Unsupervised Pre-Training: Contrastive Learning

CS 330
Course Reminders

Project proposal due Monday.
(graded lightly, for your benefit)

Homework 2 due next Weds 10/25.
So Far

Few-shot learning via meta-learning

Problem: Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, solve new task \mathcal{T}_test more quickly / proficiently / stably

Methods: black-box, optimization-based, non-parametric

What if you don’t have a lot of tasks?
What if you only have one batch of unlabeled data?
This Lecture

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning

Part II (next time): Reconstruction-based methods

Relation to meta-learning.

Goals for the lecture:
- Understand contrastive learning: intuition, design choices, how to implement
- How contrastive learning relates to meta-learning
Unsupervised Pre-Training Set-Up

Goal: Get predictor for task \mathcal{T}_j

- Diverse unlabeled dataset $\{x_i\}$
- Pre-trained model

Unsupervised pre-training

Fine-tuning

Labeled \mathcal{D}_{tr}^j
Key Idea of Contrastive Learning

Similar examples should have similar representations

1. Select or generate examples that are semantically similar
2. Train an encoder where similar examples are closer in representation space than non-similar examples.
Key Idea of Contrastive Learning

Similar examples should have similar representations

Question: Why not simply minimize difference between representations?

$$\min_{\theta} \sum_{(x_i, x_j)} \| f_{\theta}(x_i) - f_{\theta}(x_j) \|^2$$

Need to both compare & contrast!
Key Idea of Contrastive Learning

Similar examples should have **similar representations**

Need to both compare & **contrast**!

- **Bring together** representations of similar examples.
- **Push apart** representations of differing examples.

Key design choices:
1. Choosing what to compare/contrast
2. Implementation of contrastive loss
Key Idea of Contrastive Learning

Similar examples should have similar representations

Examples with the same class label

Augmented versions of the example

Nearby image patches

Nearby video frames

(Requires labels, related to Siamese nets, ProtoNets)

(Flip & crop)

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020

van den Oord, Li, Vinyals. CPC. 2018

Dog credit to Maggie & Luke
Contrastive Learning Implementation

Similar examples should have **similar representations**

Need to both compare & **contrast**!

V1. Triplet loss:

\[
\min_{\theta} \sum_{(x,x^+,x^-)} \max(0, \|f_\theta(x) - f_\theta(x^+)\|^2 - \|f_\theta(x) - f_\theta(x^-)\|^2 + \epsilon)
\]

Compare to Siamese networks:

Classify \((x, x')\) as same class if \(\|f(x) - f(x')\|^2\) is small.

Key difference: learns a metric space, not just a classifier

Challenge: need to find difficult negatives.
Contrastive Learning Implementation

Similar examples should have *similar representations*

Need to both *compare* & *contrast*!

V2. From binary to N-way classification:

$$
\mathcal{L}_{N\text{-way}}(\theta) = - \sum_z \log \frac{\exp(-d(z, z^+))}{\sum_i \exp(-d(z, z_i^-)) + \exp(-d(z, z^+))}
$$

- generalization of triplet loss to multiple negatives

Sohn. N-Pair Loss Objective. NIPS 2016
Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020
Contrastive Learning Implementation

SimCLR Algorithm

Unsupervised Pre-Training

1. Sample minibatch of examples x_1, \ldots, x_N
2. Augment each example twice to get $\tilde{x}_1, \ldots, \tilde{x}_N, \tilde{x}_{N+1}, \ldots, \tilde{x}_{2N}$
3. Embed examples with f_θ to get $\tilde{z}_1, \ldots, \tilde{z}_N, \tilde{z}_{N+1}, \ldots, \tilde{z}_{2N}$
4. Compute all pairwise distances $d(z_i, z_j) = -\frac{z_i^T z_j}{\|z_i\| \|z_j\|}$
5. Update θ w.r.t. loss $\mathcal{L}_\text{N-way}(\theta) = -\sum_i \log \frac{\exp(-d(\tilde{z}_i, \tilde{z}_{N+i}))}{\sum_{j\neq i} \exp(-d(\tilde{z}_i, \tilde{z}_j))}$

After Pre-Training: train classifier on top of representation or fine-tune entire network.

