Non-Parametric Few-Shot Learning
CS 330



Course Reminders

Homework 1 due tonight.

Homework 2 released, due Weds 10/25.

Project mentors assigned: go to their offi

ce hours with any questi

Project proposal due next Monday 10/23.
(graded lightly, for your benefit)

Following up on some feedback:

Oons.

- Comparisons to simple baselines — included in today’s lecture

- Max Sobol Mark’s office hours (Weds 6-8 pm) moving to virtual
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Plan for Today

Non-Parametric Few-Shot Learning
- Siamese networks, matching networks, prototypical
Networks

Properties of Meta-Learning Algorithms

- Comparison of approaches

Examples of Meta-Learning In Practice
rug discovery, motion prediction,
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Recap: Black-Box Meta-Learning
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Key idea: parametrize learner as a neural network

+ expressive - challenging optimization problem



Recap: Optimization-Based Meta-Learning
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Key idea: embed optimization inside the inner learning process



Optimization-Based Adaptation

Challenges. Bi-level optimization can exhibit instabilities.

Idea: Automatically learn inner vector learning rate, tu

ne ou

(Li et al. Meta-SG

D, Beh

ter lear
et al. Al

Idea: Optimize only a subset of the parameters in the inner loop
(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step

Idea: Introduce context variables for increased expressive power.

(Finn et al. bias transformat

NINg rate

bhaMAML)

(Antoniou et al. MAML++)

ion, Zintgraf et al. CAVIA)

Takeaway: a range of simple tricks that can help optimization significantly



Optimization-Based Adaptation

Challenges. Backpropagating through many inner gradient steps is
compute- & memory-intensive.

do;
Idea: [Crudely] approximate i as identity

ao (Finn et al. first-order MAML ‘17, Nichol et al. Reptile "18)

Surprisingly works for simple few-shot problems, but (anecdotally) not for
more complex meta-learning problems.

Idea: Only optimize the last layer of weights.

ridge regression, logistic regression  support vector machine
(Bertinetto et al. R2-D2 ’19) (Lee et al. MetaOptNet "19)

—> |eads to a closed form or convex optimization on top of meta-learned features

Idea: Derive meta-gradient using the implicit function theorem
(Rajeswaran, Finn, Kakade, Levine. Implicit MAML "19)

—> compute full meta-gradient without differentiating through optimization path



Optimization-Based Adaptation

Key idea: Acquire @; through optimization.

Takeaways: Construct bi-level optimization problem.

+ positive inductive bias at the start of meta-learning

+ tends to extrapolate better via structure of optimization

+ maximally expressive with sufficiently deep network

+ model-agnostic (easy to combine with your favorite
architecture)

- typically requires second-order optimization

- usually compute and/or memory intensive

-> Can be prohibitively expensive for large models



Recap: Optimization-Based Meta-Learning

Key idea: embed optimization inside the inner learning process

+ structure of optimization - memory-intensive, requires
embedded into meta-learner second-order optimization

Today: Can we embed a learning procedure without a second-order optimization?



So far: Learning parametric models.

In low data regimes, non-parametric el
methods are simple, work well. RN A 7 g i

During meta-test time: few-shot learning <-> low data regime

During meta-training: still want to be parametric

Can we use parametric meta-learners that produce effective non-parametric learners?

Note: some of these methods precede parametric approaches

10



Non-parametric methods

Key Idea: Use non-parametric learner.

, ts
test datapoint L

training data D;"

Compare test image with training images

In what space do you compare? With what distance metric?

¢, distance in pixel space?

11



In what space do you compare? With what distance metric?

¢, distance in pixel space?

2 Zhang et al. (arXiv 1801.03924)



Non-parametric methods

Key Idea: Use non-parametric learner.

, ts
training data D;" test datapoint &

Compare test image with training images
In what space do you compare? With what distance metric?

