Transfer Learning + Start of Meta-Learning

CS 330 Lecture 3

Homework 0 due Wednesday 10/4 at 11:59 pm PT. Homework 1 out on Wednesday.

Project ideas posted on Ed.

Logistics

Recap from Last Time

A task: $\mathscr{T}_{i} \triangleq \{p_{i}(\mathbf{x}), p_{i}(\mathbf{y} | \mathbf{x}), \mathscr{L}_{i}\}$ Corresponding datasets: $\mathscr{D}_{i}^{tr} \quad \mathscr{D}_{i}^{test}$ Learning a task: $\mathscr{D}_{i}^{tr} \longrightarrow \theta$

$$\min_{\theta} \sum_{i=1}^{T} w_i \mathscr{L}_i(\theta, \mathscr{D}_i)$$

- Choice of task weighting w_i affects prioritization of tasks. Multi-task learning learns neural network conditioned on task descriptor \mathbf{z}_i

- Choice of how to condition on Z_i affects
 how parameters are shared.
 - If you observe negative transfer, share less.
 - If you observe overfitting, try sharing more.

Plan for Today

Transfer Learning

- Problem formulation
- Fine-tuning

Start of Meta-Learning

- Problem formulation
- General recipe of meta-learning algorithms

What you'll learn:

- How can you transfer things learned from one task to another?
- What does it mean for two tasks to have "shared structure"?
- What is meta-learning?

Part of Homework 1!

d from one task to another? have *"shared structure"*?

Multi-Task Learning vs. Transfer Learning

Multi-Task Learning

Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once.

$$\min_{\theta} \sum_{i=1}^{T} \mathscr{L}_{i}(\theta, \mathscr{D}_{i})$$
Comm

Question: What are some problems/applications where transfer learning might make sense? when you don't care about solving when \mathcal{D}_a is very large $\mathcal{T}_a \& \mathcal{T}_b$ simultaneously (don't want to retain & retrain on \mathcal{D}_{a})

Transfer Learning

Solve target task \mathcal{T}_{b} after solving source task(s) \mathcal{T}_{a} by transferring knowledge learned from \mathcal{T}_{a}

non assumption: Cannot access data \mathscr{D}_a during transfer.

Transfer learning is a valid solution to multi-task learning. (but not vice versa)

Transfer learning via fine-tuning Parameters pre-trained on \mathscr{D}_a $\phi \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}^{\mathrm{tr}})$ training data for new task \mathcal{T}_h (typically for many gradient steps)

Pre-trained Dataset	PASCAL	SUN
ImageNet	58.3	52.2
Random	41.3 [21]	35.7 [2]

What makes ImageNet good for transfer learning? Huh, Agrawal, Efros. '16

Where do you get the pre-trained parameters?

- ImageNet classification
- Models trained on large language corpora (BERT, LMs)
- Other unsupervised learning techniques
- Whatever large, diverse dataset you might have Pre-trained models often *available online*.

Common design choices

- Fine-tune with a smaller learning rate
- Smaller learning rate for earlier layers
- Freeze earlier layers, gradually unfreeze
- Reinitialize last layer
- Search over hyperparameters via cross-val
- Architecture choices matter (e.g. ResNets)

When might this common wisdom break?

Unsupervised pre-training objectives may not require diverse data for pre-training.

Krishna, Garg, Bingham, Lipton. Downstream Datasets Make Surprisingly Good Pretraining Corpora. ACL 2023.

When might this common wisdom break?

Yoonho's (rough) thought process

- 1. Fine-tuning only the last layer works well.
- 2. Is there anything special about the last layer?
- 3. For fine-tuning to low-level image corruptions, maybe the first layer might be better?

Result: Fine-tuning the first or middle layers can work better than the last layers.

Input-Level Shift: CIFAR-C Feature-Level Shift: Entity-30 Image corruption

Source data

Target data

Full Fine-Tuning Surgical Fine-Tuning

79.9% **82.8%** (+2.9)

Subgroup shift

79.3%

Middle/later block

Lee*, Chen*, Tajwar, Kumar, Yao, Liang, Finn. Surgical Fine-Tuning Improves Adaptation to Distribution Shifts. ICLR 2023.

