Domain Adaptation CS 330

Poster session next Wednesday.

Project report due the following **Monday**

Azure: Form on Ed for requesting more credits for project.

Course Reminders

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment

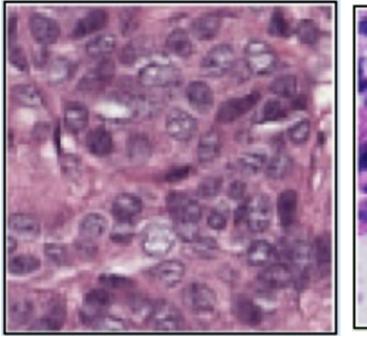
Domain Adaptation -> Domain Generalization

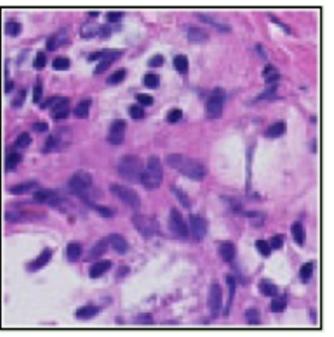
Goals for this lecture:

- <u>Understand domain adaptation & generalization problems</u>, how they relate to multi-task learning and transfer learning - Understand two general approaches and when to use one vs. another

Example domain adaptation problems

Tumor detection & classification Source hospital Target hospital







varying imaging techniques, different demographics

appearance of buildings, plants; weather conditions, pollution

Land use classification Source region Target region

Text classification, generation Source corpus Target corpus



Simple English WIKIPEĎIA

differing sentence structure, vocabulary, word use

Problem Settings Recap

Multi-Task Learning

Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once. $\min_{\theta} \sum_{i=1}^{T} \mathscr{L}_i(\theta, \mathscr{D}_i)$

Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably

Transfer Learning

Solve target task \mathcal{T}_b after solving source task(s) \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_{a}

Meta-Learning Problem

Transfer Learning with Many Source Tasks

What is domain adaptation?

Unsupervised domain adaptation: access to unlabeled target domain data Supervised domain adaptation: access to labeled target domain data.

We will focus on *unsupervised domain adaptation*.

- Perform well on target domain $p_T(x, y)$, using training data from source domain(s) $p_{s}(x, y)$
- A form of transfer learning, with access to target domain data during training ("transductive" learning)
- Semi-supervised domain adaptation: access to unlabeled and labeled target domain data

What is domain adaptation?

- Perform well on target domain $p_T(x, y)$, using training data from source domain(s) $p_{s}(x, y)$
- A form of transfer learning, with access to target domain data during training ("transductive" learning)

Common assumptions:

- There exists a single hypothesis with low error.
- Source and target domain only differ in domain of the function, i.e. $p_S(y | x) = p_T(y | x)$ -

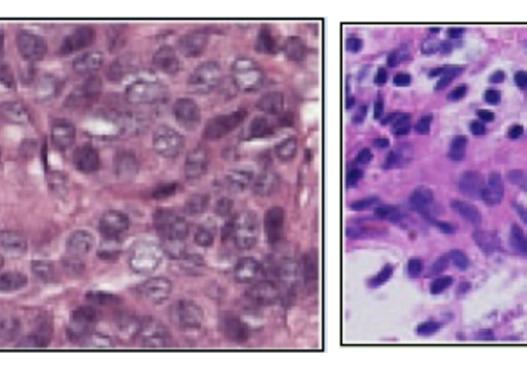
A task:
$$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} | \mathbf{x}), \mathcal{L}\}$$

Unsupervised domain adaptation: access to unlabeled target domain data

- A "domain" is a special case of a "task"
 - A domain: $d_i \triangleq \{p_i(\mathbf{x}), p(\mathbf{y} | \mathbf{x}), \mathcal{L}\}$

Example domain adaptation problems

Tumor detection & classification Source hospital Target hospital



varying imaging techniques, different demographics

Revisiting assumptions:

- Access to target domain data during training. -
- There exists a single hypothesis f(y | x) with low error.

Land use classification Source region Target region

appearance of buildings, plants; weather conditions, pollution

Text classification, generation Source corpus Target corpus



WikipeďiA

differing sentence structure, vocabulary, word use

Question: Should you condition on a task identifier in domain adaptation problems?

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment

Domain Adaptation -> Domain Generalization

Goals for this lecture:

- Understand domain adaptation & generalization problems, how they relate to multi-task learning and transfer learning

- Understand two general approaches and when to use one vs. another

Toy domain adaptation problem

 $p_{S}(x)$

- **Problem:** Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$

Problem adapted from Blitzer & Daume ICML '10

e.g. sample selection bias

How can we learn a classifier that does well on $p_T(x)$? (using labeled data from $p_{S}(x)$ & unlabeled data from $p_{T}(x)$)

Toy domain adaptation problem

╺╋╸╺╋╸╺╋╸ ╷╷┼┼┼╧╧╧╴╸╶╋╸ ╷╷┼╷┼╪┼╷╴╴╴╴╴╴╴╴

- **Problem**: Classifier trained on $p_S(x)$ pays little attention to examples with high probability under $p_T(s)$
- **Solution**: Upweight examples with high $p_T(x)$ but low $p_S(x)$

Problem adapted from Blitzer & Daume ICML '10

e.g. sample selection bias

Why does this make sense mathematically?

