Multi-Task Learning Basics CS 330

Logistics

- Homework 0 due Wednesday 10/4 at 11:59 pm PT. Homework 1 out on Wednesday.
- High-resolution feedback starts this week we value your feedback!
- **Project ideas:** sharing ideas from survey, project titles from past years

Plan for Today

Multi-Task Learning

- Problem statement
- Models, objectives, optimization
- Challenges
- Case study of real-world multi-task learning

Goals for by the end of lecture:

- Understand the key design decisions when building multi-task learning systems

Multi-Task Learning

Single-task learning: $\mathscr{D} = \{(\mathbf{x}, \mathbf{y})_k\}$ [supervised] $\min \mathscr{L}(\theta, \mathscr{D})$ θ

Typical loss: negative log likelihood $\mathscr{L}(\theta, \mathscr{D}) = -\mathbb{E}_{(x, y) \sim \mathscr{D}}[\log f_{\theta}(\mathbf{y} \mid \mathbf{x})]$

What is a task? (more formally this time)

$\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} \mid \mathbf{x}), \mathcal{L}_i\}$ A task:

data generating distributions

Corresponding datasets: \mathcal{D}_{i}^{tr} \mathcal{D}_{i}^{test} will use \mathcal{D}_i as shorthand for \mathcal{D}_i^{tr} :

Examples of Tasks

A task: $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} \mid \mathbf{x}), \mathcal{L}_i\}$

data generating distributions

Corresponding datasets: \mathscr{D}_{i}^{tr} \mathscr{D}_{i}^{test}

will use \mathscr{D}_i as shorthand for \mathscr{D}_i^{tr} :

Multi-task classification: \mathscr{L}_i same across all tasks

e.g. per-language handwriting recognition

e.g. personalized spam filter

 $\begin{array}{l} \Pi_{\mathcal{N}}^{\mathcal{A}} \Pi_{\mathcal{N}$

Multi-label learning: \mathscr{L}_i , $p_i(\mathbf{x})$ same across all tasks

e.g. face attribute recognition e.g. scene understanding

 $L_{\text{tot}} = w_{\text{depth}} L_{\text{depth}} + w_{\text{kpt}} L_{\text{kpt}} + w_{\text{normals}} L_{\text{normals}}$

When might \mathscr{L}_i vary across tasks?

- mixed discrete, continuous labels across tasks
- multiple metrics that you care about

6

9	Ċ	٤	d,	ዮ	θ	2
ల	1	5	3	J	ò	7
5	ζ	ຍ	G _m	υ	ę	1
४	9	Ш	эШ	L	Æ	6
ħ	Ţ	2	Ήc	র	4	
70	я	Ð	म्र	হ	ς	1
₹	Ŋ	9	ধ	Æ	\uparrow	1
ਠ	Ŋ	А	শ	4	И	
2	2	শ	A	र्क	1	
		•	۰.	ŀ	И	
ŀ	2	.:	::	2	ц	0
::	:'		1	;.	b	ŀ
_			-			

- e.g. one-hot encoding of the task index
 - or, whatever meta-data you have
 - personalization: user features/attributes —
 - language description of the task
 - formal specifications of the task

Vanilla MTL Objective $\min_{\theta} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$ $\mathscr{L}_i(\theta, \mathscr{D}_i)$

Decisions on the model, the objective, and the optimization.

How should we condition on \mathbf{z}_i ? What objective should we use? How to optimize our objective?

ModelHow should the model be conditioned on \mathbf{z}_i ?ModelWhat parameters of the model should be shared?

Objective How should the objective be formed?

Optimization How should the objective be optimized?

Conditioning on the task

Question: How should you condition on the task in order to share as little as possible?

Let's assume \mathbf{Z}_i is the one-hot task index.

The other extreme

Concatenate \mathbf{Z}_i with input and/or activations

all parameters are shared (except the parameters directly following $\mathbf{Z}_{i'}$ if \mathbf{Z}_i is one-hot)

An Alternative View on the Multi-Task Architecture

Split heta into shared parameters $heta^{sh}$ and task-specific parameters $heta^i$

Then, our objective is: θ^{sh}

Choosing how to condition on \mathbf{Z}_i

$$\min_{\theta^{1},\ldots,\theta^{T}}\sum_{i=1}^{T}\mathscr{L}_{i}(\{\theta^{sh},\theta^{i}\},\mathscr{D}_{i})$$

Choosing how & where equivalent to to share parameters

Conditioning: Some Common Choices

1. Concatenation-based conditioning

These are actually equivalent!