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020
Performance of Contrastive Learning

ImageNet Classification Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Architecture</th>
<th>Label fraction</th>
<th>1% Top 5</th>
<th>10% Top 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised baseline</td>
<td>ResNet-50</td>
<td>48.4</td>
<td>80.4</td>
<td></td>
</tr>
<tr>
<td>Methods using other label-propagation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo-label</td>
<td>ResNet-50</td>
<td>51.6</td>
<td>82.4</td>
<td></td>
</tr>
<tr>
<td>VAT+Entropy Min.</td>
<td>ResNet-50</td>
<td>47.0</td>
<td>83.4</td>
<td></td>
</tr>
<tr>
<td>UDA (w. RandAug)</td>
<td>ResNet-50</td>
<td>-</td>
<td>88.5</td>
<td></td>
</tr>
<tr>
<td>FixMatch (w. RandAug)</td>
<td>ResNet-50</td>
<td>-</td>
<td>89.1</td>
<td></td>
</tr>
<tr>
<td>S4L (Rot+VAT+En. M.)</td>
<td>ResNet-50 (4×)</td>
<td>-</td>
<td>91.2</td>
<td></td>
</tr>
<tr>
<td>Methods using representation learning only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InstDisc</td>
<td>ResNet-50</td>
<td>39.2</td>
<td>77.4</td>
<td></td>
</tr>
<tr>
<td>BigBiGAN</td>
<td>RevNet-50 (4×)</td>
<td>55.2</td>
<td>78.8</td>
<td></td>
</tr>
<tr>
<td>PIRL</td>
<td>ResNet-50</td>
<td>57.2</td>
<td>83.8</td>
<td></td>
</tr>
<tr>
<td>CPC v2</td>
<td>ResNet-161(*)</td>
<td>77.9</td>
<td>91.2</td>
<td></td>
</tr>
<tr>
<td>SimCLR (ours)</td>
<td>ResNet-50</td>
<td>75.5</td>
<td>87.8</td>
<td></td>
</tr>
<tr>
<td>SimCLR (ours)</td>
<td>ResNet-50 (2×)</td>
<td>83.0</td>
<td>91.2</td>
<td></td>
</tr>
<tr>
<td>SimCLR (ours)</td>
<td>ResNet-50 (4×)</td>
<td>85.8</td>
<td>92.6</td>
<td></td>
</tr>
</tbody>
</table>

1% labels: ~12.8 images/class

- Substantial improvements over training from scratch
- Improvements over other methods, especially in 1% label setting

Table 7. ImageNet accuracy of models trained with few labels.
Performance of Contrastive Learning

Effect of Batch Size & Number of Training Epochs

- Important to train for longer (~600+ epochs)
- Requires large batch size

Chen, Kornblith, Norouzi, Hinton. SimCLR. ICML 2020
Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

$$\mathcal{L}_{N\text{-way}}(\theta) = - \sum_i \log \frac{\exp(-d(\tilde{z}_i, \tilde{z}_{N+i}))}{\sum_{j \neq i} \exp(-d(\tilde{z}_i, \tilde{z}_j))} \leftarrow \text{summation over entire dataset}$$

Intuition: Closest z will dominate the denominator, can be missed when subsampling

Mathematically?
I’m minimizing a bound on the objective.

An upper bound, right?

An upper bound, right?
Why does contrastive learning need a large batch size?

Interpretation of loss: classifying augmented example from rest of dataset

\[\mathcal{L}_{N \text{-way}}(\theta) = - \sum_i \log \frac{\exp(-d(\tilde{z}_i, \tilde{z}_i'))}{\sum_{j \neq i} \exp(-d(\tilde{z}_i, \tilde{z}_j))} \leftarrow \text{summation over entire dataset} \]

Intuition: Closest \(z \) will dominate the denominator, can be missed when subsampling

Mathematically: Minimizing a lower-bound. 😱
Solutions to requiring a large batch size

1. **Store representations from previous batches** ("momentum contrast")
 - Good results with mini batch size of 256
 - He, Fan, Wu, Xie, Girshick. MoCo. CVPR 2020

2. **Predict representation of same image under different augmentation** ("BYOL")
 - No negatives required!
 - More resilient to batch size

![Graph showing decrease of accuracy from baseline vs. batch size](image)
Performance of contrastive learning

Contrastive methods are state-of-the-art in self-supervised pre-training for visual data.