) a R :

Question: What distance metric would you use instead?

ldea: Learn to compare using meta-training data



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

14 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

(1)
Wy 1

> hl.l

15 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer
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Non-parametric methods

Key Idea: Use non-parametric learner.

train Siamese network to predict whether or not two images are the same class

Input Hidden Distance Output
layer layer layer layer

> hl.l

h.zd,\r_.) training data D" test datapoint &°
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Can we match meta-train & meta-test?

3, N1 {
Meta-test time: compare image Xtest to each image in p‘;r

Meta-training: Binary classification
Meta-test: N-way classification

17 Koch et al., ICML ‘15



Non-parametric methods

Key Idea: Use non-parametric learner.

bidirectional
LSTM

Can we match meta-train & meta-test?

Nearest neighbors in learned embedding space

f

~

convolutional
encoder

18

Trained end-to-end.

Meta-train & meta-test time match.

Vinyals et al. Matching Networks, NeurlPS ‘16



Non-parametric methods

Key Idea: Use non-parametric learner.

General Algorithm:

Blaek-bexappreach— Non-parametric approach (matching networks)
1. Sample task 7;  (or mini batch of tasks)

2. Sample disjoint datasets D;*, D;*** from D;
(Parameters @ integrated

t ~tS _ ts
3. Compute-o;~— 27?<Eir> Compute g Z fo(x™, Tk )y out, hence non-parametric)

T, Yk €D

4. Hp-d-a:te—@—lﬁmg—v-géﬁg,—?% Update 0 using Vo L(5", y"°)

| Matching networks will perform comparisons independently
What it >1 shot? | | | |
Can we aggregate class information to create a prototypical embedding?

19



Non-parametric methods

Key Idea: Use non-parametric learner.

= Y Ly=nf®

(x,y)€D}"

= nlz) = exp(—d(fo(z),Cn))
po(y = n|z) S exp(—d(fe(z), cpnr))

d: Euclidean, or cosine distance

20 Snell et al. Prototypical Networks, NeurlPS ‘17



Non-parametric methods

So far: Siamese networks, matching networks, prototypical networks

Embed, then nearest neighbors.

Challenge
What if you need to reason about more complex relationships between datapoints?
Idea: Learn non-linear relation Idea: Learn infinite Idea: Perform message
module on embeddings mixture of prototypes. passing on embeddings
ambadaingmodule raletion Mol A : ' -
o _‘:* = ) 4 GNI\-}-------
o / X ; o g il |8 AT Y L) & | A
f 90 x S x o :2C9>Ce: O QT
------- ¢ 9 " . . xj . =2 . 3; . . 2 };;} ‘;_
= ) * A ® L ~ | T
. X \\ A (nodes)
sk (learn d in PN) _

> adaptive number of clusters

Sung et al. Relation Net ‘17 Allen et al. IMP, ICML ‘19 Garcia & Bruna, GNN 17
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Plan for Today

Non-Parametric Few-Shot Learning
- Siamese networks, matching networks, prototypical
Networks

Properties of Meta-Learning Algorithms
- Comparison of approaches

Examples of Meta-Learning In Practice
mitation learning, drug discovery, motion prediction,
anguage generation

How can we think about how these methods compare?

22



Black-box vs. Optimization vs. Non-Parametric

Computation graph perspective

Black-box Optimization-based Non-parametric
y*= = fo(Di"2%)  y* = fuamn(D;", ) y* = fen(D5", )
?{S = fo.(x") = softmax(—d (fo(x"), c,))
: — : — : — T where ¢; = 0 — aVoL(0,D;") where c, = % Z 1(y =n)fo(x)
(z1,91) (w2,92) (x3,93) (z.y)€D;*