Domain adaptation via importance sampling

 $\mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x),y)] = \left[p_T(x,y)L(f_{\theta}(x),y)dxdy\right]$ $= p_T(x, y) \frac{p_S(x, y)}{p_S(x, y)} \frac{p_S(x, y)}{p_S(x, y)}$ $= \mathbb{E}_{p_{S}(x,y)} \quad \frac{p_{T}(x,y)}{p_{S}(x,y)}$

Empirical risk minimization on source data: $\min_{\theta} \mathbb{E}_{p_s(x,y)}[L(f_{\theta}(x), y)]$ **Goal**: ERM on target distribution: $\min_{\theta} \mathbb{E}_{p_T(x,y)}[L(f_{\theta}(x), y)]$

$$\frac{f_{\theta}(x,y)}{f_{\theta}(x)} L(f_{\theta}(x), y) dx dy$$

$$\frac{x, y}{x, y} L(f_{\theta}(x), y)$$

Note: p(y | x) cancels out if it is the same for source & target

Solution: Upweight examples with high $p_T(x)$ but low $p_S(x)$

Domain adaptation via importance sampling

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

Option 1: Estimate likelihoods $p_T(x)$ and $p_S(x)$, then divide. But, difficult to estimate accurately.

Can we estimate the ratio *without* training a generative model?

Bayes rule:

$$p(x | \text{target}) = \frac{p(\text{target} | x)p(x)}{p(\text{target})}$$

$$p(x | \text{source}) = \frac{p(\text{source} | x)p(x)}{p(\text{source})}$$

Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR '09

How to estimate the importance weights $\frac{p_T(x)}{p_C(x)}$?

 $\frac{p_T(x)}{p_S(x)} = \frac{p(x \mid \text{target})}{p(x \mid \text{source})} = \frac{p(\text{target} \mid x)p(\text{source})}{p(\text{source} \mid x)p(\text{target})}$ a constant can estimate with binary classifier!



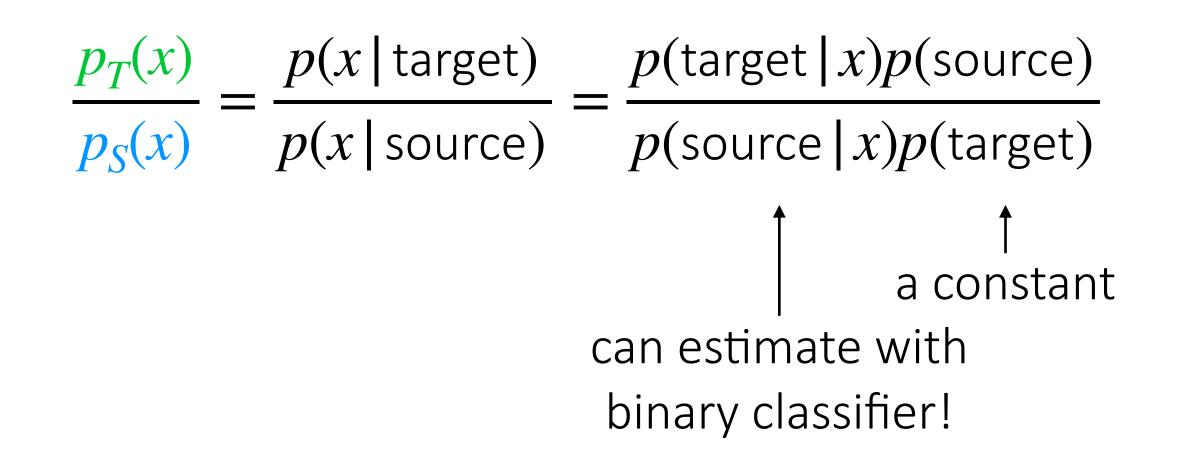
Domain adaptation via importance sampling

$$\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left[\frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right]$$

Full algorithm:

- 1.
- 3. Optimize loss $L(f_{\theta}(x), y)$ on reweighted or resampled data.

Bickel, Bruckner, Scheffer. Discriminative Learning Under Covariate Shift. JMLR '09



Train binary classifier c(source | x) to discriminate between source and target data. 2. Reweight or resample data \mathscr{D}_S according to $\frac{1-c(\text{source}|x)}{c(\text{source}|x)}$.

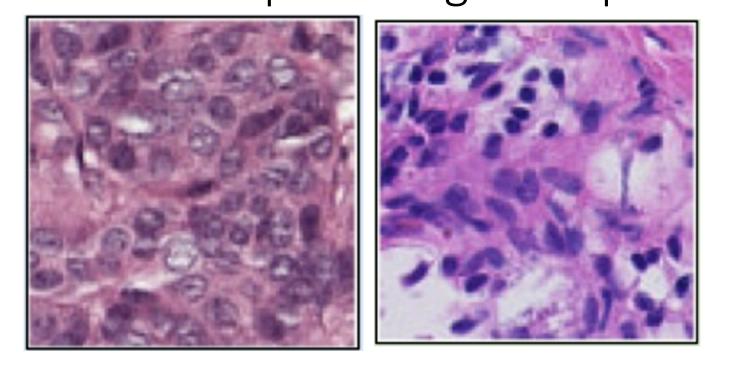
What assumption does this make?

Text classification, generation Source corpus Target corpus

—> May have enough coverage of distr.

 $\min_{\theta} \mathbb{E}_{p_{S}(x,y)} \left\{ \frac{p_{T}(x)}{p_{S}(x)} L(f_{\theta}(x), y) \right\}$ Source $p_{S}(x)$ needs to cover the target $p_{T}(x)$. Formally: if $p_{T}(x) \neq 0$, then $p_{S}(x) \neq 0$.

Tumor detection & classification Source hospital Target hospital



-> Source probably won't cover target distr!

