Unsupervised Pre-Training: Contrastive Learning

Project proposal due Monday.

(graded lightly, for your benefit)

Homework 2 due next Weds 10/25.

Course Reminders

So Far

- Few-shot learning via meta-learning
- **Problem**: Given data from $\mathcal{T}_1, ..., \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably
 - Methods: black-box, optimization-based, non-parametric

- What if you don't have a lot of tasks?
- What if you *only* have **one batch** of **unlabeled data**?

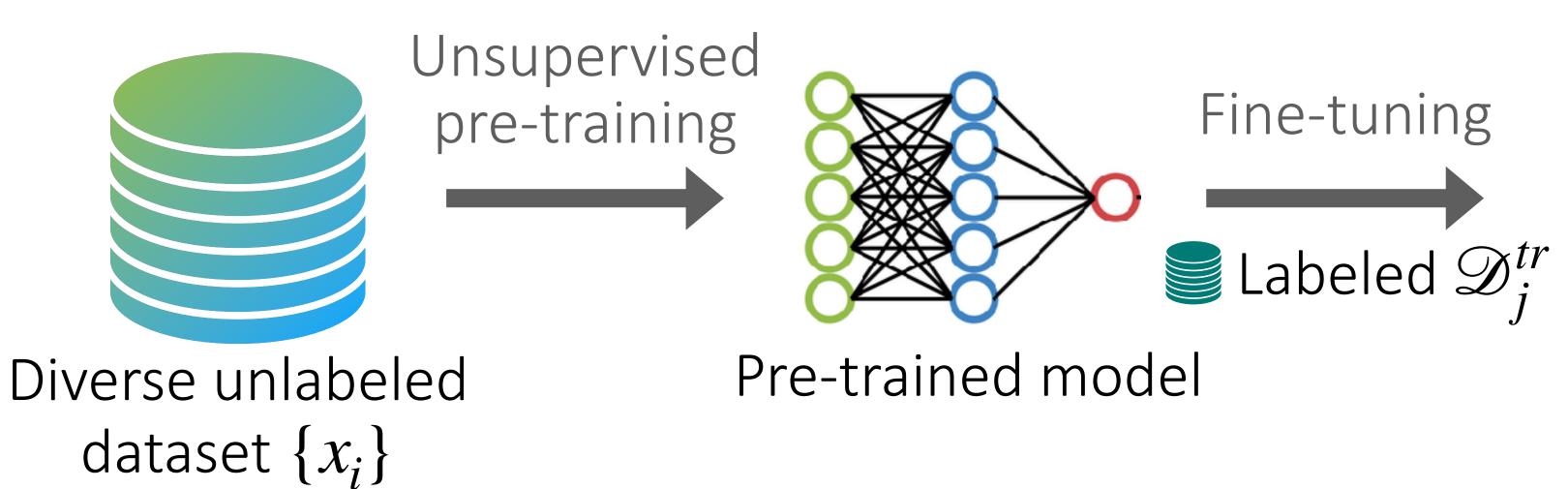
- Unsupervised representation learning for few-shot learning
 - Part I: Contrastive learning
 - Part II (next time): Reconstruction-based methods
 - Relation to meta-learning.

Goals for the lecture:

- Understand contrastive learning: intuition, design choices, how to implement How contrastive learning relates to meta-learning
- -

This Lecture

Unsupervised Pre-Training Set-Up



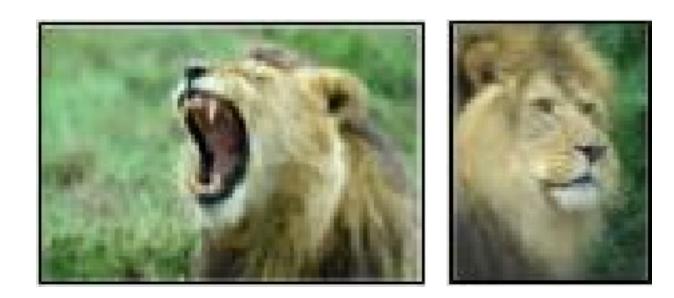
Goal: Get predictor for task \mathcal{T}_i

Similar examples should have similar representations

- 1. Select or generate examples that are semantically similar
- 2. Train an encoder where similar examples are closer in representation space than non-similar examples.

van den Oord, Li, Vinyals. CPC. 2018 Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Similar examples should have similar representations



