. sample from

Important	for:

- safety-cri&cal few-shot learning 
(e.g. medical imaging) 

- learning to ac&vely	learn 

- learning to explore in meta-RL

Ac7ve	learning	w/	meta-learning: Woodward & Finn ’16, 
Konyushkova et al. ’17, Bachman et al. ’17
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Plan for Today
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Why be Bayesian? 

Bayesian	meta-learning	approaches	
- black-box approaches 
- opJmizaJon-based approaches (Jme permifng) 

How to evaluate Bayesian meta-learners.



Black-box

yts

xts

yts = f✓(Dtr
i , x

ts)

Op&miza&on-based

Meta-learning	algorithms	as	computa.on	graphs
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Non-parametric

= softmax(�d
�
f✓(x

ts), cn
�
)

where cn =
1

K

X

(x,y)2Dtr
i

(y = n)f✓(x)

Version	0:	Let  output the parameters of a distribuJon over .f yts

For example:

Then, opJmize with maximum likelihood.

- probability values of discrete categorical	distribu7on	
- mean and variance of a Gaussian 
- means, variances, and mixture weights of a mixture	of	Gaussians	
- for mulJ-dimensional : parameters of a sequence	of	
distribu7ons (i.e. autoregressive model)

yts
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Version	0:	Let  output the parameters of a distribuJon over .f yts

For example:
- probability values of discrete categorical	distribu7on	
- mean and variance of a Gaussian 
- means, variances, and mixture weights of a mixture	of	Gaussians	
- for mulJ-dimensional : parameters of a sequence	of	
distribu7ons (i.e. autoregressive model)

yts

Then, opJmize with maximum	likelihood.
Pros: 
+ simple 
+ can combine with variety of methods 

Cons: 
- can’t reason about uncertainty over the underlying funcJon 

[to determine how uncertainty across datapoints relate] 
- limited class of distribuJons over  can be expressed 
- tends to produce poorly-calibrated uncertainty esJmates

yts

Thought	exercise	#4: Can you do the same maximum likelihood training for ?ϕ



The	Bayesian	Deep	Learning	Toolbox
a	broad	one-slide	overview

Goal: represent distribuJons with neural networks

data
everything 

else

(CS 236 provides a thorough treatment)
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Latent	variable	models	+	varia7onal	inference (Kingma & Welling ‘13, Rezende et al. ‘14): 
- approximate likelihood of latent variable model with variaJonal lower bound 

Bayesian	ensembles (Lakshminarayanan et al. ‘17): 
- parJcle-based representaJon: train separate models on bootstraps of the data 

Bayesian	neural	networks (Blundell et al. ‘15): 
- explicit distribuJon over the space of network parameters 

Normalizing	Flows (Dinh et al. ‘16): 
- inverJble funcJon from latent distribuJon to data distribuJon 

Energy-based	models	&	GANs (LeCun et al. ’06, Goodfellow et al. ‘14): 
- esJmate unnormalized density We’ll see how we can leverage 

the first two.  
The others could be useful in 
developing new methods.



Recap:	The	Varia&onal	Lower	Bound

Observed variable , latent variable x z

ELBO:  log p(x) ≥ 𝔼q(z|x) [log p(x, z)] + ℋ(q(z |x))

model parameters , 
variaJonal parameters 

θ
ϕ

Can also be wriqen as: = 𝔼q(z|x) [log p(x |z)] − DKL (q(z |x)∥p(z))

: inference network, variaJonal distribuJonq(z |x)

 represented w/ neural net, 

 represented as 

p(x |z)
p(z) 𝒩(0, I)

Reparametriza&on	trickProblem: need to backprop through sampling 
i.e. compute derivaJve of   w.r.t. 𝔼q q

: modelp

q(z |x) = μq + σqϵ where ϵ ∼ 𝒩(0, I)
For Gaussian :q(z |x)

Can	we	use	amor&zed	varia&onal	inference	for	meta-learning?
22



Bayesian	black-box	meta-learning		
with standard, deep variaJonal inference

Observed variable , latent variable 𝒟 ϕ

Observed variable , latent variable x z
ELBO: 𝔼q(z|x) [log p(x |z)] − DKL (q(z |x)∥p(z))

: inference network, variaJonal distribuJonq
: model, represented by a neural netp

max 𝔼q(ϕ) [log p(𝒟 |ϕ)] − DKL (q(ϕ)∥p(ϕ))