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting

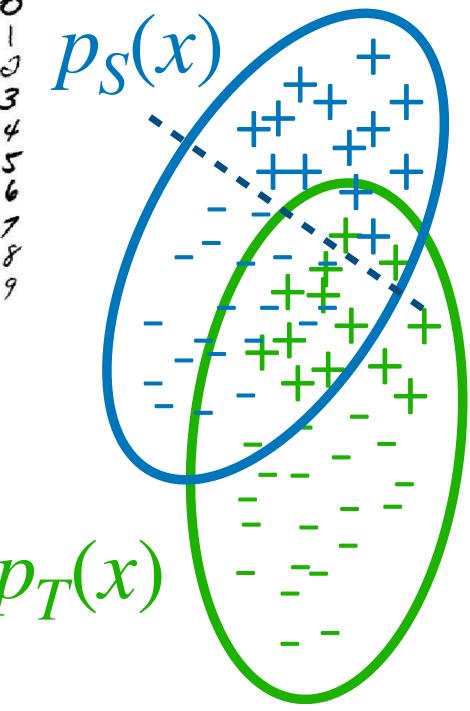
- Feature alignment

Domain Adaptation -> Domain Generalization

Goals for this lecture:

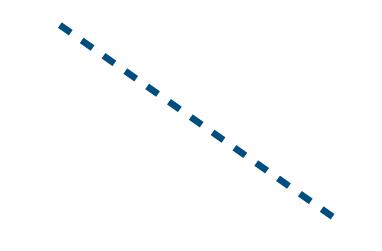
- Understand domain adaptation & generalization problems, how they relate to multi-task learning and transfer learning - Understand two general approaches and when to use one vs. another

Domain adaptation if support is not shared?



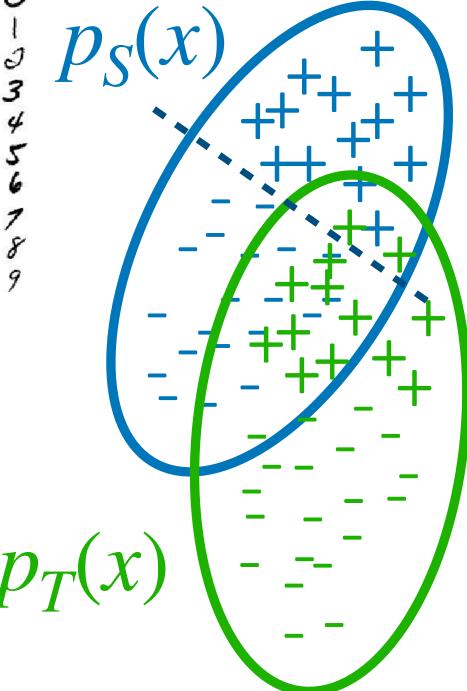
How to align the features?

Can we align the features?



Source classifier in *aligned feature space* is more accurate in target domain.

Domain adaptation if support is not shared?



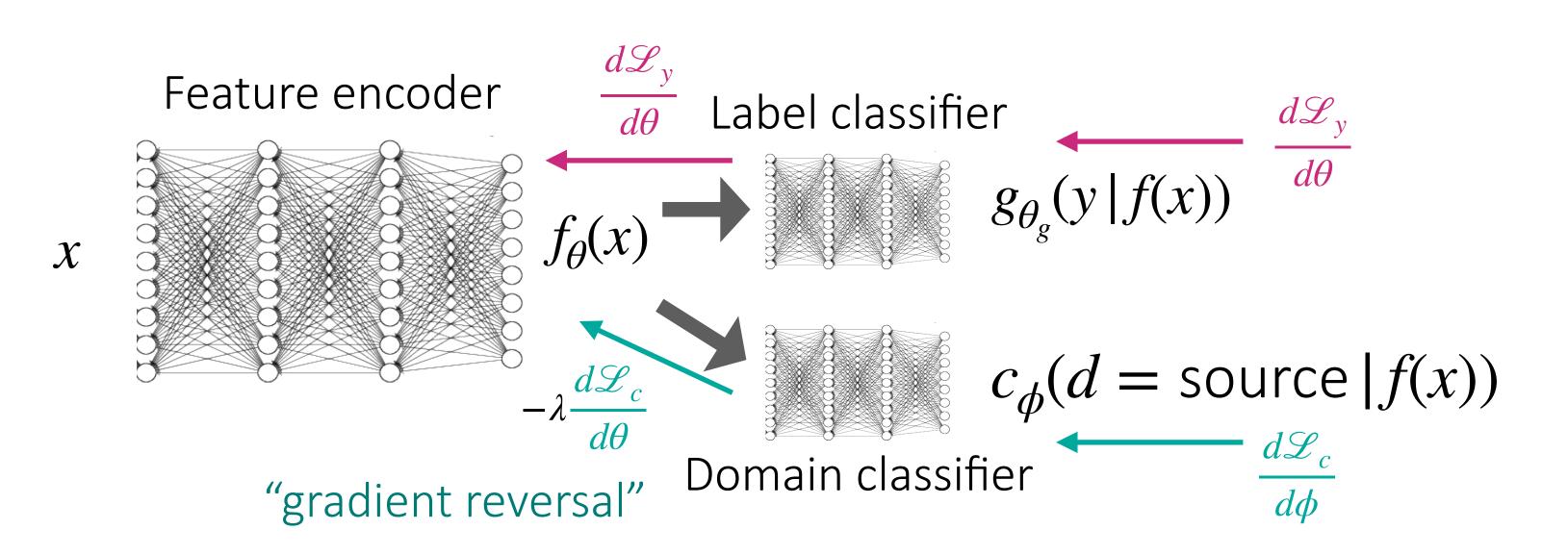
Key idea: Try to fool a domain classifier c(d = source | f(x)).

If samples are indistinguishable to discriminator, then distributions are the same.

How to align the features? Need to match features at *population-level*.