Note: (again) Can mix & match components of computation graph
Gradient descent on

relation net embedding.
fo

Both condition on data &

i MAML, but initialize last layer as
run gradient descent. ,;4

ProtoNet during meta-training

y yd
Jiang et al. CAML “19 }»@T =0 Triantafillou et al. Proto-MAML “19

AN
Rusu et al. LEO ‘19



Black-box vs. Optimization vs. Non-Parametric

Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
EXxpressive power . o |
Why? scalability, applicability to a range of domains
learned learning procedure will monotonically improve with more data

Consistency Wiy reduce reliance on meta-training tasks,
4 good OOD task performance

£
-
-
-~ -

Recall:

|
/' e MAML
. — = SNAIL
/ -« MetaNet
o0 L . ~ ' ~ ——
-08 -2.6 0 0.0 2 04 0.6 0.8

5-way, 1-shot accuracy

-04 -0.2 0 0.2
digit shear (radians)

These properties are important for most applications!
24



Black-box vs. Optimization vs. Non-Parametric

Black-box Optimization-based Non-parametric

+ complete expressive power + consistent, reduces to GD + expressive for most architectures

- not consistent

+ easy to combine with variety of  + positive inductive bias at the + entirely feedforward

learning problems (e.g. SL, RL) start of meta-learning + computationally fast & easy to

+ handles varying & large K well oy
- challenging optimization (no Lo - optimize

inductive bias at the initialization) second-order optimization

- harder to generalize to varying K
- compute and memory intensive

- often data-inefficient - hard to scale to very large K

- so far, limited to classification

Generally, well-tuned versions of each perform comparably on many few-shot benchmarks!
(likely says more about the benchmarks than the methods)

Which method to use depends on your use-case.

25



Black-box vs. Optimization vs. Non-Parametric
Algorithmic properties perspective

, the ability for f to represent a range of learning procedures
Expressive power . o |
Why? scalability, applicability to a range of domains

learned learning procedure will monotonically improve with more data

Consistency reduce reliance on meta-training tasks,

P
Why. good OOD task performance

ability to reason about ambiguity during learning
active learning, calibrated uncertainty, RL

orincipled Bayesian approaches

Why?

We'll discuss this in 2 weeks!
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Plan for Today

Non-Parametric Few-Shot Learning
- Siamese networks, matching networks, prototypical
Networks

Properties of Meta-Learning Algorithms
- Comparison of approaches

Examples of Meta-Learning In Practice
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Application: Land-Cover Classification

(Rubwurm™, Wang* et al. Meta-Learning for Few-Shot Land-Cover Classification. CVPR EarthVision 2020)

SEN12MS dataset
(Schmitt et al. 2019)

. IR A L~

Tasks:

Classification or segmentation of image
Different regions of the world

QZ?I, 9}35: images from a particular region

Barren (LCCS 1) Permancnt Snow and Icc (LCCS 2) M Water Bodics (LCCS 3)
B Dense Forests (LCCS 10) MW Open Forests (LCCS 20) Forest/Cropland Mosaics (LCCS 25)
M o d el . O pti m i Z a ti O n _ b a S e d ( I\/I A I\/l L) W Namwral Herbaceous/Croplands Mosaics (LCCS 35) ® Herbaceous Croplands (1.CCS 36) Shrublands (ILCCS 40)
—&— maml —e— pretrained random
1 4
-~ 0.8 —o—0—0—0—0— 90—
S 0.6 S SR . S S—— S———
-
O
8 0.4
0.2 I
0 0/ | | >
0 1 2 3 4 5 S} 7 8 g 10



Application: Student Feedback Generation

(Wu et al. Prototransformer: A meta-learning approach to providing student feedback. 2021)

€3 Code in Place Feedback X +
TaSkS . o c O & codeinplace.stan‘ord.edu/diagnostic/feedback w & A R O 5 & :
Overview Question 1 Question 2 Question 3 Question4
Different rubric items from different exams o
" " sack | Feedback | Net | your Solution
P DYS: stud luti h ‘
. def main():
7, .7 student solutions (python programs)  sermwe weur erow usex WIN): eton pere
This question requires you to get input height=input("Enter your height in meters: ")
from the user, convert it to a number, if height < 1.6:
and save it asa variable. Did you print("Below minimum astronaut height")
correctly do all of these steps? if height > 1.9:

print("Above maximum astronaut height")
Close. There is a minor error with if height >= 1.6 and height <= 1.9:

