With slides adapted from Sergey Levine, CS285

Variational Inference and Generative Models CS 330

Tutorial session on Thursday 4:30 pm

Course Reminders

Homework 3 due Monday next week.

Be careful Azure usage — turning off machines when you are not using them!

This Week A Bayesian perspective on meta-learning

Today: Approximate Bayesian inference via variational inference

Bayes is back.

Plan for Today

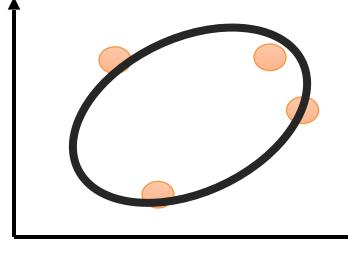
- 1. Latent variable models
- 2. Variational inference
- 3. Amortized variational inference
- 4. Example latent variables models

Goals

- Understand latent variable models in deep learning
- Understand how to use (amortized) variational inference

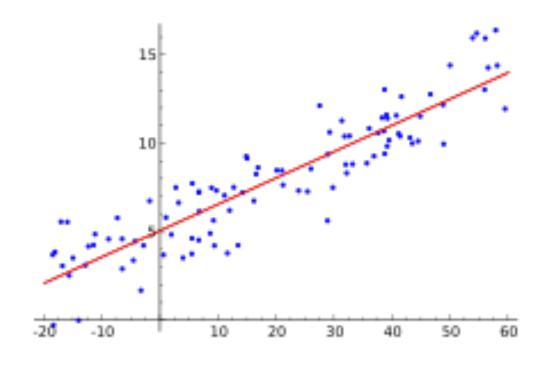
Part of (optional) Homework 4

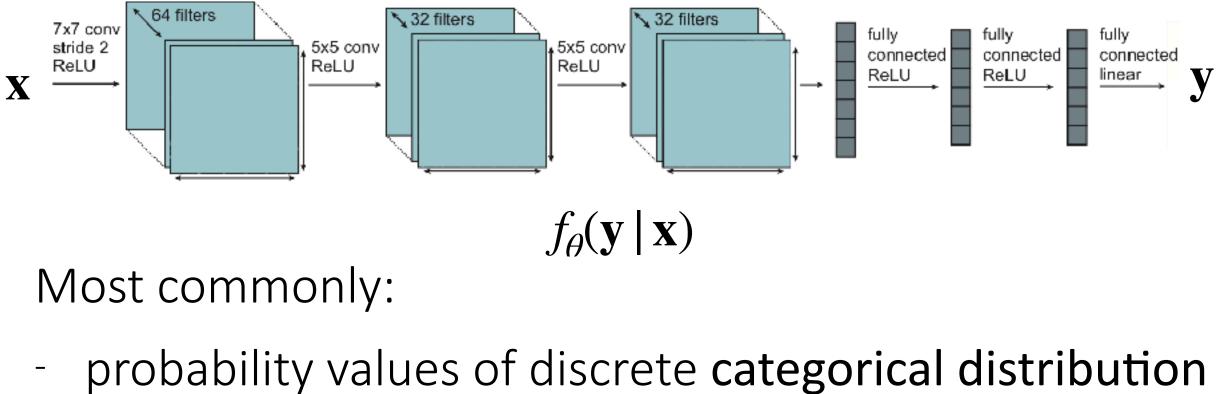
Probabilistic models



p(x)

p(y|x)





- mean and variance of a Gaussian
- But it could be other distributions!

How do we train probabilistic models?

the model: $p_{\theta}(x)$

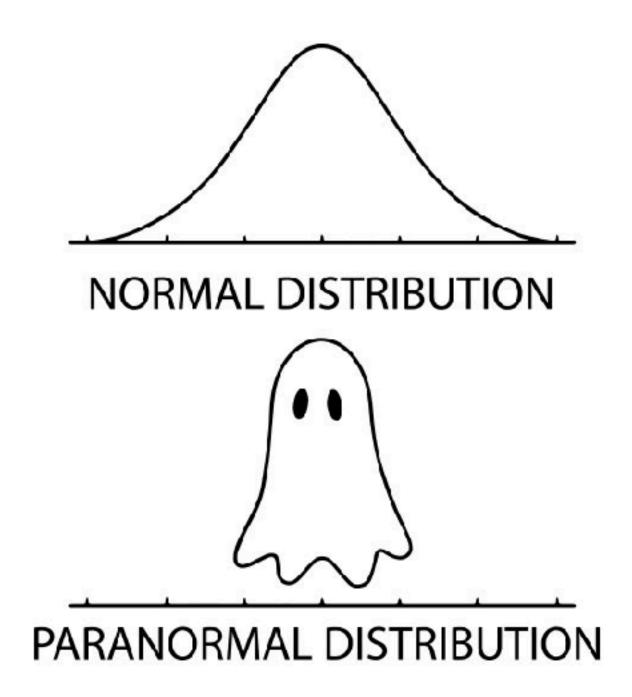
the data: $\mathcal{D} = \{x_1, x_2, x_3, \dots, x_N\}$

maximum likelihood fit:

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i)$$

Easy to evaluate & differentiate for **categorical** or **Gaussian** distributions. i.e. cross-entropy, MSE losses

Goal: Can we model and train more complex distributions?