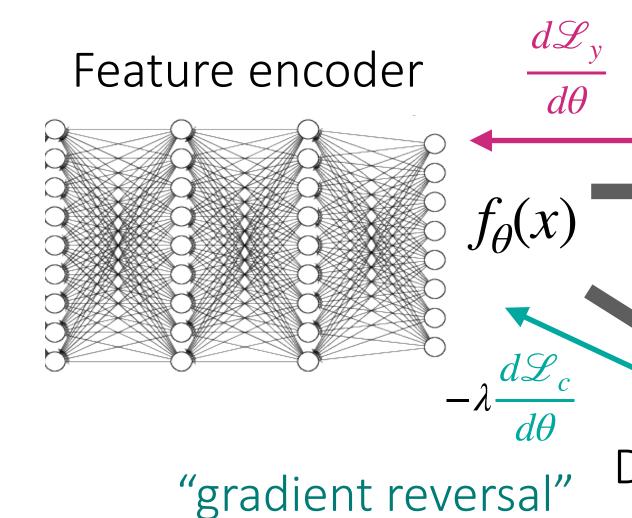
i.e. make encoded samples $f(x), x \sim p_s(\cdot)$ indistinguishable from $f(x), x \sim p_T(\cdot)$

Key idea: Try to fool a domain classifier c(d = source | f(x)).



Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

Minimize label prediction error & maximize "domain confusion"



Full algorithm:

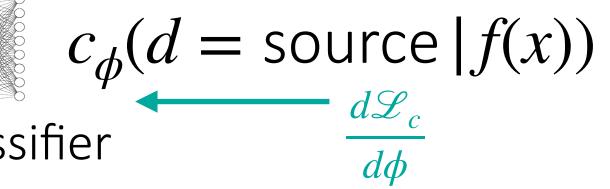
- Randomly initialize encoder $f_{ heta}$, label classifier $g_{ heta_o}$, domain classifier c_{ϕ} 1.
- 3. θ, θ_g
- Repeat steps 2 & 3. 4.

Tzeng et al. Deep Domain Confusion. arXiv '14

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

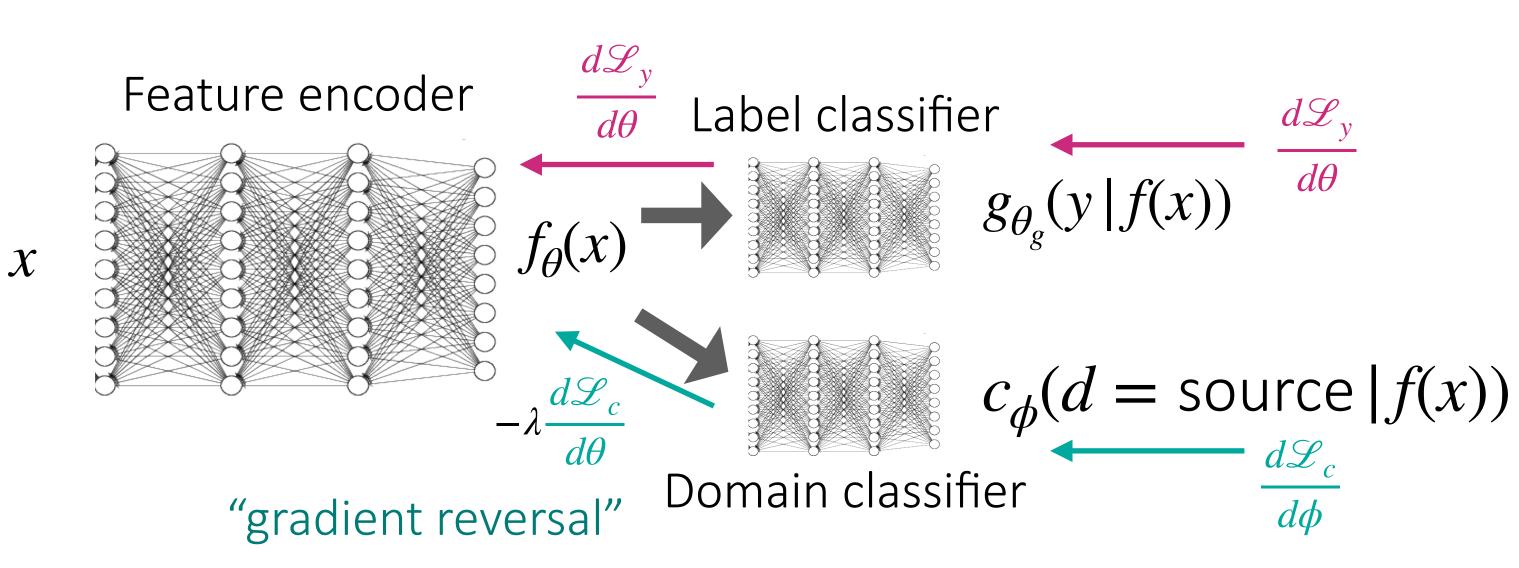
 ${\mathcal X}$

 $\frac{d\mathscr{L}_{y}}{d\theta}$ Label classifier $g_{\theta_g}(y | f(x))$



Domain classifier

Update domain classifier: $\min_{\phi} \mathscr{L}_c = -\mathbb{E}_{x \sim D_S}[\log c_{\phi}(f(x))] - \mathbb{E}_{x \sim D_T}[1 - \log c_{\phi}(f(x))].$ Update label classifier & encoder: $\min_{\Delta \phi} \mathbb{E}_{(x,y) \sim D_S}[L\left(g_{\theta_g}(f_{\theta}(x)), y\right)] - \lambda \mathscr{L}_c$



Option 1: Maximize domain classifier loss (gradient reversal, same as GANs)

Tzeng et al. Deep Domain Confusion. arXiv '14 Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16

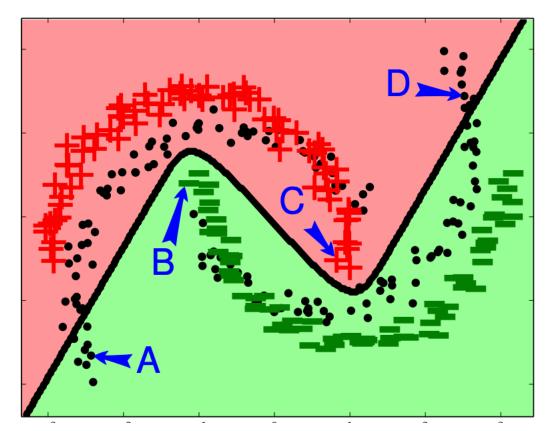
Slightly different forms of domain adversarial training.