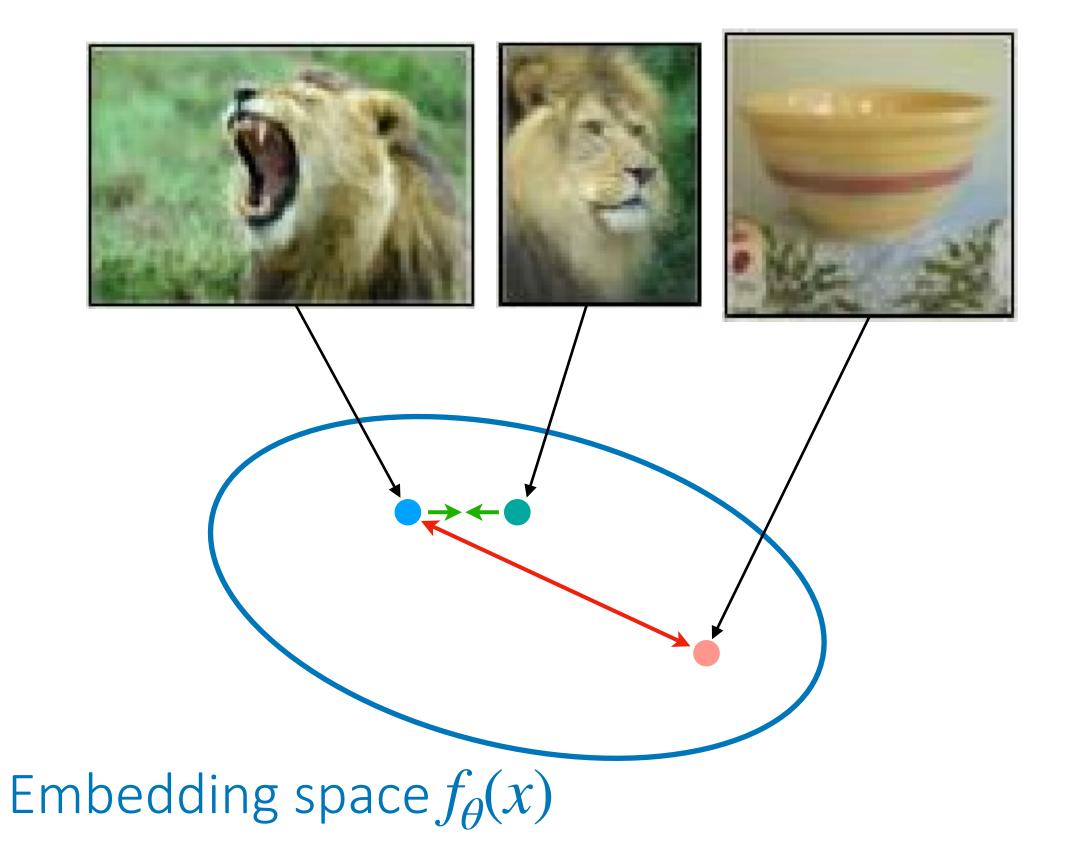
Similar representations

Similar representations

Question: Why not simply minimize difference between representations?

$$\min_{\theta} \sum_{(x_i, x_j)} \|f_{\theta}(x_i) - f_{\theta}(x_j)\|^2$$

Need to both compare & contrast!



- Similar examples should have similar representations
 - Need to both **compare** & **contrast**!

Bring together representations of similar examples.

Push apart representations of differing examples.

- Key design choices:
- 1. Choosing what to compare/contrast
- 2. Implementation of contrastive loss

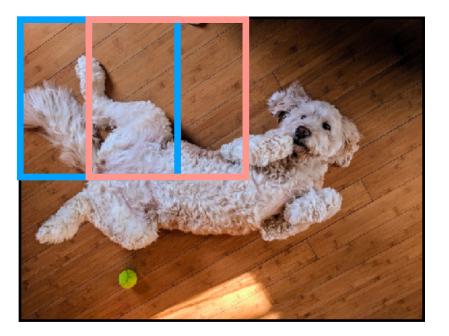
Similar examples should have similar representations

9

Examples with the same class label

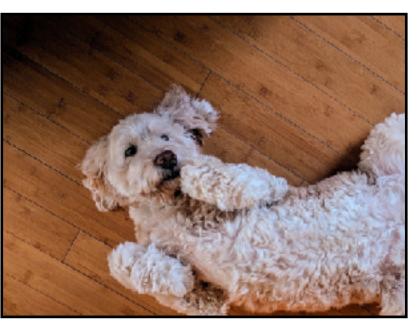
(Requires labels, related to Siamese nets, ProtoNets)