When might we want more complex distributions?

- generative models of images, text, video, or other data
- represent uncertainty over labels (e.g. ambiguity arising from limited data, partial observability)
- represent uncertainty over functions

"HD Video: Riding a horse in the park at sunrise"

Villegas, Babaeizadeh, Kindermans, Moraldo, Zhang, Saffar, Castro, Kunze, Erhan. Phenaki: Variable Length Video Generation From Open Domain Textual Description. arXiv 2022

Smiling,

✓ Young

✓ Wearing Hat,

× Smiling, ✓ Wearing Hat, ✓ Young

✓ Smiling, ✓ Wearing Hat,

× Young

Meta-learning methods represent a **deterministic** $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$ (i.e. a point estimate)

Why/when is this a problem?

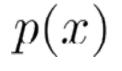
Few-shot learning problems may be *ambiguous*. (even with prior)

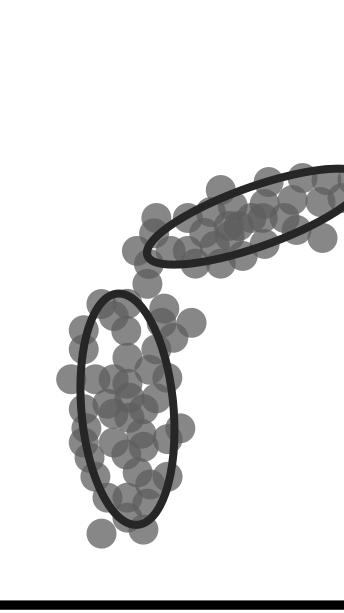
- Can we learn to *generate hypotheses* about the underlying function? i.e. sample from $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$
- **safety-critical** few-shot learning (e.g. medical imaging) Important for:
 - learning to **actively learn**
 - learning to **explore** in meta-RL

Active learning w/ meta-learning: Woodward & Finn '16, Konyushkova et al. '17, Bachman et al. '17

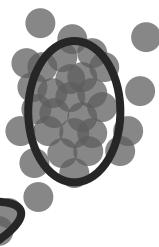
Goal: Can we model and train complex distributions?

Latent variable models: examples





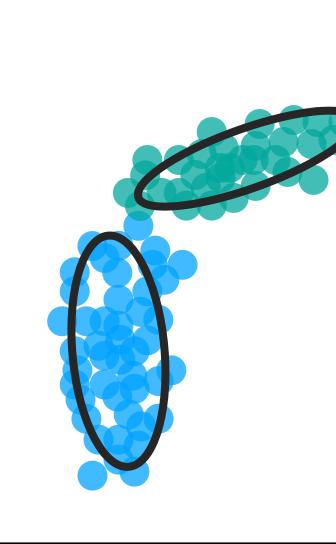
e.g. mixture model



Latent variable models: examples

 $p(x) = \sum p(x|z)p(z)$ zmixture element

e.g. Gaussian



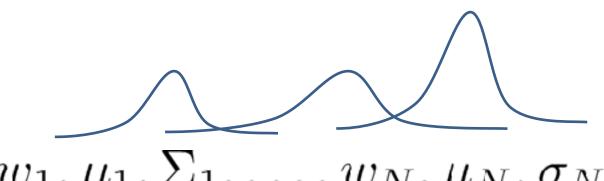
e.g. mixture model

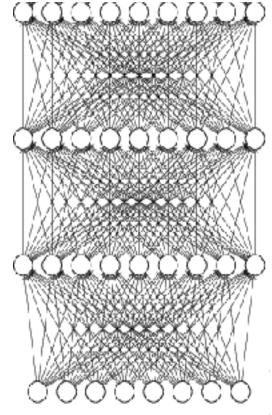
Latent variable models: examples $w_1, \mu_1, \Sigma_1, \ldots, w_N, \mu_N, \sigma_N$ $p(x) = \sum p(x|z)p(z)$ length of paper zIGGGGGGDDD mixture element e.g. Gaussian XXXXXXXX