Option 2: Optimize for 50/50 guessing

Toy example

source domain: +, --

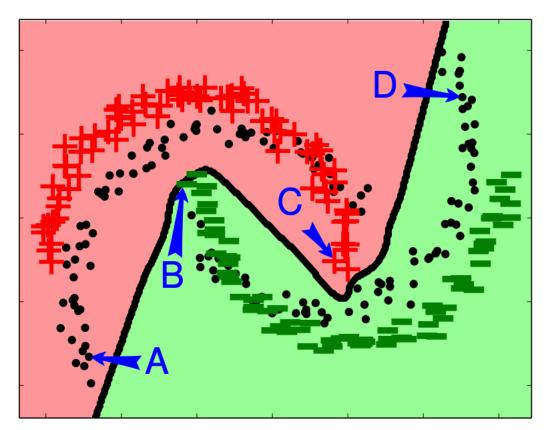
target domain data: •



standard NN training

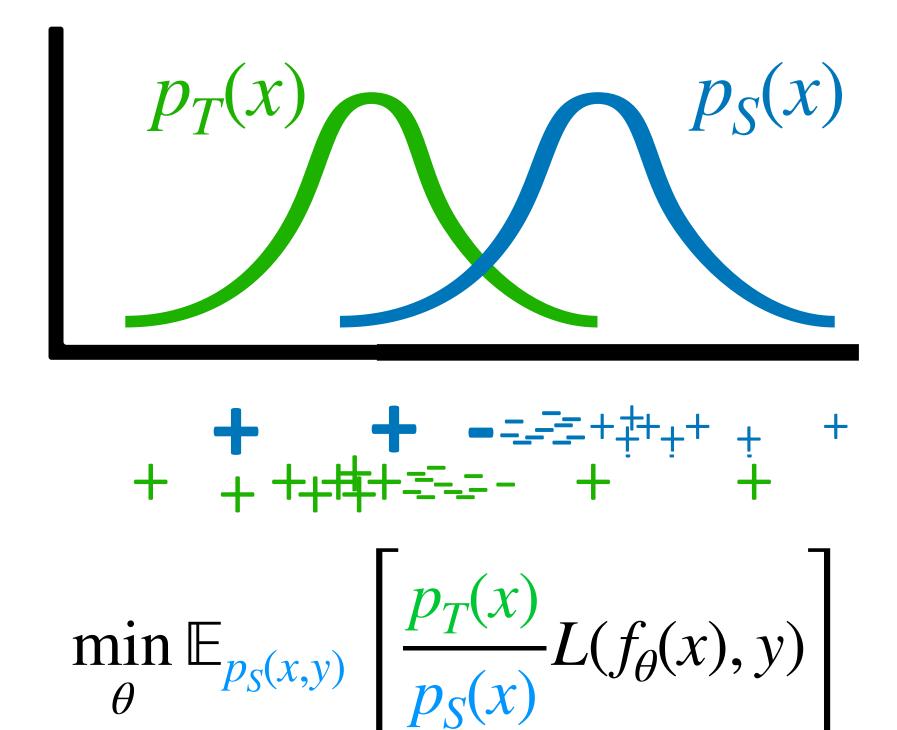
	Source	401	9 388	73610	A 70 80
	TARGET	216	418 25	242	70
Method	Source	MNIST	Syn Numbers	SVHN	Syn Signs
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
Source only		.5225	.8674	.5490	.7900
DANN		.7666 (52.9%)	. 9109 (79.7%)	. 7385 (42.6%)	.8865 (46.4%)
TRAIN ON TARC	GET	.9596	.9220	.9942	.9980

Ganin et al. Domain-Adversarial Training of Neural Networks. JMLR '16



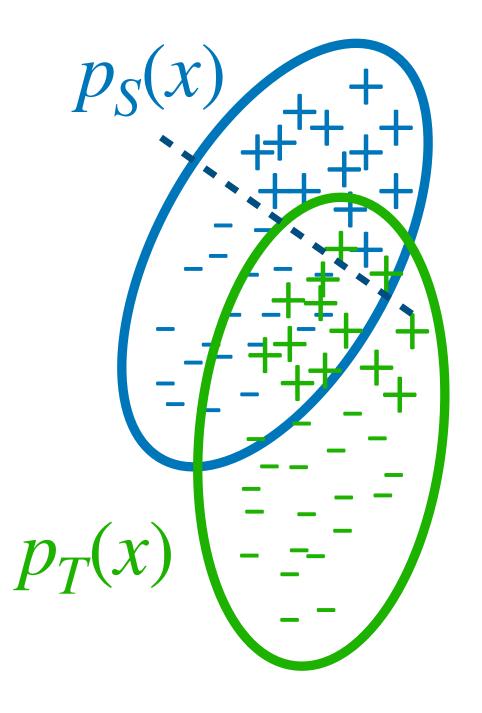
domain adversarial training

Importance weighting



- + simple, can work well
- requires source distr. to cover target

Feature alignment



- + fairly simple to implement, can work quite well
- + doesn't require source data coverage
- involves adversarial optimization
- requires clear alignment in data