Nearby image patches



Dog credit to Maggie & Luke

Augmented versions of the example



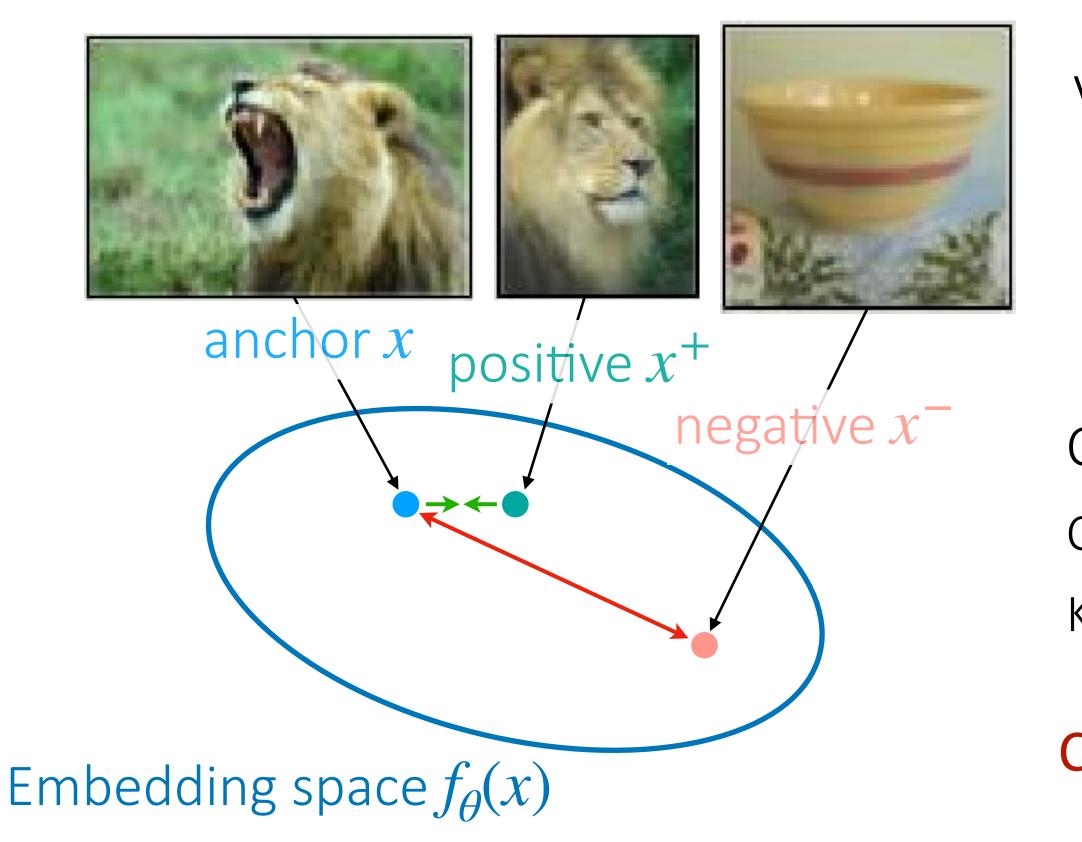
(flip & crop)

Nearby video frames

van den Oord, Li, Vinyals. CPC. 2018 Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Contrastive Learning Implementation

Similar examples should have similar representations



Need to both **compare** & **contrast**!

V1. Triplet loss:

$$\min_{\theta} \sum_{(x,x^+,x^-)} \max\left(0, \|f_{\theta}(x) - f_{\theta}(x^+)\|^2 - \|f_{\theta}(x) - f_{\theta}(x^-)\|^2 + e^{-1}\right)$$

Compare to Siamese networks:

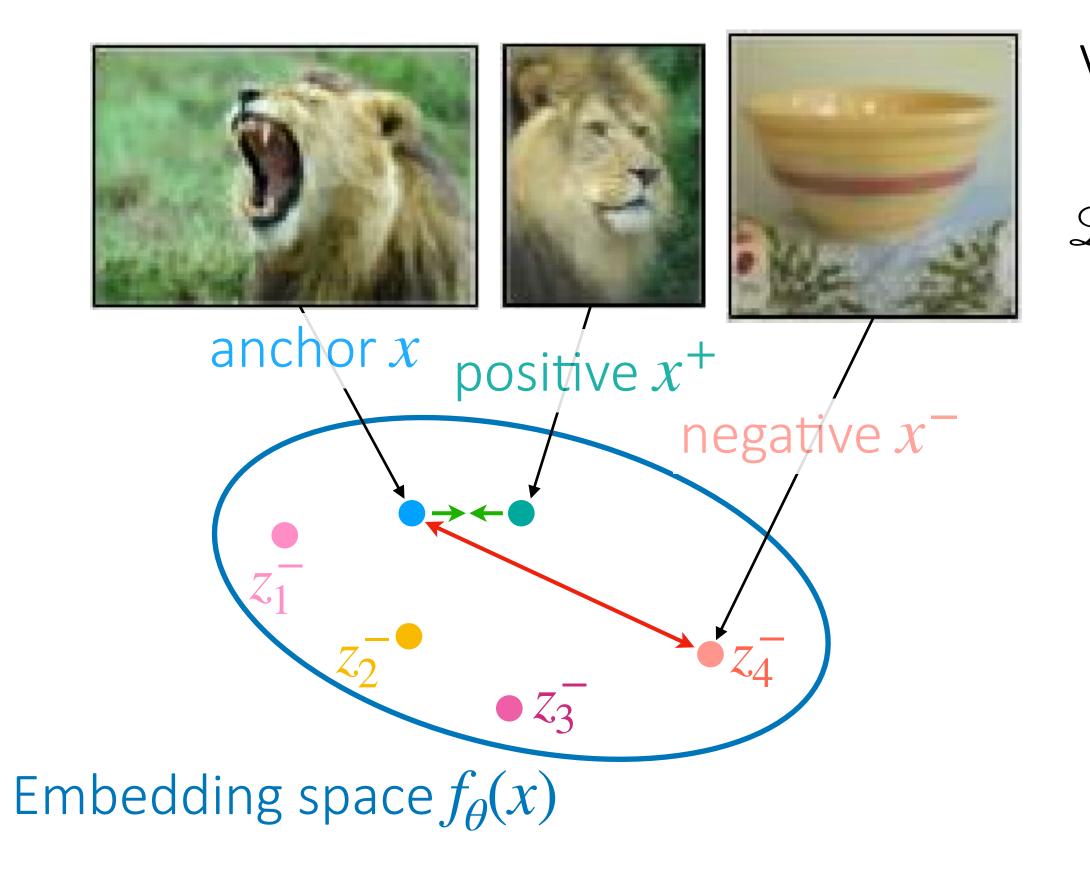
Classify (x, x') as same class if $||f(x) - f(x')||^2$ is small.

Key difference: learns a metric space, not just a classifier

Challenge: need to find difficult negatives.

Contrastive Learning Implementation

Similar examples should have similar representations Need to both **compare** & **contrast**!

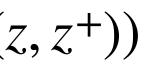


V2. From binary to N-way classification:

$$\mathscr{E}_{\text{N-way}}(\theta) = -\sum_{z} \log \frac{\exp(-d(z, z^+))}{\sum_{i} \exp(-d(z, z_i^-)) + \exp(-d(z, z_i^-))}$$

- generalization of triplet loss to multiple negatives

Sohn. N-Pair Loss Objective. NIPS 2016 Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