e.g. mixture model

$$p(y|x) = \sum_{z} p(y|x, z) p(z|x)$$

e.g. mixture density network





ImageNet Classification with Deep Convolutional **Neural Networks**

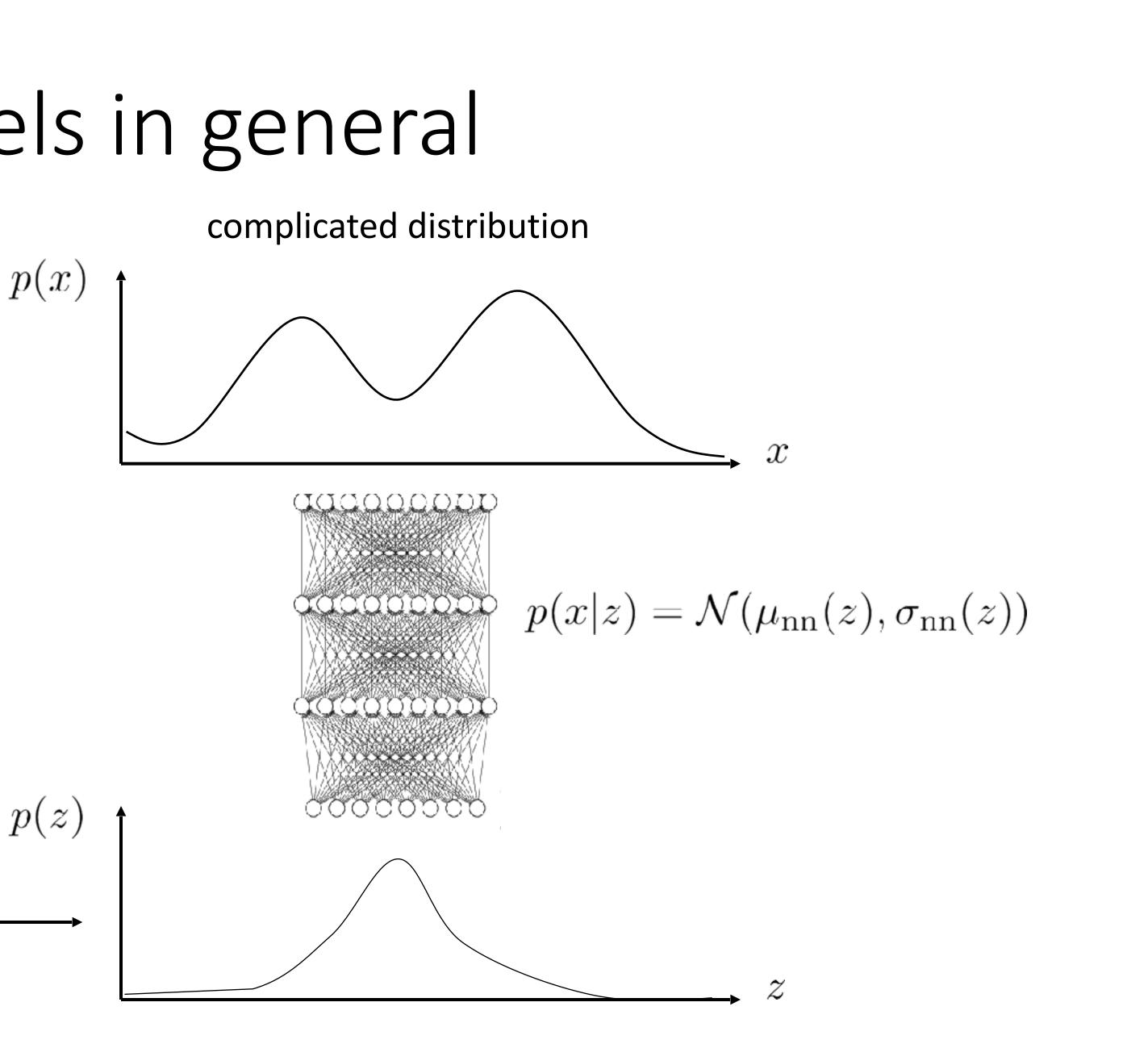
Latent variable models in general

 $p(x) = \int p(x|z)p(z)dz$ "easy" distribution "easy" distribution (e.g., conditional Gaussian) (e.g., Gaussian)

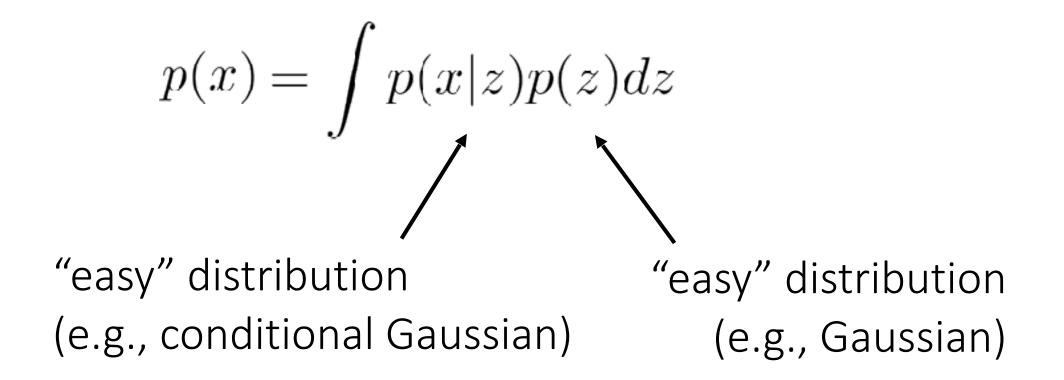
p(z)