M I' - . your logic to get input from user. print(“Correct height to be an astronaut")
Ode ) nOn pa ra metrlc This could be something like

forgetting to convert userinput to a
if __name__ == "__main__:

Protonets with pre-trained transformer, nain()

Do you agree with the feedback in the

task augmentation, side information

O K

Please explain (optional):



Main Offline Results

Held-out rubric - Supervised baseline: train
Model AP  P@50 P@75 ROC-AUC . ,
classifier per task, using same
ProtoTransformer 84.2 85.2 74.2 82.9 .
(£17)  (£3.8) (£14)  (+1.3) pre-trained CodeBERT
Supervised 66.9 59.1 53.9 61.0 |
(£2.2)  (£1.7) (£15) (2.1 - Qutperforms supervised
Human TA 82.5 - - - learning by 8-17%
Held-out exam
Model AP  P@50 P@75 ROC-AUC - More accurate than human TA
ProtoTransformer 74.2 77.3 67.3 77.0 on held-out rubric
(£1.6) (£27) (£2.00 (£1.4)
Supervised 65.8 60.1 34.3 60.7

(£21) (430) (£18)  (+£16) - Room to grow on held-out
Human TA 82.5 — — — exam

30



Application: Low-Resource Molecular Property Prediction

(Nguyen et al. Meta-Learning GNN Initializations for Low-Resource Molecular Property Prediction. 2020)

[potentially useful for low-resource drug discovery problems]

Tasks:

Predicting properties & activities
of different molecules

QZ};T, QZ}S: different instances

Model: optimization-based
MAML, first-order MAML, ANIL
Gated graph neural net base model

CHEMBL ID K-NN FINETUNE-ALL FINETUNE-TOP FO-MAML ANIL MAML
2363236 0.316 L 0.007 0.328 L 0.028 0.329 1 0.023 0.337 L 0.019 0.325 L 0.008 0.332 L 0.013
1614469 0.438 == (0.023 0470 = 0.034 0.490 £ 0.033 0.489 + 0.019 0.446 + 0.044 0.507 =0.030
2363146 0.589 = (0.026 0.626 == 0.037 0.653 = 0.029 0.900 = 0.017 0.506 = 0.034 0.099 =0.051
2363366 0.511 + (0.050 0.567 = 0.039 0.551 = 0.048 0.546 = 0.037 0.570 = 0.031 0.598 +0.041
2363553 0.739 4+ 0.007 0.724+0.015 0.737 = 0.023 0.694 + 0.011 0.686 + 0.020 0.691 +0.013
1963818 0.607 = 0.041 0.708 = 0.036 0.095 == 0.142 0.677 £ 0.026 0.092 = 0.081 0.745 =0.048
1963945 0.805 = (0.03 0.848 +- 0.034 0.835 = 0.036 0.779 £ 0.039 0.753 £ 0.033 0.836 = 0.023
1614423 0.503 = 0.044 0.628 = 0.058 0.642 = 0.063 0.760 = 0.024 0.730 +£0.077 0.837+0.036°
2114825 0.679 = 0.027 0.739 £+ 0.050 0.732 £+ 0.051 0.837 = 0.042 0.759 +0.07¢ 0.885 +0.014"
1964116 0.709 = (0.042 0.758 £+ 0.044 0.769 £ 0.048 0.895+0.023  0903+0.016 0.912+0.013
2155446 0.471 + 0.008 0473 += 0.017 0.476 = 0.013 0.497 £+ 0.024 0.47&8 == 0.020 0.500 =0.017
1909204 0.538 £+ (0.023 0.589 + 0.031 0.577 £+ 0.039 0.592 £0.043 0547 +0.029 0.601 +=0.027
1909213 0.694 = 0.009 0.742 = 0.015 0.759 = 0.012 0.698 £ 0.024 0.094 = 0.025 0.729 = 0.013
3111197 0.617 + 0.028 0.663 = 0.066 0.673 = 0.071 0.636 = 0.036 0.737 £ 0.035 0.746 == 0.045
3215171 0.480 = 0.042 0.052 = 0.043 0.001 = 0.045 0.729 = 0.031 0.700 = 0.030 0.764 =0.019
3215034 0.474 + 0.072 0.540 = 0.156 0.455 £+ 0.189 0.819 4+ 0.048 0.681 +0.042 0.805 = 0.046
1909103 0.881 + 0.026 0.936 = 0.013 0.921 = 0.020 0877+ 0.046 0.730 £ 0.085 0.900 £ 0.032
3215092 0.696 = 0.038 0.777 = 0.039 0.791 == 0.042 0.877 = 0.028 0.834 = 0.026 0.907 =0.017
1738253 0.710 == 0.048 0.860 = 0.029 0.861 4= 0.025 0.885 £+ 0.033 0.75& = 0.111 0.908 +0.011
1614549 0.710 = 0.035 0.850 = 0.041 0.860 = 0.Uo1 0.930 = 0.022 0.860 = 0.034 0947 +-0.014
AVG. RANK 5.4 3.5 3.5 3.1 4.0 1.7