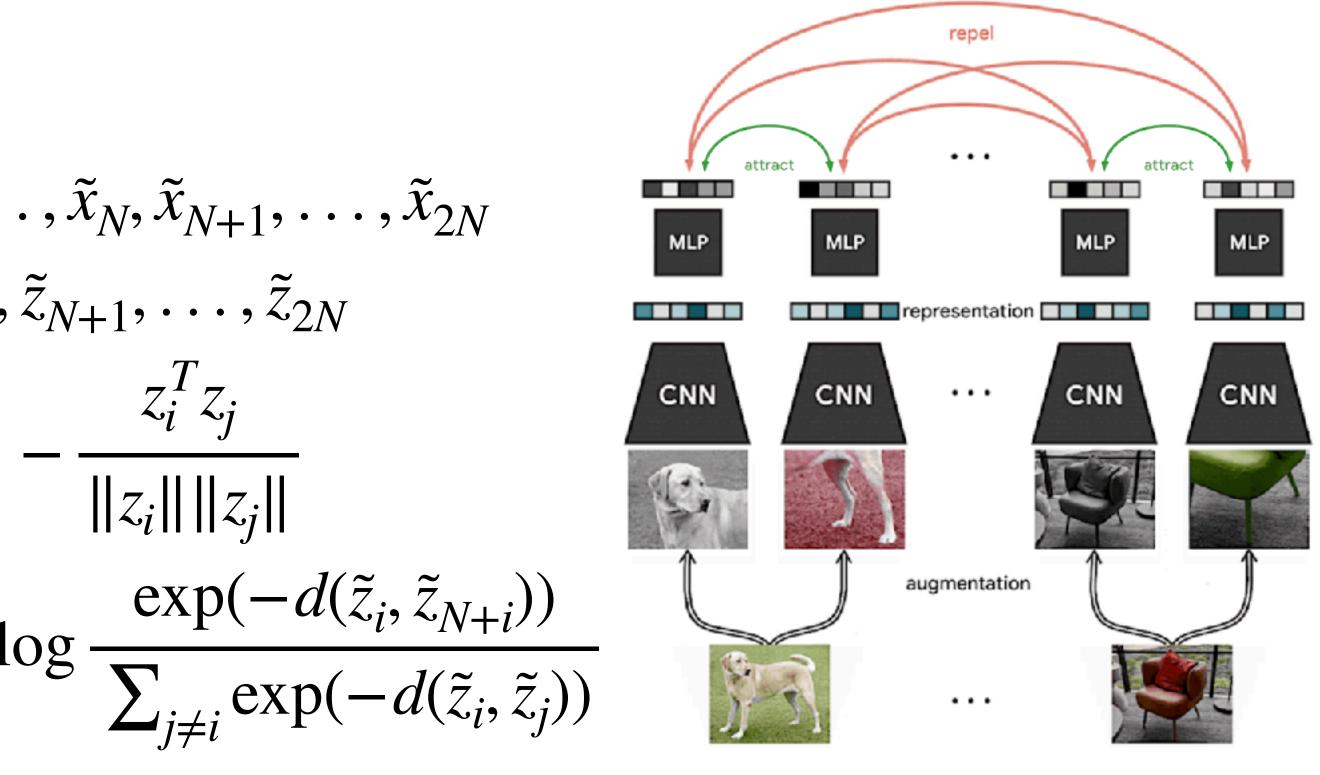


Contrastive Learning Implementation **SimCLR Algorithm**

Unsupervised Pre-Training

- Sample minibatch of examples x_1, \ldots, x_N
- Augment each example twice to get $\tilde{x}_1, \ldots, \tilde{x}_N, \tilde{x}_{N+1}, \ldots, \tilde{x}_{2N}$
- 3. Embed examples with f_{θ} to get $\tilde{z}_1, \ldots, \tilde{z}_N, \tilde{z}_{N+1}, \ldots, \tilde{z}_{2N}$
- 4. Compute all **pairwise distances** $d(z_i, z_j) = -\frac{z_i^T z_j}{\|z_i\| \|z_j\|}$
- 5. Update θ w.r.t. loss $\mathscr{L}_{N-Way}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_{i}, \tilde{z}_{N+i}))}{\sum_{i \neq i} \exp(-d(\tilde{z}_{i}, \tilde{z}_{j}))}$

After Pre-Training: train classifier on top of representation or fine-tune entire network.



Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Performance of Contrastive Learning

ImageNet Classification Results

Method	Architecture	Label 1%	fraction 10%
memou	1 Honneoturo	Top 5	
Supervised baseline	ResNet-50	48.4	80.4
Methods using other labe	l-propagation:		
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	-	88.5
FixMatch (w. RandAug)	ResNet-50	-	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2
Methods using representa	tion learning only:		
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 ($4 \times$)	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2
SimCLR (ours)	ResNet-50 (4 \times)	85.8	92.6

Table 7. ImageNet accuracy of models trained with few labels.

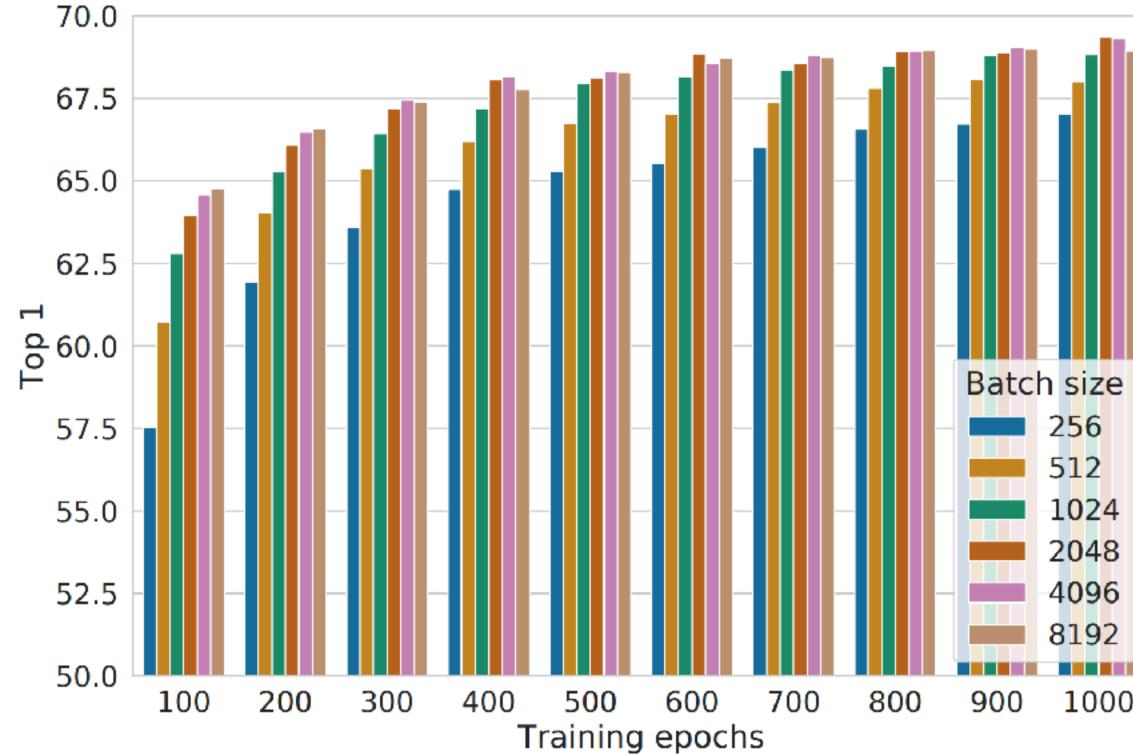
)n

13

- 1% labels: ~12.8 images/class
- Substantial improvements over training from scratch
- Improvements over other methods, especially in 1% label setting