"easy" distribution (e.g., Gaussian)

Vertice: Vertice: Set and Set and 12



Latent variable models in general

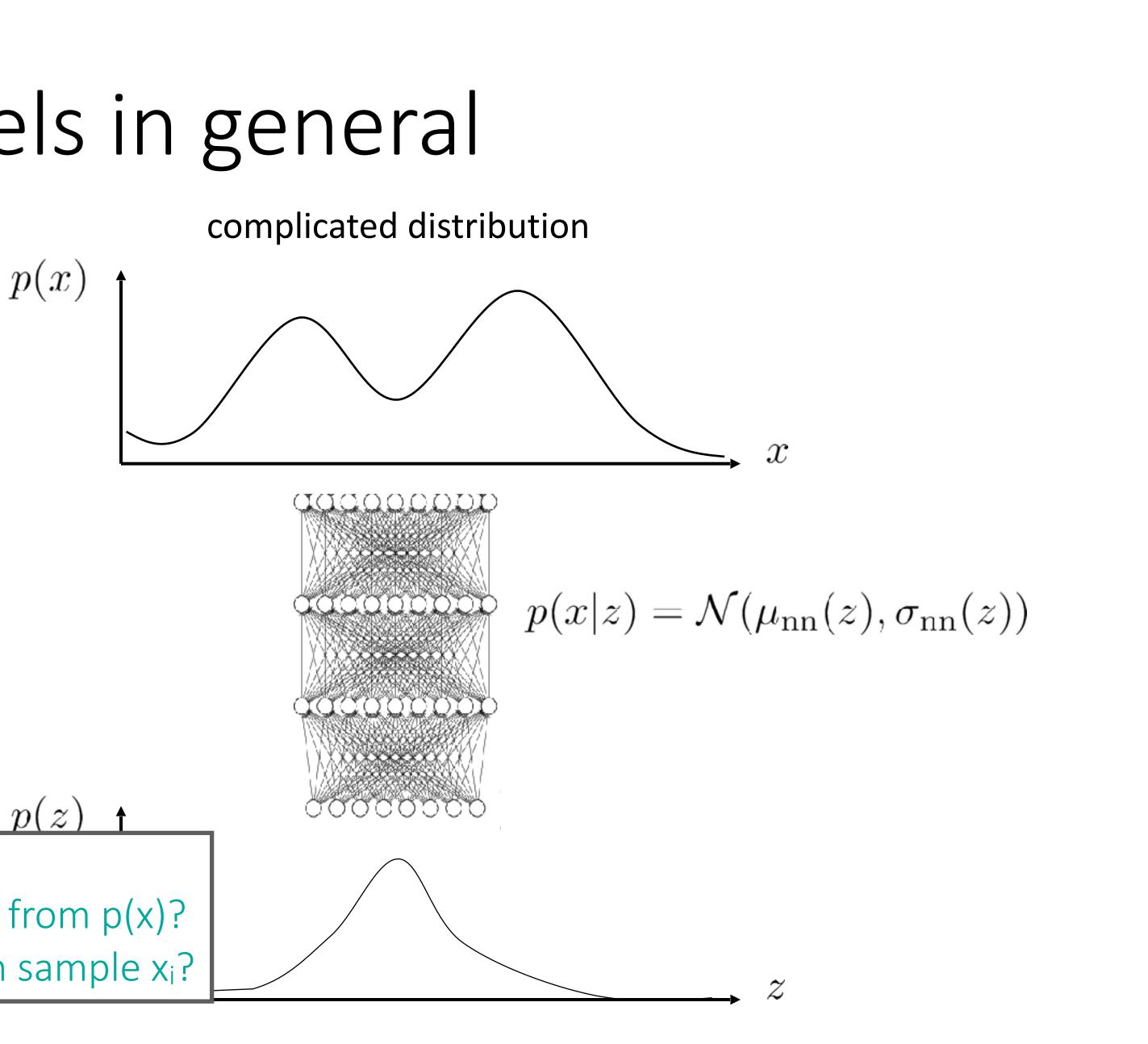


p(z)

Questions:

1. Once trained, how do you generate a sample from p(x)? 2. How do you evaluate the likelihood of a given sample x_i?

> Vertice Key idea: represent complex distribution by composing two simple distributions 13



How do we train latent variable models?

the model: $p_{\theta}(x)$ the data: $\mathcal{D} = \{x_1, x_2, x_3, \dots, x_N\}$ maximum likelihood fit:

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \log p_{\theta}(x_i)$$

$$p(x) = \int p(x|z)p(z)dz$$

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \log\left(\int p_{\theta}(x_i|z) p(z) dz\right)$$

completely intractable

Flavors of Deep Latent Variable Models

Use latent variables:

- generative adversarial networks (GANs)
- variational autoencoders (VAEs)
- normalizing flow models
- diffusion models

All differ in how they are trained.

