
CS330 Review Session: 
MAML



What We’ll Cover Today

2

1. Review of the meta-learning problem setup 
2. Model-Agnostic Meta-Learning (MAML) 
3. Useful PyTorch functions

No pytorch code, but will connect the lecture materials to the details of 
practical implementation.



What We’ll Cover Today

3

1. Review of the meta-learning problem setup 
2. Model-Agnostic Meta-Learning (MAML) 
3. Useful PyTorch functions



Running Example

4

The task can be any ML problem: regression, language generation…



Inner Loop Learning

5

Dtr
i Dts

i

Ti
i-th task

Training data Test data

We adapt the model on this data…

We repeat this over many tasks

and test on this data



Task Sampling (5-way 1-shot classification)

6

Dtr
i Dts

i

Ti

To sample one task: 

1. Sample 5 classes 
2. Training set: sample 1 image from each class 
3. Test set: sample N images from each class 

(training and test set must not overlap!)



Meta-Train vs Meta-Test Tasks

7

To sample one task: 

1. Sample 5 classes 
2. Training set: sample 1 image from each class 
3. Test set: sample N images from each class 

(training and test set must not overlap!)

We partition classes into: 
(train, val, test) classes. 
→ sample 5 classes from the appropriate split!



What We’ll Cover Today

8

1. Review of the meta-learning problem setup 
2. Model-Agnostic Meta-Learning (MAML) 
3. Useful PyTorch functions



θ ϕi

MAML Inner Loop

9

Dtr
i

Ti

Initial network parameters Parameters adapted to task i



θ ϕi

MAML Outer Loop

10

Dtr
i Dts

i

Ti

Initial network parameters Parameters adapted to task i

L(ϕi, Dts
i )

Backprop



θ ϕ

MAML Meta-Testing

Dts

Meta-learned 
network parameters

Parameters adapted 
to test task

L(ϕ, Dts)

Dtr

11

Novel task 
constructed from 

unseen classes



MAML Summary

Meta-Training 
Repeat until convergence: 

1. Sample task  

2. Optimize  

3. Update 

Ti = (Dtr
i , Dts

i )

ϕi ← θ − α∇θL(θ, Dtr
i )

θ ← θ − β∇θL(ϕi, Dts
i )

Meta-Testing 

1. Given task  

2. Optimize  

3. Make predictions on  using 

T = (Dtr, Dts)

ϕ ← θ − α∇θL(θ, Dtr)

Dts ϕ

In practice, we parallelize both meta-training and meta-testing with 
minibatches of tasks.



What We’ll Cover Today

13

1. Review of the meta-learning problem setup 
2. Model-Agnostic Meta-Learning (MAML) 
3. Useful PyTorch functions



_forward()

14

In the provided code, the provided _forward() is stateless: it takes current model 
parameters as input.



torch.autograd.grad()

If you want to backpropagate through the gradient later: 
torch.autograd.grad(outputs, inputs, create_graph=True) 

Otherwise: 
torch.autograd.grad(outputs, inputs, create_graph=False)

15



parameters

16

Parameters are a dictionary with (parameter_name, parameter_value) pairs. 
You should explicitly compute the updated parameter.



What We Covered Today

17

1. Review of the meta-learning problem setup 
2. Model-Agnostic Meta-Learning (MAML) 
3. Useful PyTorch functions


