Non-Parametric Few-Shot Learning CS 330

- Homework 1 due tonight.
- Homework 2 released, due Weds 10/25.
- Project mentors assigned: go to their office hours with any questions.
 - Project proposal due next Monday 10/23. (graded lightly, for your benefit)
 - Following up on some feedback:

 - Comparisons to simple baselines included in today's lecture - Max Sobol Mark's office hours (Weds 6-8 pm) moving to virtual

Course Reminders

Plan for Today

Non-Parametric Few-Shot Learning

- Siamese networks, matching networks, prototypical networks
- Properties of Meta-Learning Algorithms
- Comparison of approaches

Examples of Meta-Learning In Practice

- Imitation learning, drug discovery, motion prediction, language generation

Goals for by the end of lecture:

- Basics of non-parametric few-shot learning techniques (& how to implement)
- Familiarity with applied formulations of meta-learning

Part of Homework 2!

Trade-offs between black-box, optimization-based, and non-parametric meta-learning

Recap: Black-Box Meta-Learning

 $\mathcal{D}_i^{ ext{tr}}$

+ expressive

Key idea: parametrize learner as a neural network

- challenging optimization problem

Recap: Optimization-Based Meta-Learning

Key idea: embed optimization inside the inner learning process

Optimization-Based Adaptation

Challenges. Bi-level optimization can exhibit instabilities.

Idea: Optimize only a subset of the parameters in the inner loop

Idea: Decouple inner learning rate, BN statistics per-step **Idea**: Introduce context variables for increased expressive power.

- **Idea**: Automatically learn inner vector learning rate, tune outer learning rate (Li et al. Meta-SGD, Behl et al. AlphaMAML)
 - (Zhou et al. DEML, Zintgraf et al. CAVIA)
 - (Antoniou et al. MAML++)
 - (Finn et al. bias transformation, Zintgraf et al. CAVIA)
 - **Takeaway**: a range of simple tricks that can help optimization significantly

Optimization-Based Adaptation

Challenges. Backpropagating through many inner gradient steps is compute- & memory-intensive.

Idea: [Crudely] approximate $\frac{d\phi_i}{d\theta}$ as identity (Finn et al. first-order MAML '17, Nichol et al. Reptile '18) Surprisingly works for simple few-shot problems, but (anecdotally) not for more complex meta-learning problems.

Idea: Only optimize the *last layer* of weights. ridge regression, logistic regression support vector machine (Lee et al. MetaOptNet '19) (Bertinetto et al. R2-D2 '19)

—> leads to a closed form or convex optimization on top of meta-learned features

Idea: Derive meta-gradient using the implicit function theorem (Rajeswaran, Finn, Kakade, Levine. Implicit MAML '19)

—> compute full meta-gradient *without differentiating through optimization path*

Optimization-Based Adaptation

Key idea: Acquire ϕ_i through optimization.

- architecture)
- typically requires second-order optimization
- usually compute and/or memory intensive

Takeaways: Construct *bi-level optimization* problem. + positive inductive bias at the start of meta-learning + tends to extrapolate better via structure of optimization + maximally expressive with sufficiently deep network + model-agnostic (easy to combine with your favorite

-> Can be prohibitively expensive for large models

Recap: Optimization-Based Meta-Learning

 $\mathcal{D}_i^{ ext{tr}}$

+ structure of optimization embedded into meta-learner

Today: Can we embed a learning procedure *without* a second-order optimization?

Key idea: embed optimization inside the inner learning process

- memory-intensive, requires second-order optimization

In low data regimes, **non-parametric** methods are simple, work well.

So far: Learning parametric models.

- During **meta-test time**: few-shot learning <-> low data regime
 - During **meta-training**: still want to be parametric

- Can we use **parametric meta-learners** that produce effective **non-parametric learners**?
 - Note: some of these methods precede parametric approaches

Key Idea: Use non-parametric learner.

training data $\mathcal{D}_i^{\mathrm{tr}}$

In what space do you compare? With what distance metric?

 ℓ_2 distance in pixel space?

test datapoint x^{ts}

Compare test image with training images

In what space do you compare? With what distance metric? ℓ_2 distance in pixel space?

Zhang et al. (arXiv 1801.03924)

Key Idea: Use non-parametric learner.

training data $\mathcal{D}_i^{\mathrm{tr}}$

stance in pixel space?

Question: What distance metric would you use instead?

Idea: Learn to compare using meta-training data

test datapoint x^{ts}

Compare test image with training images In what space do you compare? With what distance metric?