Do not use latent variables:

- autoregressive models
 - (recall generative pre-training lecture)

Variational Inference

- B. Check how tight the bound is.
- Variational inference -> Amortized variational inference C.
- D. How to **optimize**

A. Formulate a lower bound on the log likelihood objective.

Estimating the log-likelihood

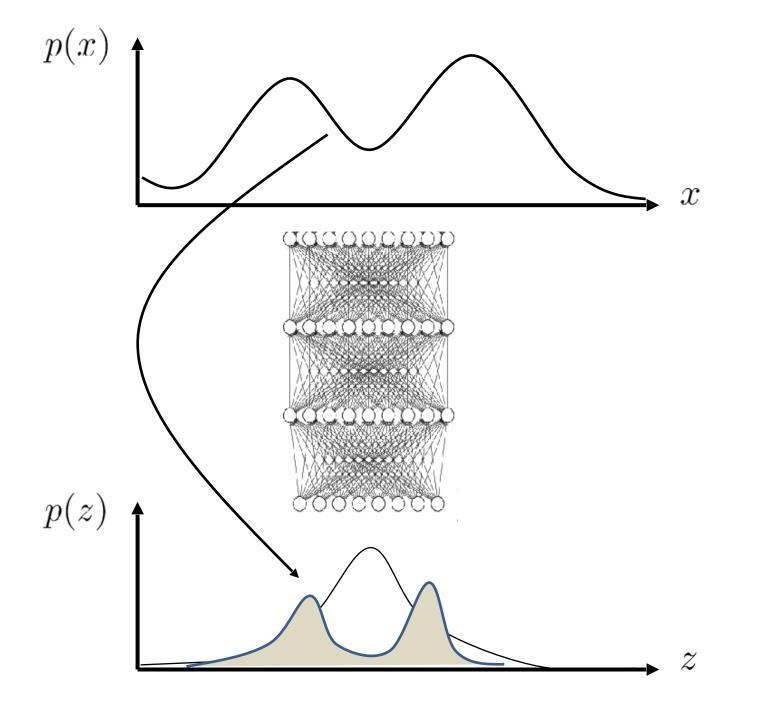
alternative: *expected* log-likelihood:

$$\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} E_{z \sim p(z|x_i)} [\log p_{\theta}(x_i, z)]$$

but... how do we calculate $p(z|x_i)$?

intuition: "guess" most likely z given x_i , and pretend it's the right one

...but there are many possible values of zso use the distribution $p(z|x_i)$

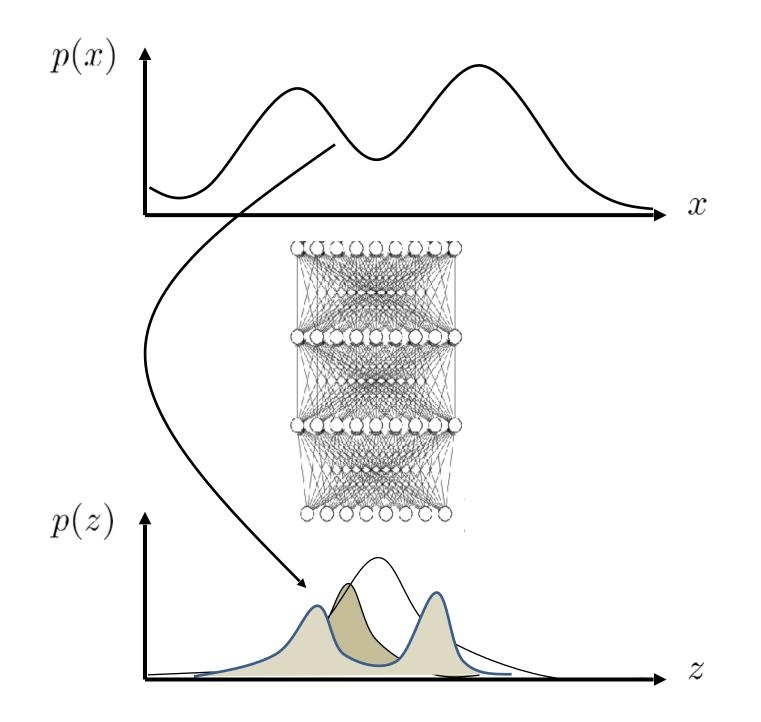


The variational approximation

but... how do we calculate $p(z|x_i)$? can bound $\log p(x_i)$!