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment

Domain Adaptation -> Domain Generalization

Goals for this lecture:

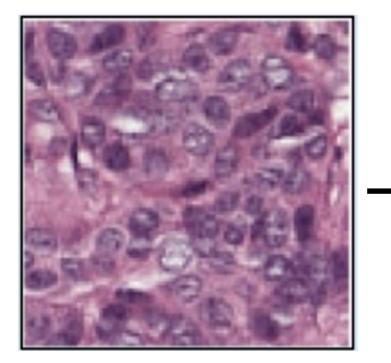
- Understand domain adaptation & generalization problems, how they relate to multi-task learning and transfer learning

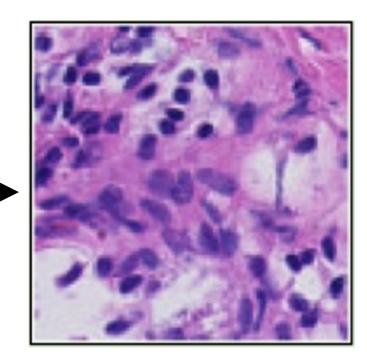
- Understand two general approaches and when to use one vs. another

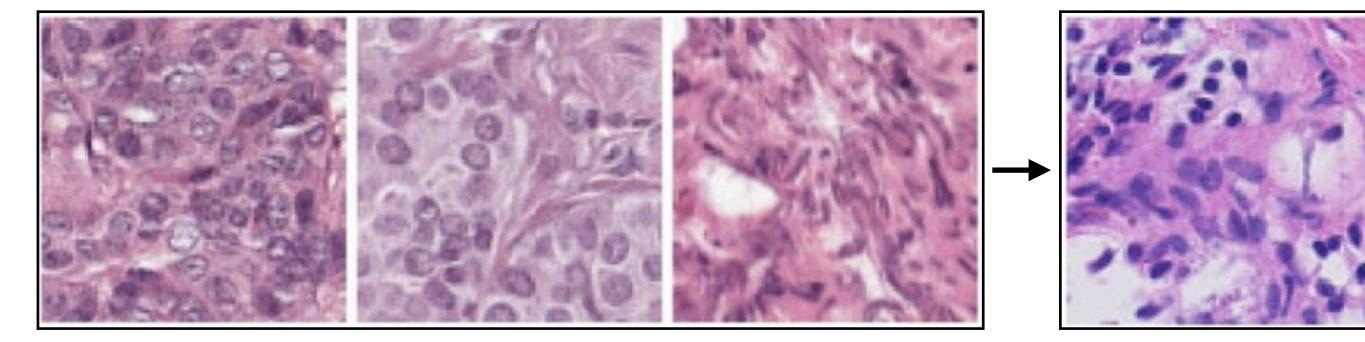
What if we don't have unlabeled data from the target domain?

Domain adaptation

Source hospital Target hospital







- one source domain _
- unlabeled data from target domain _

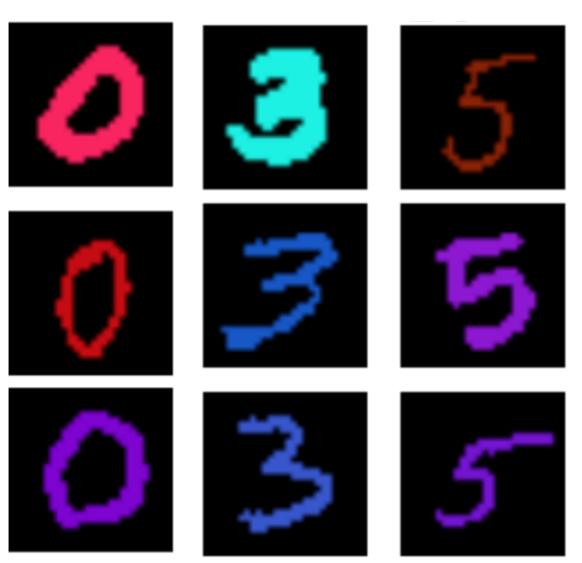
Domain generalization

Source hospitals

- multiple source domains
- no data from target domain (zero-shot generalize to new domain)