Side note

@fr and 9}38 do not need to be sampled independently from ..

@}zr could have:

- noisy labels

- weakly supervised
- domain shift

- etc.




Application: One-Shot Imitation Learning

(Yu™, Finn* et al. One-Shot Imitation from Observing Humans. RSS 2018)

Tasks:
manipulating different objects

@}:r: video of a human

9}:3: teleoperated demonstration

Model: optimization-based
MAML with learned inner loss




Application: Dermatological Image Classification

(Prabhu et al. Prototypical Clustering Networks for Dermatological Image Classification. ML4HC 2019)

Tasks:
Different skin conditions

1200

1000

@tr @ts images from different people

800

Goal: good classifier on all classes.

600

400

Model: non-parametric

200

Protonets, multiple prototypes per class
using clustering objective

i | U H!HHIHIHHHHHHHH M

0 20 100 120 140 160 180



Compare:

Fvaluation

PN - standard ProtoNets, trained on 150 base classes, pre-trained on ImageNet

FTn-INN - ImageNet
1-nearest

ore-training, fine-tuned ResNet on

neighbors in resulting embedding s

N classes,
nace

FT200-CE - ImageNet pre-trained, fine-tuned on all 200 classes with balancing

(very strong baseline, accesses more info during training, requires re-training for new classes)

Evaluation Metric: mean class accuracy (mca), i.e. average of per-class accuracies across 200 classes.

k=5 k=10

Approach MCapase+novel MCapase mMCapgyel INCdpase+novel IMCdpase mcanpvel
FTi50-INN | 46.18 +/-0.81 55.32 +/-0.30 18.76 +/- 3.30 | 49.51 +/-0.34 54.86 +/- 0.50 33.44 +/- 1.35
FT150-3NN | 4428 +/-0.32 54777 +/-047 12.80+4/-1.50 | 47.01 +/-0.56 54.13+/-0.43 25.64 +/-1.51
FT5,0-1NN | 46.52 +/-0.39 54.17 +/-0.30 22.50 +/-0.75 | 49.92 +/- 047 53.80 +/-0.35 38.27 +/- 1.32
FT5,0-3NN | 44.69 +/-0.39 52.61 +/-0.21 20.93 +/-2.00 | 47.96 +/- 0.11 52.53 +/-0.14 34.27 +/- 0.19
F'T500-CE 47.82 +/-0.46 S55.75 +/-0.71 24.00+/-3.22 | 51.51 +/-0.41 55.21 +/-0.26 4040 +/-2.36
PN 4392 +/-0.40 48.71 +/-0.37 29.56 +/- 2.35 | 44.93 +/-0.79 47.55 +/-0.37 37.08 +/- 3.39
PCN (ours) | 47.79 +/-0.71 53.70 +/- 0.18  30.04 +/- 2.77 | 50.92 +/- 0.63 51.38 +/-0.34 49.56 +/- 2.76

More visualizations and analysis in the paper!