What about the meta-parameters ?θ

What should  condiJon on?q

max 𝔼
q(ϕ |𝒟tr) [log p(𝒟 |ϕ)] − DKL (q (ϕ |𝒟tr) ∥p(ϕ))

max 𝔼
q(ϕ |𝒟tr) [log p (yts |xts, ϕ)] − DKL (q (ϕ |𝒟tr) ∥p(ϕ))

max
θ

𝔼
q(ϕ |𝒟tr, θ) [log p (yts |xts, ϕ)] − DKL (q (ϕ |𝒟tr, θ) ∥p(ϕ |θ))

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Can also condiJon on  hereθ

Standard	VAE:

Meta-learning:

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]Final objecJve (for completeness): 
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Bayesian	black-box	meta-learning		
with standard, deep variaJonal inference

Observed variable , latent variable 𝒟 ϕ

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Meta-learning:

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]Final objecJve (for completeness): 
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Ques&on: Can you get non-Gaussian distribuJons over  with this approach?ϕi



Bayesian	black-box	meta-learning		
with standard, deep variaJonal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Pros: 

+ can represent non-Gaussian distribuJons over  
+ produces distribuJon over funcJons 
Cons: 

- Can only represent Gaussian distribuJons  
(okay when  is latent vector)

yts

p(ϕi |θ)
ϕi

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]
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Plan for Today
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Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- op&miza&on-based	approaches	(&me	permiQng)	
How to evaluate Bayesian meta-learners.



Hybrid	Varia7onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

meta-parameters

task-specific	parameters

(empirical Bayes)

MAP esJmate

How	to	compute	MAP	es7mate?
Gradient	descent	with	early	stopping = MAP	inference under 
Gaussian	prior with mean at iniJal parameters [Santos ’96]

(exact in linear case, approximate in nonlinear case)

Provides	a	Bayesian	interpreta7on	of	MAML.

Recas&ng	Gradient-Based	Meta-Learning	as	Hierarchical	Bayes (Grant et al. ’18)

But, we can’t sample from !p (ϕi |θ, 𝒟tr
i ) 27



Recall:	Bayesian	black-box	meta-learning		
with standard, deep variaJonal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

max
θ

𝔼𝒯i [𝔼
q(ϕi |𝒟tri , θ) [log p (ytsi |xtsi , ϕi)] − DKL (q (ϕi |𝒟tri , θ) ∥p(ϕi |θ))]

Hybrid	Varia7onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

Amor7zed	Bayesian	Meta-Learning  
(Ravi & Beatson ’19)

Model													as	Gaussian

: an arbitrary funcJonq

Can we model non-Gaussian	posterior?

 can include a gradient operator!q
 corresponds to SGD on the mean & variance 

of neural network weights ( ), w.r.t. 
q

μϕ, σ2
ϕ 𝒟tr

i

Con:  modeled as a Gaussian.p(ϕi |θ)Pro: Running gradient descent at test Jme.

28



Ensemble	of	MAMLs	(EMAML)

Hybrid	Varia7onal	Inference

What	about	Bayesian	op&miza&on-based	meta-learning?

Kim et al. Bayesian MAML ’18

Can we model non-Gaussian	posterior over all	parameters?

Train M independent MAML models.

Pros: Simple, tends to work well, 
non-Gaussian distribuJons.

Con: Need to maintain M model instances.

Can	we	use	ensembles?

Stein	Varia7onal	Gradient	(BMAML)
Use stein	varia7onal	gradient	(SVGD) to 
push parJcles away from one another

OpJmize for distribuJon of M parJcles 
to produce high likelihood. 

Note: Can also use 
ensembles w/ black-box, 

non-parametric methods!An ensemble of mammals

Won’t work well if ensemble 
members are too	similar.

A more diverse ensemble 
of mammals

29



Finn*, Xu*, Levine. Probabilistic MAML ‘18

What	about	Bayesian	op&miza&on-based	meta-learning?
Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?

Intuition:	Learn a prior where a random kick can put us in different modes

smiling, hat
smiling, young

30



approximate	with	MAPthis	is	extremely	crude

but	extremely	convenient!

Training	can	be	done	with	amortized	variational	inference.

(Santos	’92,	Grant	et	al.	ICLR	’18)

What	about	Bayesian	op&miza&on-based	meta-learning?