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$
$$= \log \int_z p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$
$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)}\right]$$

what if we approximate with $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$



The variational approximation

but... how do we calculate $p(z|x_i)$?

can bound $\log p(x_i)!$

$$\log p(x_i) = \log \int_z p(x_i|z)p(z)$$

$$= \log \int_z p(x_i|z)p(z)\frac{q_i(z)}{q_i(z)}$$

$$= \log E_{z \sim q_i(z)} \left[\frac{p(x_i|z)p(z)}{q_i(z)}\right]$$

$$\geq E_{z \sim q_i(z)} \left[\log \frac{p(x_i|z)p(z)}{q_i(z)}\right] = E_{z \sim q_i(z)}[\log \frac{p(x_i|z)p(z)}{q_i(z)}]$$

Jensen's inequality $\log E[y] \ge E[\log y]$

izing this maximizes $\log p(x_i)$ $\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_{iq_i(z)}[\log q_i(z)])$ "evidence lower bound" (ELBO)

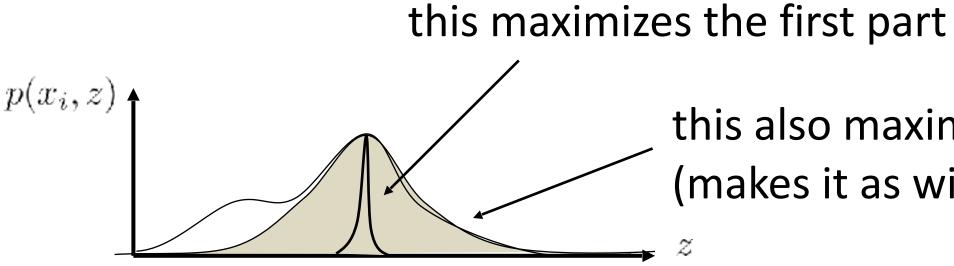
A brief aside...

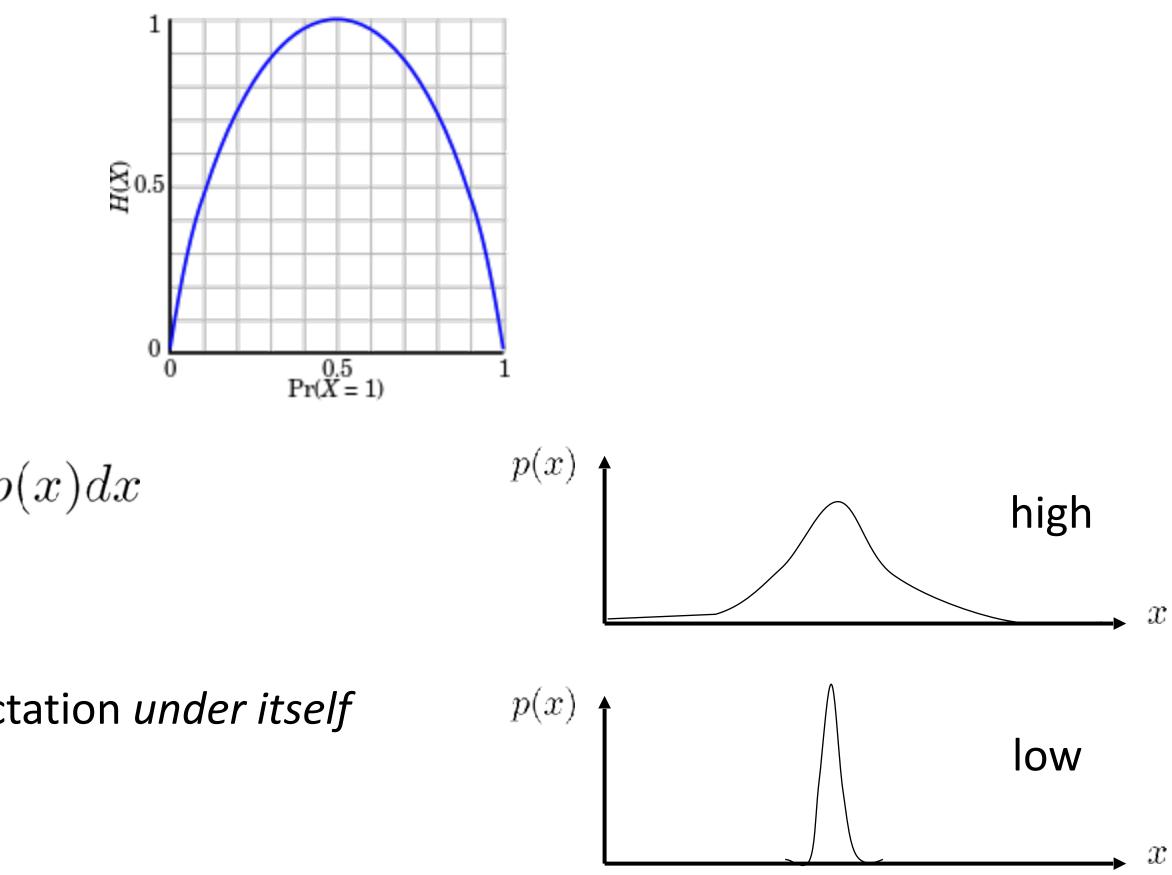
Entropy:

$$\mathcal{H}(p) = -E_{x \sim p(x)}[\log p(x)] = -\int_{x} p(x)\log p(x) \log p(x) \log p(x)$$

Intuition 1: how *random* is the random variable? Intuition 2: how large is the log probability in expectation *under itself*

what do we expect this to do? $E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$





this also maximizes the second part (makes it as wide as possible)

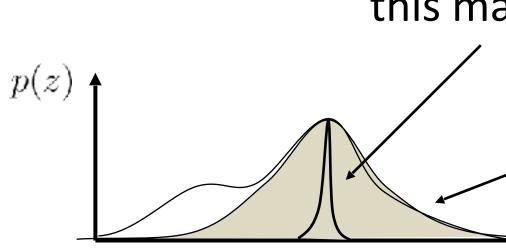
A brief aside...

KL-Divergence:

$$D_{\mathrm{KL}}(q||p) = E_{x \sim q(x)} \left[\log \frac{q(x)}{p(x)} \right] = E_{x \sim q(x)} [\log \frac{q(x)}{p(x)}]$$

e.g. when q=p, KL divergence is 0 Intuition 1: how *different* are two distributions? Intuition 2: how small is the expected log probability of one distribution under another, minus entropy?

why entropy?



 $\log q(x)] - E_{x \sim q(x)}[\log p(x)] = -E_{x \sim q(x)}[\log p(x)] - \mathcal{H}(q)$

this maximizes the first part

this also maximizes the second part (makes it as wide as possible)

How tight is the lower bound?

 $\mathcal{L}_i(p, q_i)$ "evidence lower bound" (ELBO)

 $\log p(x_i) \ge E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$

what makes a good $q_i(z)$? approximate in what sense? why?

 $D_{\mathrm{KL}}(q_i(z) \| p(z|x_i)) = E_{z \sim q_i(z)} \left| \log \frac{q_i(z)}{p(z|x_i)} \right| = E_{z \sim q_i(z)} = E_{z \sim q_i(z)$ $= -E_{z \sim q_i(z)} [\log p(x_i|z) + \log z)$ $= -E_{z \sim q_i(z)} [\log p(x_i|z) + \log p(x_i|z)]$ $= -\mathcal{L}_i(p, q_i) + \log p(x_i)$ $\log p(x_i) = D_{\mathrm{KL}}(q_i(z) \| p(z|x_i)) + \mathcal{L}_i(p, q_i)$ $\log p(x_i) \ge \mathcal{L}_i(p, q_i)$

- intuition: $q_i(z)$ should approximate $p(z|x_i)$ compare in terms of KL-divergence: $D_{\text{KL}}(q_i(z)||p(z|x))$

$$E_{z \sim q_i(z)} \left[\log \frac{q_i(z)p(x_i)}{p(x_i, z)} \right]$$

$$g p(z) + E_{z \sim q_i(z)} [\log q_i(z)] + E_{z \sim q_i(z)} [\log p(x_i)]$$

$$g p(z) - \mathcal{H}(q_i) + \log p(x_i)$$

Note 1: If KL divergence is 0, then bound is tight.

How tight is the lower bound?

 $\mathcal{L}_i(p, q_i)$ "evidence lower bound" (ELBO)

 $\log p(x_i) \ge E_{z \sim q_i(z)}[\log p(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$

what makes a good $q_i(z)$? approximate in what sense? why?