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

Meta-training: Binary classification Meta-test: N-way classification

train Siamese network to predict whether or not two images are the same class

Can we **match** meta-train & meta-test?

Key Idea: Use non-parametric learner.

 $\mathcal{D}_i^{ ext{tr}}$

Can we **match** meta-train & meta-test? Nearest neighbors in learned embedding space

Trained end-to-end.

Meta-train & meta-test time match.

Vinyals et al. Matching Networks, NeurIPS '16

Key Idea: Use non-parametric learner.

General Algorithm:

Black box approach Non-parametric approach (matching networks) 1. Sample task \mathcal{T}_i (or mini batch of tasks) 2. Sample disjoint datasets $\mathcal{D}_i^{\text{tr}}, \mathcal{D}_i^{\text{test}}$ from \mathcal{D}_i (Parameters ϕ integrated 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ Compute $\hat{y}^{\text{ts}} = \sum_{x_k, y_k \in \mathcal{D}^{\text{tr}}} f_{\theta}(x^{\text{ts}}, x_k) y_k$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$ Update θ using $\nabla_{\theta} \mathcal{L}(\hat{y}^{\text{ts}}, y^{\text{ts}})$ out, hence non-parametric) Matching networks will perform comparisons independently What if >1 shot? Can we aggregate class information to create a prototypical embedding?

Key Idea: Use non-parametric learner.

 $p_{\theta}($

20

$$\mathbf{c}_n = \frac{1}{K} \sum_{(x,y)\in\mathcal{D}_i^{\mathrm{tr}}} \mathbb{1}(y=n) f_\theta(x)$$
$$y = n|x) = \frac{\exp(-d(f_\theta(x), \mathbf{c}_n))}{\sum_{n'} \exp(-d(f_\theta(x), \mathbf{c}_{n'}))}$$

d: Euclidean, or cosine distance

Snell et al. Prototypical Networks, NeurIPS '17

So far: Siamese networks, matching networks, prototypical networks Embed, then nearest neighbors.

Challenge

Idea: Learn non-linear relation module on embeddings

- What if you need to reason about more complex relationships between datapoints?
 - Idea: Learn infinite mixture of prototypes.

adaptive number of clusters

Idea: Perform message passing on embeddings

Garcia & Bruna, GNN '17

Plan for Today

Non-Parametric Few-Shot Learning - Siamese networks, matching networks, prototypical networks

Properties of Meta-Learning Algorithms

- Comparison of approaches

Examples of Meta-Learning In Practice - Imitation learning, drug discovery, motion prediction,

language generation

How can we think about how these methods compare?

Black-box vs. Optimization vs. Non-Parametric **Computation graph perspective**

Black-box Optimization-based $y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$ $y^{ ext{ts}} = f_{ ext{MAML}}(\mathcal{D})$ $= f_{\phi_i}(x^{\mathrm{ts}})$ where $\phi_i = \theta$ - $(x_1, y_1) (x_2, y_2) (x_3, y_3)$ x^{ts}

 \mathcal{D}^{va}

Both condition on data & run gradient descent.

Jiang et al. CAML '19

Non-parametric

$$egin{aligned} \mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}}) & y^{ ext{ts}} = f_{ ext{PN}}(\mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}}) & = ext{softmax}(-d\left(f_{ heta}(x^{ ext{ts}}), e_{ ext{softmax}}), e_{ ext{tr}}) & = ext{softmax}(-d\left(f_{ heta}(x^{ ext{ts}}), e_{ ext{tr}}, e_{ ext{tr}}), e_{ ext{tr}}) & = ext{softmax}(e_{ ext{softmax}}) & = ext{softmax}(e_{ ext{tr}}) & = ext{softmax}(e_{ ext$$

Note: (again) Can mix & match components of computation graph Gradient descent on relation net embedding.

MAML, but initialize last layer as ProtoNet during meta-training

Triantafillou et al. Proto-MAML '19

Black-box vs. Optimization vs. Non-Parametric Algorithmic properties perspective

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains Why?

learned learning procedure will monotonically improve with more data reduce reliance on meta-training tasks, Why? good OOD task performance

Expressive power

Consistency

These properties are important for most applications!