Concat followed by a fully-connected layer:

Diagram sources: distill.pub/2018/feature-wise-transformations/

2. Additive conditioning

Question: why are they the same thing? (think-pair-share)

Conditioning: Some Common Choices 4. Multiplicative conditioning

3. Multi-head architecture

Why might multiplicative conditioning be a good idea? —

> Multiplicative conditioning generalizes independent networks and independent heads.

Diagram sources: distill.pub/2018/feature-wise-transformations/

more expressive per layer recall: multiplicative gating multiplicative gating $\sum \mathbf{1}(\mathbf{z}_i = j)\mathbf{y}_j$

Conditioning: More Complex Choices

Cross-Stitch Networks. Misra, Shrivastava, Gupta, Hebert '16

Deep Relation Networks. Long, Wang '15

Multi-Task Attention Network. Liu, Johns, Davison '18

Perceiver IO. Jaegle et al. '21

Conditioning Choices

- problem dependent
- largely guided by intuition or knowledge of the problem
- currently more of an **art** than a science

Unfortunately, these design decisions are like neural network architecture tuning:

How should the model be conditioned on \mathbf{Z}_i ? What parameters of the model should be shared?

Objective How should the objective be formed?

Optimization How should the objective be optimized?

Model

How to choose W_i ?

- manually based on importance or priority
- *dynamically* adjust throughout training

Often want to weight tasks differently:

$$\min_{\theta} \sum_{i=1}^{T} w_i \mathcal{L}_i(\theta, \mathcal{D}_i)$$

a. various heuristics

encourage gradients to have similar magnitudes (Chen et al. GradNorm. ICML 2018)

b. optimize for the worst-case task loss

$$\min_{\theta} \max_{i} \mathscr{L}_{i}(\theta, \mathscr{D}_{i})$$

(e.g. for task robustness, or for fairness)

ModelHow should the model be conditioned on \mathbf{z}_i ?What parameters of the model should be shared?

Objective How should the objective be formed?

Optimization How should the objective be optimized?

Optimizing the objective

Basic Version:

- 1. Sample mini-batch of tasks $\mathscr{B} \sim \{\mathscr{T}_i\}$
- 2. Sample mini-batch datapoints for each task $\mathscr{D}_i^b \sim \mathscr{D}_i$
- 4. Backpropagate loss to compute gradient $\nabla_{\boldsymbol{A}} \hat{\mathscr{L}}$

Note: This ensures that tasks are sampled uniformly, regardless of data quantities. **Tip:** For regression problems, make sure your task labels are on the same scale!

Vanilla MTL Objective: $\min_{\theta} \sum_{i=1}^{r} \mathscr{L}_{i}(\theta, \mathscr{D}_{i})$

3. Compute loss on the mini-batch: $\hat{\mathscr{L}}(\theta, \mathscr{B}) = \sum \mathscr{L}_k(\theta, \mathscr{D}_k^b)$ $\mathcal{T}_k \in \mathscr{B}$ 5. Apply gradient with your favorite neural net optimizer (e.g. Adam)

Challenges

Challenge #1: Negative transfer

Sometimes independent networks work the best. Negative transfer:

Multi-Task CIFAR-100

- task sp task sp cross s indepe

- optimization challenges Why?

- caused by cross-task interference
- tasks may learn at different rates
- -

		_
	% accuracy	
pecific, 1-fc (Rosenbaum et al., 2018) pecific, all-fc (Rosenbaum et al., 2018)	42 49	}
stitch, all-fc (Misra et al., 2016b)	53	}
endent	67.7	}

multi-head architectures cross-stitch architecture independent training

(Yu et al. Gradient Surgery for Multi-Task Learning. 2020)

limited representational capacity

- multi-task networks often need to be *much larger* than their single-task counterparts 23

If you have negative transfer, share less across tasks.

+ allows for more fluid degrees of parameter sharing - yet another set of design decisions / hyperparameters - more memory intensive

It's not just a binary decision!

$$\{h^{i}, \theta^{i}\}, \mathcal{D}_{i}\} + \lambda \sum_{i'=1}^{T} \|\theta^{i} - \theta^{i'}\|$$

"soft parameter sharing"

Challenge #2: Overfitting

You may not be sharing enough!

Multi-task learning <-> a form of regularization

Solution: Share more.

Challenge #3: What if you have a lot of tasks?

Fifty, Amid, Zhao, Yu, Anil, Finn. *Efficiently Identifying Task Groupings for Multi-Task Learning*. NeurIPS 2021

- Should you train all of them together? Which ones will be complementary?
 - The bad news: No closed-form solution for measuring task similarity.
 - The good news: There are ways to approximate it from one training run.