- Output-Level Shift: CelebA Spurious correlation

86.2%(+4.0)

Chelsea's recommended default

Train last layer, then fine-tune entire network

Kumar, Raghunathan, Jones, Ma, Liang. Fine-Tuning Can Distort Pre-Trained Features and Underperform Out-of-Distribution. ICLR 2022

How does fine-tuning work with varying target dataset sizes?

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right). Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. '18

Fine-tuning doesn't work well with very small target task datasets

This is where meta-learning can help.

Plan for Today

Transfer Learning

- Problem formulation
- Fine-tuning

Meta-Learning

- Problem formulation
- General recipe of meta-learning algorithms

From Transfer Learning to Meta-Learning

Transfer learning: Initialize model. Hope that it helps the target task.

Meta-learning: Can we explicitly optimize for transferability?

Given a set of training tasks, can we optimize for the ability to learn these tasks quickly? so that we can learn *new* tasks quickly too

Learning a task: $\mathscr{D}_i^{tr} \longrightarrow \theta$

Can we optimize this function? (for small \mathscr{D}_i^{tr})

Two ways to view meta-learning algorithms

Mechanistic view

- Deep network that can read in an entire dataset and make predictions for new datapoints
- Training this network uses a meta-dataset, which itself consists of many datasets, each for a different task

Probabilistic view

- Extract shared prior knowledge from a set of tasks that allows efficient learning of new tasks
- Learning a new task uses this prior and (small) training set to infer most likely posterior parameters

How would Bayes view it?

Graphical model for multi-task learning & meta-learning. (whiteboard)

What does "structure" mean? statistical dependence on shared latent information θ

If you condition on that information,

- task parameters become independent

$$\phi_{i_1} \perp \!\!\!\!\perp \phi_{i_2} \mid \theta$$

and are not otherwise independent $\phi_{i_1} \perp \phi_{i_2}$

- hence, you have a lower entropy i.e. $\mathcal{H}(p(\phi_i | \theta)) < \mathcal{H}(p(\phi_i))$

Thought exercise #1: If you can identify θ (i.e. with meta-learning), when should learning ϕ_i be faster than learning from scratch?

Thought exercise #2: what if $\mathscr{H}(p(\phi_i | \theta)) = 0 \quad \forall i$?

How would Bayes view it?

Graphical model for multi-task learning & meta-learning. (whiteboard)

What does "structure" mean?

(c) Meta Learning

statistical dependence on shared latent information θ What information might θ contain...

 θ corresponds to family of sinusoid functions (everything but phase and amplitude)

... in multi-language machine translation? θ corresponds to the family of all language pairs

Note that θ is narrower than the space of all possible functions.

Two ways to view meta-learning algorithms

Mechanistic view

- \succ Deep network that can read in an entire dataset and make predictions for new datapoints
- \succ Training this network uses a meta-dataset, which itself consists of many datasets, each for a different task

Probabilistic view

- > Extract shared prior knowledge from a set of tasks that allows efficient learning of new tasks
- \succ Learning a new task uses this prior and (small) training set to infer most likely posterior parameters

For rest of lecture: Focus primarily on the mechanistic view.

(Bayes will be back later)

How does meta-learning work? An example.

Given 1 example of 5 classes:

training data $\mathcal{D}_{ ext{train}}$

Classify new examples

test set \mathbf{x}_{test}

How does meta-learning work? An example.

Given 1 example of 5 classes:

Can replace image classification with: regression, language generation, skill learning,

training classes

Classify new examples

test set \mathbf{x}_{test}

Meta-Learning Problem Transfer Learning with Many Source Tasks

What do the tasks correspond to?

- recognizing handwritten digits from different languages (see homework 1!)
- giving feedback to students on different exams
- classifying species in different regions of the world
- a robot performing different tasks

The more the better. How many tasks do you need?

Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably

Key assumption: meta-training tasks and meta-test task drawn i.i.d. from same task distribution $\mathcal{T}_1, \dots, \mathcal{T}_n \sim p(\mathcal{T}), \mathcal{T}_j \sim p(\mathcal{T})$

Like before, tasks must share structure.