Black-box vs. Optimization vs. Non-Parametric Black-box **Optimization-based**

- + complete expressive power
- not consistent
- + easy to combine with **variety of** learning problems (e.g. SL, RL)
- challenging optimization (no inductive bias at the initialization)
- often data-inefficient

- + consistent, reduces to GD
- ~ expressive for very deep models*
- + positive inductive bias at the start of meta-learning
- + handles varying & large K well
- second-order optimization
- compute and memory intensive

Generally, well-tuned versions of each perform comparably on many few-shot benchmarks! (likely says more about the benchmarks than the methods) Which method to use depends on your **use-case**.

- Non-parametric
- + expressive for most architectures
- ~ consistent under certain conditions
- + entirely **feedforward**
- + computationally fast & easy to
- optimize
- harder to generalize to varying K
- hard to scale to **very large K**
- so far, limited to classification

*for supervised learning settings

Black-box vs. Optimization vs. Non-Parametric Algorithmic properties perspective

- Why?

Why?

Why?

Uncertainty awareness

Expressive power

Consistency

the ability for f to represent a range of learning procedures scalability, applicability to a range of domains

learned learning procedure will monotonically improve with more data reduce reliance on meta-training tasks, good OOD task performance

> ability to reason about ambiguity during learning active learning, calibrated uncertainty, RL principled Bayesian approaches

> > We'll discuss this in 2 weeks!

Plan for Today

Non-Parametric Few-Shot Learning - Siamese networks, matching networks, prototypical networks

Properties of Meta-Learning Algorithms - Comparison of approaches

Examples of Meta-Learning In Practice

- Imitation learning, drug discovery, motion prediction, language generation

Application: Land-Cover Classification

Tasks:

Classification or segmentation of image Different regions of the world $\mathscr{D}_{i}^{\mathrm{tr}}, \mathscr{D}_{i}^{\mathrm{ts}}$: images from a particular region

Model: optimization-based (MAML)

(Rubwurm*, Wang* et al. Meta-Learning for Few-Shot Land-Cover Classification. CVPR EarthVision 2020)

Application: Student Feedback Generation

(Wu et al. Prototransformer: A meta-learning approach to providing student feedback. 2021)

Tasks:

Different rubric items from different exams $\mathscr{D}_i^{\mathrm{tr}}, \mathscr{D}_i^{\mathrm{ts}}$: student solutions (python programs)

Model: non-parametric

Protonets with pre-trained transformer, task augmentation, side information

Main Offline Results

	Held-out rubric										
Model	AP	P@50	P@75	ROC-AUC							
ProtoTransformer	84.2	85.2	74.2	82.9							
	(± 1.7)	(±3.8)	(± 1.4)	(±1.3)							
Supervised	66.9	59.1	53.9	61.0							
	(± 2.2)	(± 1.7)	(± 1.5)	(±2.1)							
Human TA	82.5	—	—	_							
	Held-out exam										
Model	AP	P@50	P@75	ROC-AUC							
ProtoTransformer	74.2	77.3	67.3	77.0							
	(± 1.6)	(± 2.7)	(± 2.0)	(± 1.4)							
Supervised	65.8	60.1	54.3	60.7							
	(± 2.1)	(± 3.0)	(± 1.8)	(±1.6)							
Human TA	82.5	_	_	_							

- Supervised baseline: train classifier per task, using same pre-trained CodeBERT
- Outperforms supervised learning by 8-17%
- More accurate than human TA on held-out rubric
- Room to grow on held-out exam

Application: Low-Resource Molecular Property Prediction

(Nguyen et al. Meta-Learning GNN Initializations for Low-Resource Molecular Property Prediction. 2020) [potentially useful for low-resource drug discovery problems]