ImageNet Top 1 Accuracy w/ Self-Supervised Pre-Training

Plot source: paperswithcode.com
Contrastive learning beyond augmentations

We don’t have good engineered augmentations for many applications!

1. **Learn** the augmentations in adversarial manner (but perturbations bounded to ℓ_1 sphere)
 Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021

 —> competitive with SimCLR on image data
 —> good results on speech & sensor data

2. **Time-contrastive learning** on videos effective for robotics pre-training
 Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.

Given 20 demos (<10 min of supervision)

- 60% success
- 40% success
Contrastive learning beyond augmentations

We don’t have good engineered augmentations for many applications!

1. **Learn** the augmentations in adversarial manner (but perturbations bounded to ℓ_1 sphere)
 Tamkin, Wu, Goodman. Viewmaker Networks. ICLR 2021

2. **Time-contrastive learning** on videos effective for robotics pre-training
 Nair, Rajeswaran, Kumar, Finn, Gupta. R3M. CoRL 2022.

3. **Image-text** contrastive pre-training produces robust zero-shot models
Summary of Contrastive Learning

Pros:
+ General, effective framework
+ No generative modeling required
+ Can incorporate domain knowledge through augmentations

Challenges:
- Negatives can be hard to select
- Often requires large batch size
- Most successful with augmentations
This Lecture

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning
Part II (next time): Reconstruction-based methods

Relation to meta-learning.
Contrastive Learning as Meta-Learning

Meta-learning algorithm

1. Given unlabeled dataset \(\{x_i\} \).
2. Create image class \(y_i \) from each datapoint via data augmentation \(\mathcal{D}_i := \{\tilde{x}_i, \tilde{x}_i', \ldots \} \)
3. Run your favorite meta-learning algorithm.

Differences:
- SimCLR samples **one task** per minibatch; meta-learning usually samples **multiple**
- SimCLR compares **all pairs** of samples; meta-learning compares query examples only to support examples & not to other query examples.
Contras S

Contrastive Learning as Meta-Learning

Meta-learning algorithm

1. Given unlabeled dataset \(\{ x_i \} \).

2. Create image class \(y_i \) from each datapoint via data augmentation \(\mathcal{D}_i := \{ \tilde{x}_i, \tilde{x}_i', \ldots \} \)

3. Run your favorite meta-learning algorithm.

Contrastive vs. meta-learning representations, transfer from ImageNet

<table>
<thead>
<tr>
<th></th>
<th>Flowers102</th>
<th>DTD</th>
<th>VOC2007</th>
<th>Aircraft</th>
<th>Food101</th>
<th>SUN397</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimCLR</td>
<td>92.4</td>
<td>72.7</td>
<td>66.0</td>
<td>83.7</td>
<td>86.3</td>
<td>57.4</td>
<td>94.8</td>
<td>79.1</td>
</tr>
<tr>
<td>ProtoNet</td>
<td>92.7</td>
<td>71.5</td>
<td>64.7</td>
<td>83.9</td>
<td>86.2</td>
<td>56.4</td>
<td>96.0</td>
<td>79.1</td>
</tr>
<tr>
<td>R2-D2</td>
<td>94.5</td>
<td>73.8</td>
<td>69.9</td>
<td>86.2</td>
<td>86.9</td>
<td>59.7</td>
<td>96.7</td>
<td>82.8</td>
</tr>
</tbody>
</table>

Representations transfer similarly well.
Lecture Outline

Unsupervised representation learning for few-shot learning

Part I: Contrastive learning

Part II (next time): Reconstruction-based methods

Relation to meta-learning.

Goals for the lecture:
- Understand contrastive learning: intuition, design choices, how to implement
- How contrastive learning relates to meta-learning
Course Reminders

Project proposal due Monday.
(graded lightly, for your benefit)

Homework 2 due next Weds 10/25.