HIIANBOYCOTOSSUGNAU ചെ≖്ലമലം ഈളിരിച്ഉ് ഗമ 辺辺はもぬなりを中中キューであっているようのです。 ற்**ப்** வக்குஷ் — படை – பட உத ஆஸ்வே – ச உ ஜ.ஜ. 9 . ति O & & S P ? ~ ~ ~ न र द घ र जा म य म य म य म थ स् ^ । ถิขฏธิ๔๛ๅ๐ๅ, ๛๗๔ฐ๔๛ฦฃฏิ๛ L Ц Ч П Ц С б У 5 7 м с л м м б Я Я В В :: * : • b I

(analogous to more data in ML)

	r.	ιı	Ļ	-	æ	
J	R	አ	t	Э	∙₽∘	
μ	λ	n	D	R	÷Е	2
2	ç	N	াড	3	н	L
Г	ĵ	7	ት	Ś	В	Y
í	7	\mathcal{L}	ዀ	Z	ц	ğ
`	2	Þ	/	Лľ	Ĵ.)
J	D	$\hat{\mathbf{v}}$	汋	Q	N.	2
/	IJ	$\gamma_{\rm P}$	V	£	ß	Ĵ
Ч	Э	п	д	5	\sim	Ē
þ	γ	Я	К	٩	φ	2
ł	Þ	ц	С	4	Υ	1
		- u	2.		-	

Some terminology

k-shot learning: learning with **k** examples per class **N-way classification**: choosing between N classes (or **k** examples total for regression)

Question: What are k and N for the above example? 20

Problem Settings Recap

Multi-Task Learning Solve multiple tasks $\mathcal{T}_1, \cdots, \mathcal{T}_T$ at once. $\min_{\theta} \sum_{i=1}^{T} \mathscr{L}_{i}(\theta, \mathscr{D}_{i})$

Meta-Learning Problem

Transfer Learning

Solve target task \mathcal{T}_h after solving source task(s) \mathcal{T}_a

by *transferring* knowledge learned from \mathcal{T}_{a}

- Transfer Learning with Many Source Tasks
- Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, solve new task $\mathcal{T}_{\text{test}}$ more quickly / proficiently / stably
 - In transfer learning and meta-learning: generally impractical to access prior tasks
 - In all settings: tasks must share structure. 22

Plan for Today

Transfer Learning

- Problem formulation
- Fine-tuning

Meta-Learning

- Problem formulation
- General recipe of meta-learning algorithms

One View on the Meta-Learning Problem

Why is this view useful? Reduces the meta-learning problem to the design & optimization of f.

Finn. Learning to Learn with Gradients. PhD Thesis. 2018

General recipe

How to design a meta-learning algorithm

1. Choose a form of $f_{ heta}(\mathcal{D}^{ ext{tr}}, \mathbf{x}^{ ext{ts}})$

2. Choose how to optimize θ w.r.t. max-likelihood objective using meta-training data meta-parameters

ו

Lecture Recap

How can you transfer things learned from one task to another? Fine-tuning: initialize on source task(s) then optimize on target task

What does it mean for tasks to have *"shared structure"*? Statistical dependence on shared latent information θ

Meta-learning aims to learn shared structure, use it to learn new tasks quickly.

- Being careful to not destroy initialized features (e.g. smaller learning rate, train last layer first)

Plan for Today

Transfer Learning

- Problem formulation
- Fine-tuning

Meta-Learning

- Problem formulation
- General recipe of meta-learning algorithms

What you'll learn:

- How can you transfer things learned from one task to another?
- What does it mean for two tasks to have "shared structure"?
- What is meta-learning?

orithms Part of Homework 1!

d from one task to another? have *"shared structure"*?

Roadmap

Next five lectures on core methods Meta-learning methods (3 lectures) (homework 1 & 2) Unsupervised pre-training methods (2 lectures) (homework 3)

Homework 0 due Wednesday 10/4 at 11:59 pm PT. Homework 1 out on Wednesday.

Project ideas posted on Ed.