Finn*, Xu*, Levine. Probabilistic MAML ‘18

(not single parameter vector anymore)

31

Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?



What	does	ancestral	sampling	look	like?

smiling, hat
smiling, young

What	about	Bayesian	op&miza&on-based	meta-learning?

Finn*, Xu*, Levine. Probabilistic MAML ‘18

Pros: Non-Gaussian posterior, simple 
at test Jme, only one model instance.

Con: More complex training procedure.

32

Sample	parameter	vectors	with	a	procedure	like Hamiltonian	Monte	Carlo?



Methods Summary

Version	0:	  outputs a distribuJon over .f yts

Pros:	simple, can combine with variety of methods 

Cons:	can’t reason about uncertainty over the underlying funcJon, 

limited class of distribuJons over  can be expressedyts

Black	box	approaches:	Use latent variable models + amorJzed variaJonal inference

neural	netDtr
i

q (ϕi |𝒟tri )
yts

xts

ϕi

Op&miza&on-based	approaches:

Pros: can represent non-Gaussian distribuJons over  
Cons:	Can only represent Gaussian distribuJons  
(okay when  is latent vector)

yts

p(ϕi |θ)
ϕi

Ensembles

(or do inference on last	layer	only)

Pros: Simple, tends to work well, 
non-Gaussian distribuJons.

Con: maintain M model instances.

Pros: Non-Gaussian posterior, simple 
at test Jme, only one model instance.

Con: More complex training procedure.Con:  modeled as a Gaussian.p(ϕi |θ)

Pro: Simple.

AmorJzed inference Hybrid inference

33



Plan for Today
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Why be Bayesian? 

Bayesian	meta-learning	approaches	
- black-box approaches 
- opJmizaJon-based approaches (Jme permifng) 

How	to	evaluate	Bayesian	meta-learners.



How to evaluate a Bayesian meta-learner?
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Use	the	standard	benchmarks?	
(i.e. MiniImagenet accuracy)

+ standardized 
+ real images 
+ good check that the approach didn’t break anything 
- metrics like accuracy don't evaluate uncertainty 
- tasks may not exhibit ambiguity 
- uncertainty may not be useful on this dataset!

What	are	beVer	problems	&	metrics?	
It depends on the problem you care about!



Qualitative Evaluation on Toy Problems with Ambiguity
(Finn*,	Xu*,	Levine,	NeurIPS	’18)

Ambiguous regression:

Ambiguous classification:

36



Evaluation on Ambiguous Generation Tasks
(Gordon	et	al.,	ICLR	’19)
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Accuracy, Mode Coverage, & Likelihood on Ambiguous Tasks
(Finn*,	Xu*,	Levine,	NeurIPS	’18)
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Reliability Diagrams & Accuracy
(Ravi	&	Beatson,	ICLR	’19)

39

MAML

Ravi	&	
Beatson

Probabilistic	
MAML



Active Learning Evaluation

Finn*,	Xu*,	Levine,	NeurIPS	’18	
Sinusoid Regression

40

Kim	et	al.	NeurIPS	’18	
MiniImageNet

Both experiments: 

- Sequentially choose datapoint with 
maximum	predictive	entropy to be labeled 

- Choose datapoint at random for non-
Bayesian methods



Algorithmic	proper.es	perspec&ve
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Expressive	power
the ability for f to represent a range of learning procedures

Consistency

Uncertainty	awareness

learned learning procedure will solve task with enough data

ability to reason about ambiguity during learning

Why?	 scalability, applicability to a range of domains

Why?	
reduce reliance on meta-training tasks,  

good OOD task performance

Why?	
acJve learning, calibrated uncertainty, RL 

principled Bayesian approaches



Plan for Today

Why be Bayesian? 

Bayesian meta-learning approaches 
- black-box approaches 
- opJmizaJon-based approaches (Jme permifng) 

How to evaluate Bayesian meta-learners.
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Goals	for	by	the	end	of	lecture:	
- Understand the interpretaJon of meta-learning	as	Bayesian	inference 
- Understand techniques for represen7ng	uncertainty over parameters, predicJons
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Course Reminders
Homework 3 due Monday.

Tutorial session tomorrow	4:30	pm

Next Time
Next	week: Large-scale meta-opJmizaJon  

(incl. guest lecture on learned opJmizers!)

Following	week: Domain adaptaJon & lifelong learning

Following	week: Thanksgiving 🦃🦃