Target hospital

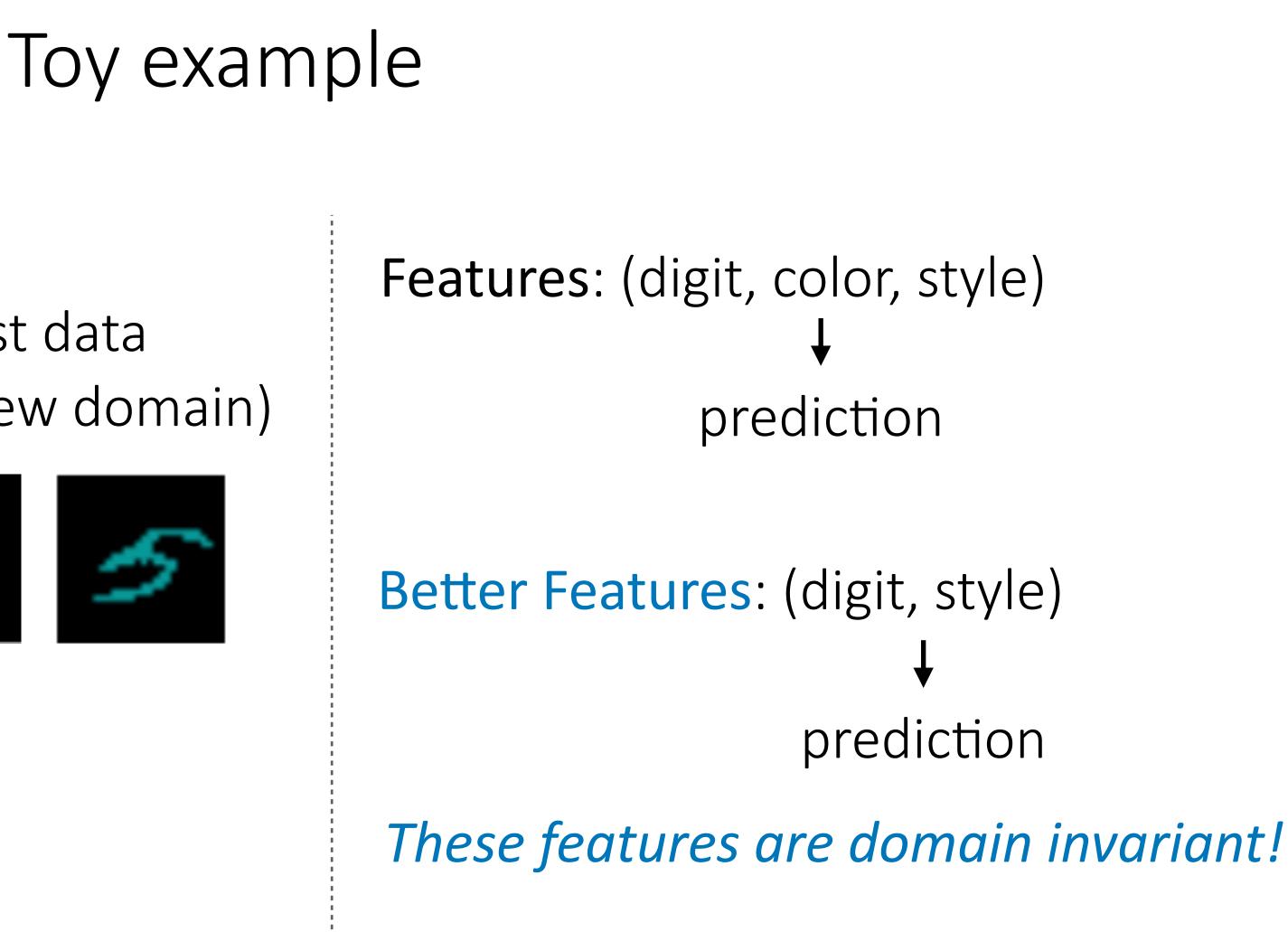
Training data



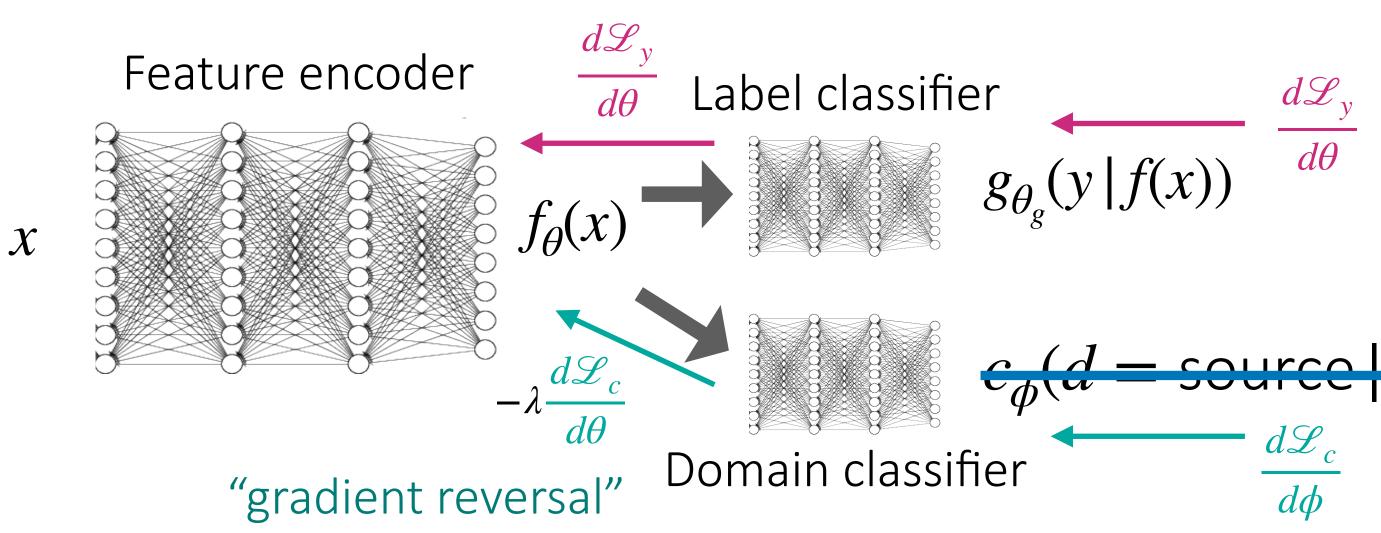
Test data (from new domain)

Label: digit Domain: color

A key concept in domain generalization: *domain invariance*



How to learn domain invariant features?



Training

- Randomly initialize encoder $f_{ heta}$, label classifier $g_{ heta_{g'}}$, domain classifier c_{ϕ}
- Update domain classifier: $\min \mathscr{L}_c = -\mathbb{E}_{x \sim D}[\log c_{\phi}(d = d_x | f(x))].$ 2.
- $heta, heta_{g}$
- Repeat steps 2 & 3.

Domain adversarial training!

Let d_x be domain label of example x.