Tasks:			-				
$\nabla u = di = i = u = u = u = u = i = 0$	CHEMBL ID	к-NN	FINETUNE-ALL	FINETUNE-TOP	FO-MAML	ANIL	MA
Predicting properties & activities	2363236	0.316 ± 0.007	0.328 ± 0.028	0.329 ± 0.023	0.337 ± 0.019	0.325 ± 0.008	0.332 ±
of different molecules	1614469	0.438 ± 0.023	0.470 ± 0.034	0.490 ± 0.033	0.489 ± 0.019	0.446 ± 0.044	$0.507 \pm$
OF UTHEFETT THORECURES	2363146	0.559 ± 0.026	0.626 ± 0.037	0.653 ± 0.029	0.555 ± 0.017	0.506 ± 0.034	$0.595 \pm$
	2363366	0.511 ± 0.050	0.567 ± 0.039	0.551 ± 0.048	0.546 ± 0.037	0.570 ± 0.031	0.598 ±
ortr orts. different instances	2363553	0.739 ± 0.007	0.724 ± 0.015	0.737 ± 0.023	0.694 ± 0.011	0.686 ± 0.020	0.691 ±
$\mathscr{D}_i^-, \mathscr{D}_i^-$: different instances	1963818	0.607 ± 0.041	0.708 ± 0.036	0.595 ± 0.142	0.677 ± 0.026	0.692 ± 0.081	0.745 ±
$\boldsymbol{\iota}$	1963945	0.805 ± 0.031	0.848 ± 0.034	0.835 ± 0.036	0.779 ± 0.039	0.753 ± 0.033	0.836 ±
	1614423	0.503 ± 0.044	0.628 ± 0.058	0.642 ± 0.063	0.760 ± 0.024	0.730 ± 0.077	$0.837 \pm$
	2114825	0.679 ± 0.027 0.700 \pm 0.042	0.739 ± 0.050 0.758 \pm 0.044	0.732 ± 0.051 0.760 ± 0.048	0.837 ± 0.042 0.805 \pm 0.023	0.759 ± 0.078 0.003 ± 0.016	0.885 ±
-	1904110	0.109 ± 0.042	0.100 ± 0.044	0.103 ± 0.040	0.030 ± 0.020	0.303 ± 0.010	0.314
	2155446	0.471 ± 0.008	0.473 ± 0.017	0.476 ± 0.013	0.497 ± 0.024	0.478 ± 0.020	0.500 ±
	1909204	0.538 ± 0.023	0.589 ± 0.031	0.577 ± 0.039	0.592 ± 0.043	0.547 ± 0.029	$0.601 \pm$
Model ontimization-based	1909213	0.694 ± 0.009	0.742 ± 0.015	0.759 ± 0.012	0.698 ± 0.024	0.694 ± 0.025	0.729 ±
	311119/	0.617 ± 0.028 0.480 ± 0.042	0.663 ± 0.066	0.673 ± 0.071	0.030 ± 0.030	0.737 ± 0.035	$0.746 \pm 0.764 \pm 0.764$
	3215034	0.460 ± 0.042 0.474 ± 0.072	0.552 ± 0.045 0.540 \pm 0.156	0.051 ± 0.045 0.155 ± 0.180	0.729 ± 0.031 0.819 ± 0.048	0.700 ± 0.050 0.681 \pm 0.042	0.704 =
IVIAIVIL, TIRST-ORDER IVIAIVIL, AINIL	1909103	0.881 ± 0.072	0.936 ± 0.013	0.921 ± 0.109	0.877 ± 0.046	0.730 ± 0.055	0.900 -
	3215092	0.696 ± 0.038	0.777 ± 0.039	0.791 ± 0.042	0.877 ± 0.028	0.834 ± 0.026	0.907
Gated granh neural net hase model	1738253	0.710 ± 0.048	0.860 ± 0.029	0.861 ± 0.025	0.885 ± 0.033	0.758 ± 0.111	0.908
Sated graph neurarnet base model	1614549	0.710 ± 0.035	0.850 ± 0.041	0.860 ± 0.051	0.930 ± 0.022	0.860 ± 0.034	0.947 ±
	AVG. RANK	5.4	3.5	3.5	3.1	4.0	1.

- - $\mathscr{D}_i^{\mathrm{tr}}$ could have:
 - noisy labels
 - weakly supervised
 - domain shift
 - etc.

Side note

 $\mathscr{D}_i^{\mathrm{tr}}$ and $\mathscr{D}_i^{\mathrm{ts}}$ do not need to be sampled independently from \mathscr{D}_i .

Application: One-Shot Imitation Learning

Tasks:

manipulating different objects

- $\mathscr{D}_{i}^{\mathrm{tr}}$: video of a human
- $\mathscr{D}_{i}^{\mathrm{ts}}$: teleoperated demonstration

Model: optimization-based MAML with *learned* inner loss

(Yu*, Finn* et al. One-Shot Imitation from Observing Humans. RSS 2018)

Application: Dermatological Image Classification

(Prabhu et al. Prototypical Clustering Networks for Dermatological Image Classification. ML4HC 2019)

Tasks:

Different skin conditions

 $\mathscr{D}_i^{\mathrm{tr}}, \mathscr{D}_i^{\mathrm{ts}}$: images from different people

Goal: good classifier on all classes.