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Performance of Contrastive Learning Effect of Batch Size & Number of Training Epochs



- Important to train for longer (~600+ epochs)
- Requires large batch size

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

$$\mathscr{L}_{\text{N-way}}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_{i}, \tilde{z}_{N+i}))}{\sum_{j \neq i} \exp(-d(\tilde{z}_{i}, \tilde{z}_{j}))}$$

Intuition: Closest z will dominate the denominator, can be missed when subsampling Mathematically?

)) < -- summation over entire dataset

I'm minimizing a bound on the objective.

An upper bound, right?

An upper bound, right?

Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

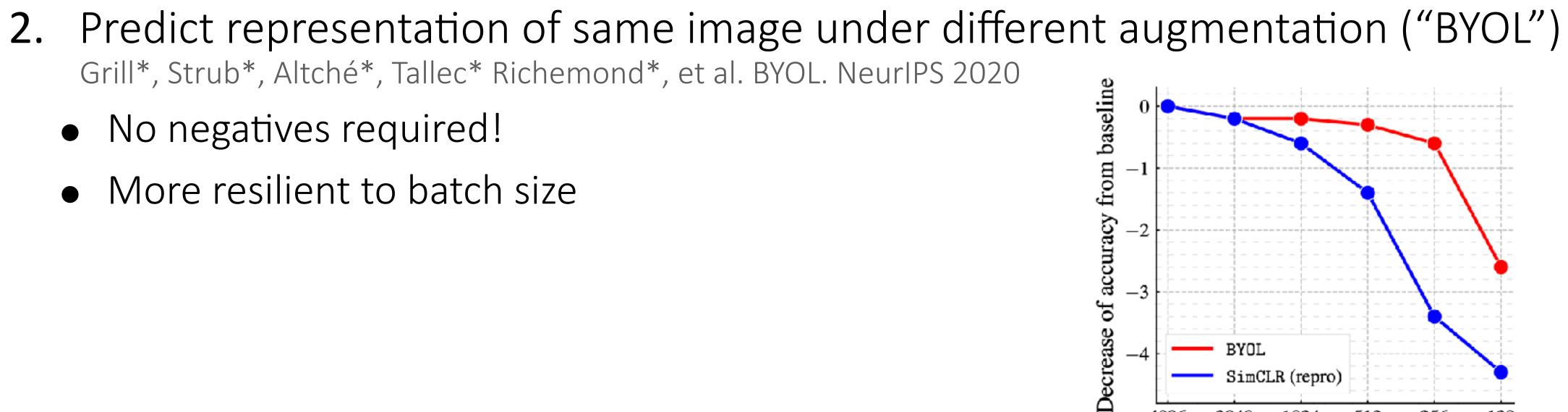
$$\mathscr{L}_{\text{N-way}}(\theta) = -\sum_{i} \log \frac{\exp(-d(\tilde{z}_{i}, \tilde{z}_{i}'))}{\sum_{j \neq i} \exp(-d(\tilde{z}_{i}, \tilde{z}_{j}))}$$

Intuition: Closest z will dominate the denominator, can be missed when subsampling Mathematically: Minimizing a lower-bound.

)) < -- summation over entire dataset

Solutions to requiring a large batch size

- 1. Store representations from previous batches ("momentum contrast") He, Fan, Wu, Xie, Girshick. MoCo. CVPR 2020
 - Good results with mini batch size of 256
- Grill*, Strub*, Altché*, Tallec* Richemond*, et al. BYOL. NeurIPS 2020
 - No negatives required!
 - More resilient to batch size



SimCLR (repro)