PCN > PN

PCN > FTn-*NN

PCN = FTzoo-CE

without requiring
re-training



Application: Few-Shot Human Motion Prediction

(Gui et al. Few-Shot Human Motion Prediction via Meta-Learning. ECCV 2018)

[potentially useful for human-robot interaction, autonomous driving]

Tasks:

Different human users & motions

QZ}?I: past K time steps of motion

9}38: future second(s) of motion

Model:
optimizat

ion-based/black-box hybrid

MAML with additional
learned update rule

Recurrent neural net base model

Ao A A A A A A A A
%,.’) (N (:4{)' ¥ ) (,'::/ { (J 0 I v:’ S ('4'~<' {Q\’ ¥ ) EEE <4 U
Gl 7 MR IR VR AR
DAM| & wee D Q@ DD D D DD e DD
) R RN DR
. >
Walking Eating

milliscconds 80 | 160 | 320 | 400 | 560 {1000 | 80 | 160 320 | 400 | 560 (1000
Scratchgpec||1.90(1.95(2.16 (2.18|1.99|2.00 |2.33|2.31 2.30|2.30|2.31|2.34
residual sup. [32] w/ [Scratchagn || 1.78(1.89(2.20(2.23|2.02|2.05 |2.27 [2.16 2.18|2.27(2.25|2.31
(Baselines) Transfery:s || 0.60]0.75|0.88 [0.931.03|1.26 (0.57|0.70 0.91|1.04|1.19|1.58
Multi-task ||0.57]0.71]{0.79(0.85|0.96|1.12 |0.59|0.68 0.83]|0.93|1.12|1.33
Transfers |0.44[0.65[0.85]0.95[0.74(1.03 [0.61 |0.65 0.74]0.78[0.861.19
Meta-learning (Ours)|PAML 0.35/0.47|0.70|0.82|0.80|0.83 (0.36(0.62 0.65|0.70|0.71|0.79

Smoking Discussion
milliseconds 80 | 160 | 320 | 400 | 560 {1000 | RO [ 160 320 | 400 | 560 (1000
Scratchgpec||2.88(2.86 (2.85(2.83(2.80(2.99 |3.01(3.13 3.12|2.95(2.62|2.99
residual sup. [32| w/ |Scratcheg, |[2.53]2.61 [2.67|2.65(2.71|2.73 |2.77(2.79 2.82|2.73[2.82|2.76
(Baselines) Transferqes || 0.700.841.181.23|1.38|2.02 [0.68 |0.86 1.12|1.18|1.54|2.02
Multi-task ||0.71]0.79]1.09(1.20|1.25|1.23 |0.53 |0.82 1.02|1.17|1.33|1.97
Transferg, |10.87]1.02]1.25[1.30(1.45|2.06 (0.57/0.82 1.11|1.11|1.37|2.08
Meta-learning (Ours)|PAML 0.39|0.66/0.81|1.01|{1.03(1.01 [0.41|0.71 1.01|1.02({1.09(1.12

mean angle error w.r.t. prediction horizon
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Course Reminders

Done with meta-learning algorithms!

Lectures | o
Next: unsupervised pre-training
Homeworks Homework 1 due tonight.
Homework 2 released, due Weds 10/25.
Project mentors assignhed: go to their OH with questions.
Project

Project proposal due next Monday 10/23.
(graded lightly, for your benefit)
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