Model: non-parametric

Protonets, multiple prototypes per class using clustering objective

Evaluation

Compare:

PN - standard ProtoNets, trained on 150 base classes, pre-trained on ImageNet

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			k = 5		k = 10					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Approach	mca _{base+novel}	mca _{base}	mca _{novel}	mca _{base+novel}	mca _{base}	mca _{novel}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FT_{150} -1NN	46.18 +/- 0.81	55.32 +/- 0.30	18.76 +/- 3.30	49.51 +/- 0.34	54.86 +/- 0.50	33.44 +/- 1.35			
FT_{200} -1NN46.52 +/- 0.3954.17 +/- 0.3022.50 +/- 0.7549.92 +/- 0.4753.80 +/- 0.3538.27 +/- 1.32 FT_{200} -3NN44.69 +/- 0.3952.61 +/- 0.2120.93 +/- 2.0047.96 +/- 0.1152.53 +/- 0.1434.27 +/- 0.19 FT_{200} -CE47.82 +/- 0.4655.75 +/- 0.7124.00 +/- 3.2251.51 +/- 0.4155.21 +/- 0.2640.40 +/- 2.36PN43.92 +/- 0.4048.71 +/- 0.3729.56 +/- 2.3544.93 +/- 0.7947.55 +/- 0.3737.08 +/- 3.39PCN (ours)47.79 +/- 0.7153.70 +/- 0.18 30.04 +/- 2.7750.92 +/- 0.63 51.38 +/- 0.34 49.56 +/- 2.76	FT_{150} -3NN	44.28 +/- 0.32	54.77 +/- 0.47	12.80 +/- 1.50	47.01 +/- 0.56	54.13 +/- 0.43	25.64 +/- 1.51			
FT_{200} -3NN FT_{200} -CE44.69 +/- 0.39 47.82 +/- 0.4652.61 +/- 0.21 55.75 +/- 0.7120.93 +/- 2.00 24.00 +/- 3.2247.96 +/- 0.11 51.51 +/- 0.4152.53 +/- 0.14 55.21 +/- 0.2634.27 +/- 0.19 40.40 +/- 2.36PN PCN (ours)43.92 +/- 0.40 47.79 +/- 0.7148.71 +/- 0.37 53.70 +/- 0.1829.56 +/- 2.35 30.04 +/- 2.77 44.93 +/- 0.79 50.92 +/- 0.63 47.55 +/- 0.37 51.38 +/- 0.3437.08 +/- 3.39 49.56 +/- 2.76	FT_{200} -1NN	46.52 +/- 0.39	54.17 +/- 0.30	22.50 +/- 0.75	49.92 +/- 0.47	53.80 +/- 0.35	38.27 +/- 1.32			
FT_{200} -CE 47.82 +/- 0.4655.75 +/- 0.7124.00 +/- 3.2251.51 +/- 0.4155.21 +/- 0.2640.40 +/- 2.36 PN 43.92 +/- 0.4048.71 +/- 0.3729.56 +/- 2.3544.93 +/- 0.7947.55 +/- 0.3737.08 +/- 3.39 PCN (ours) 47.79 +/- 0.7153.70 +/- 0.1830.04 +/- 2.7750.92 +/- 0.6351.38 +/- 0.3449.56 +/- 2.76	FT_{200} -3NN	44.69 +/- 0.39	52.61 +/- 0.21	20.93 +/- 2.00	47.96 +/- 0.11	52.53 +/- 0.14	34.27 +/- 0.19			
PN 43.92 +/- 0.40 48.71 +/- 0.37 29.56 +/- 2.35 44.93 +/- 0.79 47.55 +/- 0.37 37.08 +/- 3.39 PCN (ours) 47.79 +/- 0.71 53.70 +/- 0.18 30.04 +/- 2.77 50.92 +/- 0.63 51.38 +/- 0.34 49.56 +/- 2.76	FT_{200} -CE	47.82 +/- 0.46	55.75 +/- 0.71	24.00 +/- 3.22	51.51 +/- 0.41	55.21 +/- 0.26	40.40 +/- 2.36			
PCN (ours) 47.79 +/- 0.71 53.70 +/- 0.18 30.04 +/- 2.77 50.92 +/- 0.63 51.38 +/- 0.34 49.56 +/- 2.76	PN	43.92 +/- 0.40	48.71 +/- 0.37	29.56 +/- 2.35	44.93 +/- 0.79	47.55 +/- 0.37	37.08 +/- 3.39			
	PCN (ours)	47.79 +/- 0.71	53.70 +/- 0.18	30.04 +/- 2.77	50.92 +/- 0.63	51.38 +/- 0.34	49.56 +/- 2.76			

More visualizations and analysis in the paper!