1024

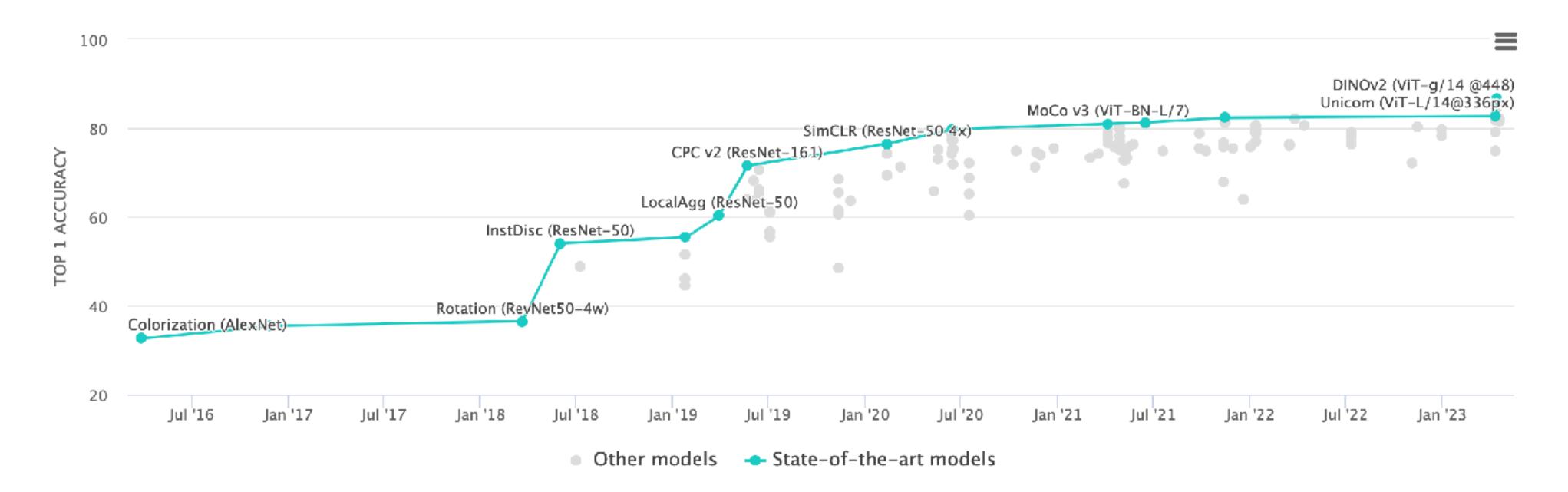
512

Batch size

256

128

Performance of contrastive learning



Contrastive methods are state-of-the-art in self-supervised pre-training for visual data.

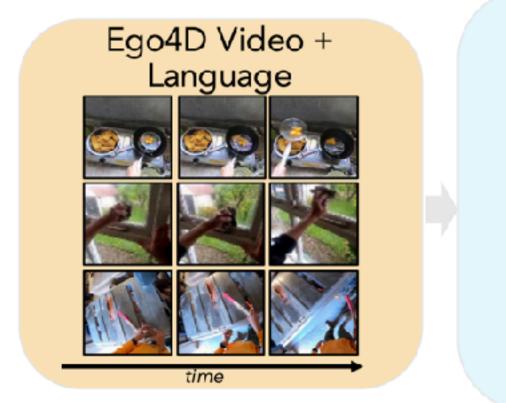
ImageNet Top 1 Accuracy w/ Self-Supervised Pre-Training

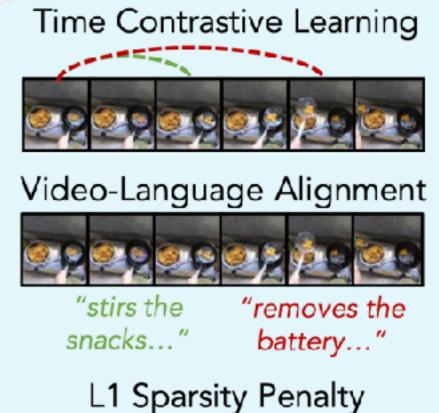
Plot source: <u>paperswithcode.com</u>

Contrastive learning beyond augmentations

We don't have good engineered augmentations for many applications!

- Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021 —> competitive with SimCLR on image data —> good results on speech & sensor data
- 2. *Time-contrastive learning* on *videos* effective for robotics pre-training Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.





1. Learn the augmentations in adversarial manner (but perturbations bounded to ℓ_1 sphere)

Given 20 demos (<10 min of supervision)