$c_{\phi}(d = \text{source} | f(x)) \cdot c_{\phi}(d = d_x | f(x))$ $d\mathcal{L}_c$ dф

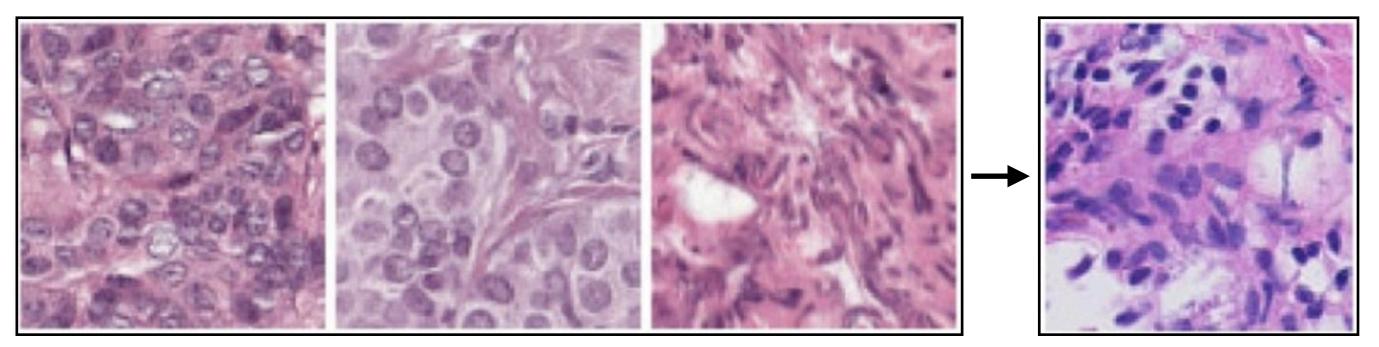
Testing

3. Update label classifier & encoder: $\min_{\theta,\theta} \mathbb{E}_{(x,y)\sim D_S}[L\left(g_{\theta_g}(f_{\theta}(x)), y\right)] - \lambda \mathscr{L}_c$

Apply model to examples from a new domain

Camelyon17 dataset

Source hospitals



Functional Map of the World (FMoW) dataset

	Train			Test	
Satellite Image (x)					
Year / Region (d)	2002 / Americas	2009 / Africa	2012 / Europe	2016 / Americas	
Building / Land Type (y)	shopping mall	multi-unit residential	road bridge	recreational facility	е
L	Datas	sets from t	he WILDS	benchmar	' k [–]

Accuracy on target hospital

Target hospital

ERM (standard training)	70.3%	
Fish	74.7%	
LISA	77.1%	

(Methods that aim for domain invariance)

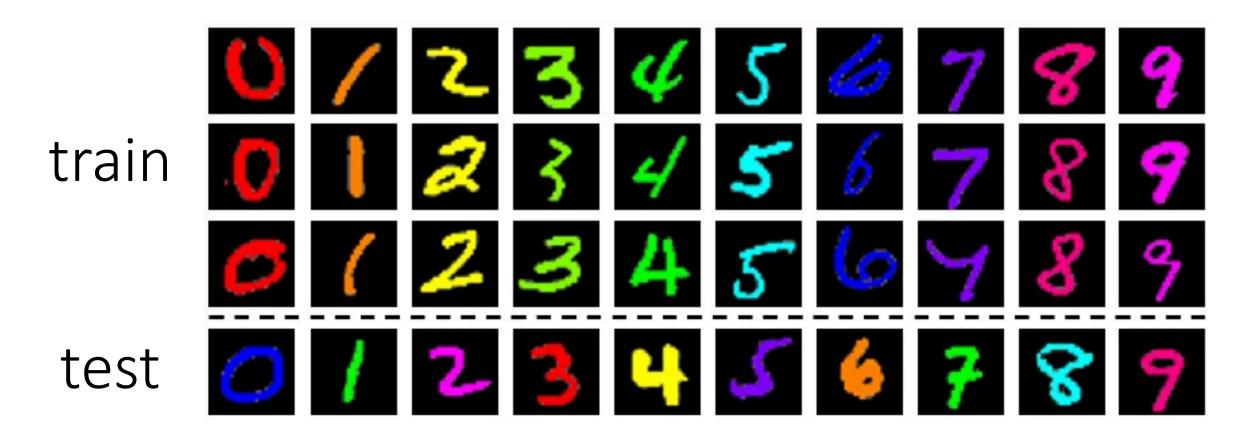
2017 / Africa

educational institution

Accuracy on worst region

ERM (standard training)	32.3%	
Fish	34.6%	
LISA	35.5%	

When might this fail?



Perfect correlation between labels and domains

What will happen if you train for domain invariance in this case? (pollev.com/330)

Another limitation: need to know the domain label for each example.

Domain adaptation

Adapt w/ unlabeled target domain data

As few as *one domain* in training data

Reweight the data Two general approaches: Encourage domain invariance if there is a clear way to align features if you have good coverage

Summary

Domain: Tasks with p(x) data distributions, same p(y|x), \mathscr{L}

Domain generalization

Zero-shot generalize to new domain

Need data from *multiple* training domains

Plan for Today

Domain Adaptation

- Problem statements
- Algorithms
 - Data reweighting
 - Feature alignment

Domain Adaptation -> Domain Generalization

Goals for this lecture:

- Understand domain adaptation & generalization problems, how they relate to multi-task learning and transfer learning - Understand two general approaches and when to use one vs. another

Next time: Frontiers & Open Problems!

Course Reminders

- Poster session next Wednesday.
- Project report due the following **Monday**
- **Azure:** Form on Ed for requesting more credits for project.

Time Permitting

- 1. meta reinforcement learning
- 2. meta-learning for adapting LLMs, VLMs

Which frontiers would you rather see in the frontiers & open problems lecture?