- **FT_N-1NN** ImageNet pre-training, fine-tuned ResNet on N classes, 1-nearest neighbors in resulting embedding space
- **FT**₂₀₀-**CE** ImageNet pre-trained, fine-tuned on all 200 classes with balancing
- (very strong baseline, accesses more info during training, requires re-training for new classes)
- **Evaluation Metric**: mean class accuracy (mca), i.e. average of per-class accuracies across 200 classes.

NN

Application: Few-Shot Human Motion Prediction

(Gui et al. Few-Shot Human Motion Prediction via Meta-Learning. ECCV 2018) [potentially useful for human-robot interaction, autonomous driving]

Tasks: Different human users & motions PA $\mathscr{D}_{i}^{\mathrm{tr}}$: past K time steps of motion $\mathcal{D}_{i}^{\text{ts}}$: future second(s) of motion resi Model: Met optimization-based/black-box hybrid MAML with additional resi learned update rule Met Recurrent neural net base model

GT	Ř	•••	R	R	R	R	R	R	R	R	R	•••	R	
١ML	Ř	•••		R	R	R	R	R	\uparrow	$\widehat{\mathbf{n}}$	$\widehat{\mathbb{N}}$	•••	R	2

	Walking							Eating					
milliseconds		80	160	320	400	560	1000	80	16 0	320	400	560	10
	$Scratch_{spec}$	1.90	1.95	2.16	2.18	1.99	2.00	2.33	2.31	2.30	2.30	2.31	2.3
dual sup. $[32] w/$	$Scratch_{agn}$	1.78	1.89	2.20	2.23	2.02	2.05	2.27	2.16	2.18	2.27	2.25	2.3
(Baselines)	Transfer _{ots} $ $	0.60	0.75	0.88	0.93	1.03	1.26	0.57	0.70	0.91	1.04	1.19	1.
	Multi-task	0.57	0.71	0.79	0.85	0.96	1.12	0.59	0.68	0.83	0.93	1.12	1.
	Transfer _{ft}	0.44	0.55	0.85	0.95	0.74	1.03	0.61	0.65	0.74	0.78	0.86	1.1
a-learning (Ours) PAML		0.35	0.47	0.70	0.82	0.8 0	0.83	0.36	0.52	0.65	0. 70	0.71	0 .'
	Smoking						Discussion						
milliseconds		80	160	320	40 0	560	1000	80	16 0	320	400	56 0	10
	Scratch _{spec} $ $	2.88	2.86	2.85	2.83	2.80	2.99	3.01	3.13	3.12	2.95	2.62	2.(
dual sup. $[32] w/$	$Scratch_{agn}$	2.53	2.61	2.67	2.65	2.71	2.73	2.77	2.79	2.82	2.73	2.82	2.1
(Baselines)	Transferots	0.70	0.84	1.18	1.23	1.38	2.02	0.58	0.86	1.12	1.18	1.54	2.0
	Multi-task	0.71	0.79	1.09	1.20	1.25	1.23	0.53	0.82	1.02	1.17	1.33	1.9
	Transfer _{ft}	0.87	1.02	1.25	1.30	1.45	2.06	0.57	0.82	1.11	1.11	1.37	2.0
a loorning (Oura)	DAMI	0.90	0 66	0.01	1 01	1 0 9	1 01	0 41	0 71	1 01	1 00	1 00	1 1
a-learning (Ours)	FAML	0.39	0.00	0.01	1.01	1.03	1.01	0.41	0.71	1.01	1.02	T.0A	1.

mean angle error w.r.t. prediction horizon

Plan for Today

Non-Parametric Few-Shot Learning

- Siamese networks, matching networks, prototypical networks
- Properties of Meta-Learning Algorithms - Comparison of approaches
- Examples of Meta-Learning in Practice
- Imitation learning, drug discovery, motion prediction, language generation

Goals for by the end of lecture:

- Basics of non-parametric few-shot learning techniques (& how to implement)
- Familiarity with applied formulations of meta-learning

Part of Homework 2!

Trade-offs between black-box, optimization-based, and non-parametric meta-learning

Lectures

Homeworks

Project

Next: unsupervised pre-training

Homework 1 due tonight.

Course Reminders

- Done with meta-learning algorithms!

- Homework 2 released, due Weds 10/25.
- Project mentors assigned: go to their OH with questions.
- Project proposal due next Monday 10/23.
 - (graded lightly, for your benefit)