60% success

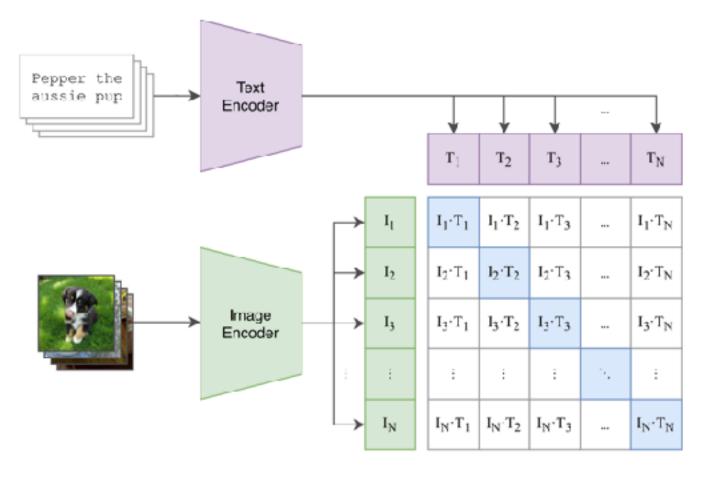


40% success

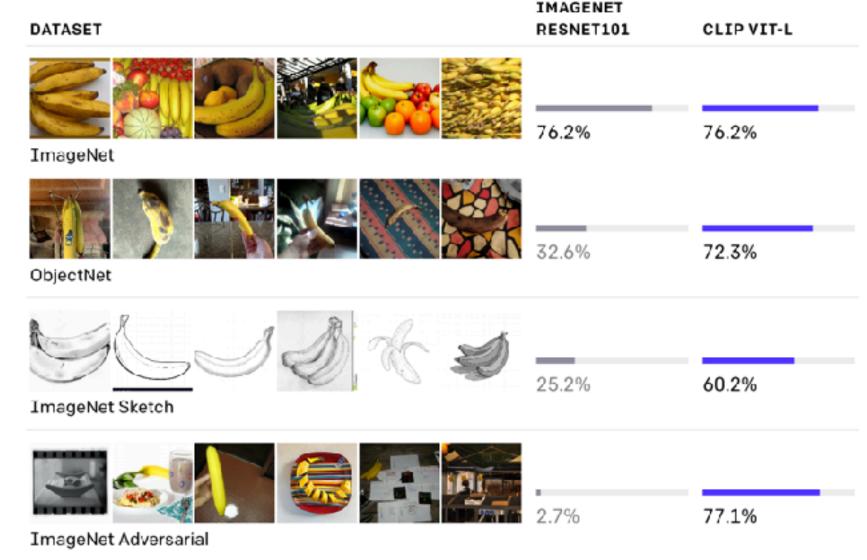
Contrastive learning beyond augmentations

We don't have good engineered augmentations for many applications!

- Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021
- 2. *Time-contrastive learning* on *videos* effective for robotics pre-training Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.
- 3. Image-text contrastive pre-training produces robust zero-shot models Radford*, Kim*, et al. CLIP. 2021.



1. Learn the augmentations in adversarial manner (but perturbations bounded to ℓ_1 sphere)



Summary of Contrastive Learning

Pros:

- + General, effective framework
- + No generative modeling required
- + Can incorporate domain knowledge through augmentations

Challenges:

- Negatives can be hard to select
- Often requires *large batch size*
- Most successful with augmentations

- Unsupervised representation learning for few-shot learning
 - Part I: Contrastive learning
 - Part II (next time): Reconstruction-based methods

This Lecture

Relation to meta-learning.

Contrastive Learning as Meta-Learning

Meta-learning algorithm

- 1. Given unlabeled dataset $\{x_i\}$.
- 2. Create image class y_i from each datapoint via data augmentation $\mathcal{D}_i := \{\tilde{x}_i, \tilde{x}'_i, \dots\}$ 3. Run your favorite meta-learning algorithm.

Differences:

- SimCLR samples one task per minibatch; meta-learning usually samples multiple
- SimCLR compares all pairs of samples; meta-learning compares query examples only to support examples & not to other query examples.

Ni, Shu, Souri, Goldblum, Goldstein. ICLR 2022

Contrastive Learning as Meta-Learning

Meta-learning algorithm

- 1. Given unlabeled dataset $\{x_i\}$.
- 2. Create image class y_i from each datapoint via data augmentation $\mathcal{D}_i := \{\tilde{x}_i, \tilde{x}'_i, \dots\}$ 3. Run your favorite meta-learning algorithm.

Contrastive vs. meta-learning representations, transfer from ImageNet

	Flowers102	DTD	VOC2007	Aircraft	Food101	SUN397	CIFAR-10	CIFAR-100
SimCLR	92.4	72.7	66.0	83.7	86.3	57.4	94.8	79.1
ProtoNet	92.7	71.5	64.7	83.9	86.2	56.4	96.0	79.1
R2-D2	94.5	73.8	69.9	86.2	86.9	59.7	96.7	82.8

Representations transfer similarly well.

Ni, Shu, Souri, Goldblum, Goldstein. ICLR 2022

Lecture Outline

- Unsupervised representation learning for few-shot learning
 - Part I: Contrastive learning
 - Part II (next time): Reconstruction-based methods

Relation to meta-learning.

Goals for the lecture:

- Understand contrastive learning: intuition, design choices, how to implement How contrastive learning relates to meta-learning
- -

Project proposal due Monday.

(graded lightly, for your benefit)

Homework 2 due next Weds 10/25.

Course Reminders