Speeds Up Language Model Pretraining. 2023

A task: $\mathcal{T}_i \triangleq \{p_i(\mathbf{x}), p_i(\mathbf{y} | \mathbf{x}), \mathcal{L}_i\}$ Corresponding datasets: \mathcal{D}_{i}^{tr} \mathcal{D}_{i}^{test}

Model Architecture

- multiplicative vs. additive conditioning on \mathbf{Z}_i
- share more vs. less depending on observed transfer -

Multi-Task Learning Recap

Objective & Optimization

$$\min_{\theta} \sum_{i=1}^{T} w_i \mathscr{L}_i(\theta, \mathscr{D}_i^{tr})$$

- choosing task weights -
- stratified mini-batches —

Plan for Today

Multi-Task Learning

- Problem statement
- Models, objectives, optimization
- Challenges
- Case study of real-world multi-task learning

Case study

Recommending What Video to Watch Next: A Multitask Ranking System

Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, Ed Chi

{zhezhao,lichan,liwei,jilinc,aniruddhnath,shawnandrews,aditeek,nlogn,xinyang,edchi}@google.com

Goal: Make recommendations for YouTube

"Large-Scale Deep Learning with TensorFlow," Jeff Dean

Figure 4: Recommending what to watch next on YouTube.

Google, Inc.

Up next

14:56

Heroes of Deep Learning: Andrew Ng interviews Ia. Preserve Knowledge 77K views

AUTOPLAY

Framework Set-Up

- **Input**: what the user is currently watching (query video) + user features Generate a few hundred of candidate videos
 - 2. Rank candidates
 - 3. Serve top ranking videos to the user

Candidate videos: pool videos from multiple candidate generation algorithms

- matching topics of query video
- videos most frequently watched with query video
- And others

Ranking: central topic of this paper

The Ranking Problem

Input: query video, candidate video, user & context features

Model output: engagement and satisfaction with candidate video

Engagement:

- binary classification tasks like **clicks**
- regression tasks related to time spent

Weighted combination of **engagement** & **satisfaction** predictions -> **ranking score** score weights manually tuned

Question: Are these objectives reasonable? What are some of the issues that might come up?

Satisfaction:

- binary classification tasks like clicking "like"
- regression tasks such as rating

The Architecture

Basic option: "Shared-Bottom Model" (i.e. multi-head architecture)

(a) Shared-Bottom Model with shared bottom hidden layers and separate towers for two tasks.

-> harms learning when correlation between tasks is low

The Architecture

Instead: use a form of soft-parameter sharing "Multi-gate Mixture-of-Experts (MMoE)"

(b) Multi-gate Mixture-of-Expert Model with one shared bottom layer and separate hidden layers for two tasks.

Allow different parts of the network to "specialize" expert neural networks $f_i(x)$

Decide which expert to use for input x, task k: $g^k(x) = \operatorname{softmax}(W_{q^k}x)$

Compute features from selected expert:

$$f^{k}(x) = \sum_{i=1}^{n} g_{(i)}^{k}(x) f_{i}(x)$$

 $y_k = h^k(f^k(x)),$ Compute output:

Experiments

Set-Up

- Implementation in TensorFlow, TPUs
- Train in *temporal order*, running training continuously to consume newly arriving data
- Online A/B testing in comparison to production system
 - live metrics based on time spent, survey responses, rate of dismissals
- Model computational efficiency matters

Results

Model Architecture	Number of Multiplications	Engagement Metric	Satisfaction Metr
Shared-Bottom	3.7M	/	/
Shared-Bottom	6.1M	+0.1%	+ 1.89%
MMoE (4 experts)	3.7M	+0.20%	+ 1.22%
MMoE (8 Experts)	6.1M	+0.45%	+ 3.07%

Table 1: YouTube live experiment results for MMoE.

Found 20% chance of gating polarization during distributed training -> use drop-out on experts

Lecture Recap

- Multi-task learning learns neural network conditioned on task descriptor \mathbf{z}_i
- Choice of task weighting w_i affects prioritization of tasks.
- Choice of how to condition on \mathbf{z}_i affects how parameters are shared.
 - If you observe negative transfer, share less. If you observe overfitting, try sharing more.

Goals for by the end of lecture:

- Understand the key design decisions when building multi-task learning systems

Homework 0 due Wednesday 10/4 at 11:59 pm PT. Homework 1 out on Wednesday.

Reminders

Next time: Transfer learning basics, meta-learning problem statement