 $D_{\mathrm{KL}}(q_i(z) \| p(z|x_i)) = -\mathcal{L}_i(p, q_i) + \log p(x_i)$ Note 2: Maximizing $L(p, q_i)$ w.r.t. q_i minimizes the KL divergence. $\log p(x_i) = D_{\mathrm{KL}}(q_i(z) \| p(z|x_i)) + \mathcal{L}_i(p, q_i)$ **Note 1:** If KL divergence is 0, then bound is tight. $\log p(x_i) \ge \mathcal{L}_i(p, q_i)$

Optimization object

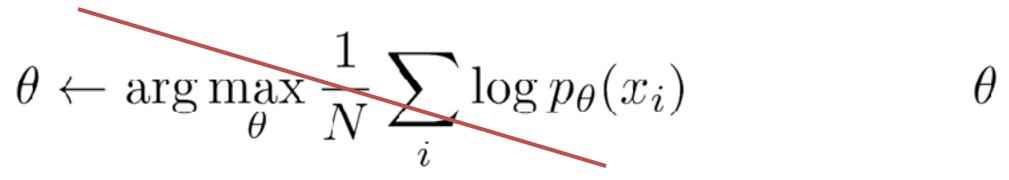
- intuition: $q_i(z)$ should approximate $p(z|x_i)$ compare in terms of KL-divergence: $D_{\text{KL}}(q_i(z)||p(z|x))$

tive:
$$\max_{\theta,q_i} \frac{1}{N} \sum_i \mathcal{L}_i(p_{\theta},q_i)$$

Optimizing the ELBO

 $\mathcal{L}_i(p, q_i)$ "evidence lower bound" (ELBO)

 $\log p(x_i) \ge E_{z \sim q_i(z)}[\log p_\theta(x_i|z) + \log p(z)] + \mathcal{H}(q_i)$



for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(z)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$ update q_i to maximize $\mathcal{L}_i(p, q_i)$

$$\leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i} \mathcal{L}_i(p, q_i)$$

let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

how?

What's the problem?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(z)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$ update q_i to maximize $\mathcal{L}_i(p, q_i)$ Question: How many parameters are there?

in terms of $|\theta|$, |z|, N

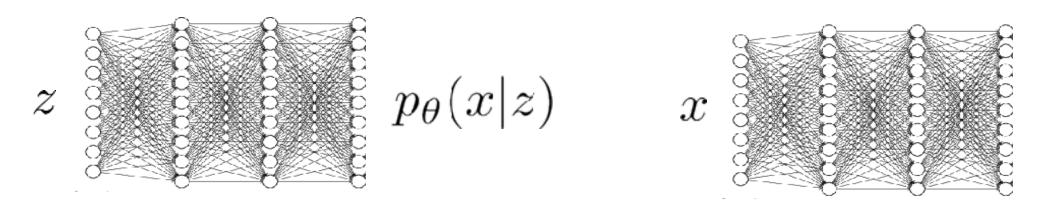
let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

What's the problem?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(z)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$ update q_i to maximize $\mathcal{L}_i(p, q_i)$ Question: How many parameters are there?

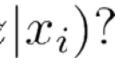
intuition: $q_i(z)$ should approximate $p(z|x_i)$



let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$



Amortized Variational Inference

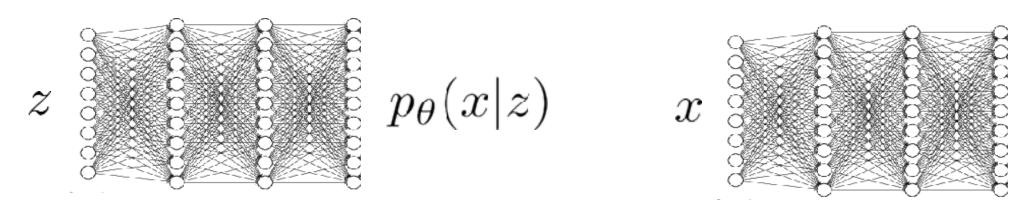
- A. Formulate a lower bound on the log likelihood objective. B. Check how tight the bound is.
- C. Variational inference -> *Amortized* variational inference
- D. How to **optimize**

What's the problem?

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}_i(p, q_i)$: sample $z \sim q_i(z)$ $\nabla_{\theta} \mathcal{L}_i(p, q_i) \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}_i(p, q_i)$ update q_i to maximize $\mathcal{L}_i(p, q_i)$

Question: How many parameters are there? intuition: $q_i(z)$ should approximate $p(z|x_i)$

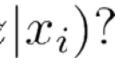


let's say $q_i(z) = \mathcal{N}(\mu_i, \sigma_i)$ use gradient $\nabla_{\mu_i} \mathcal{L}_i(p, q_i)$ and $\nabla_{\sigma_i} \mathcal{L}_i(p, q_i)$ gradient ascent on μ_i, σ_i

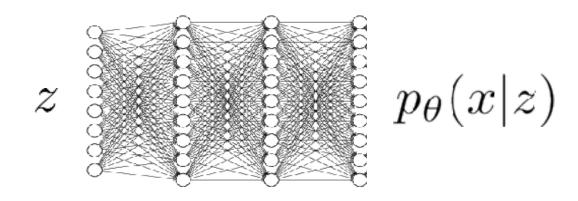
 $|\theta| + (|\mu_i| + |\sigma_i|) \times N$

what if we learn a network $q_i(z) = q(z|x_i) \approx p(z|x_i)$?

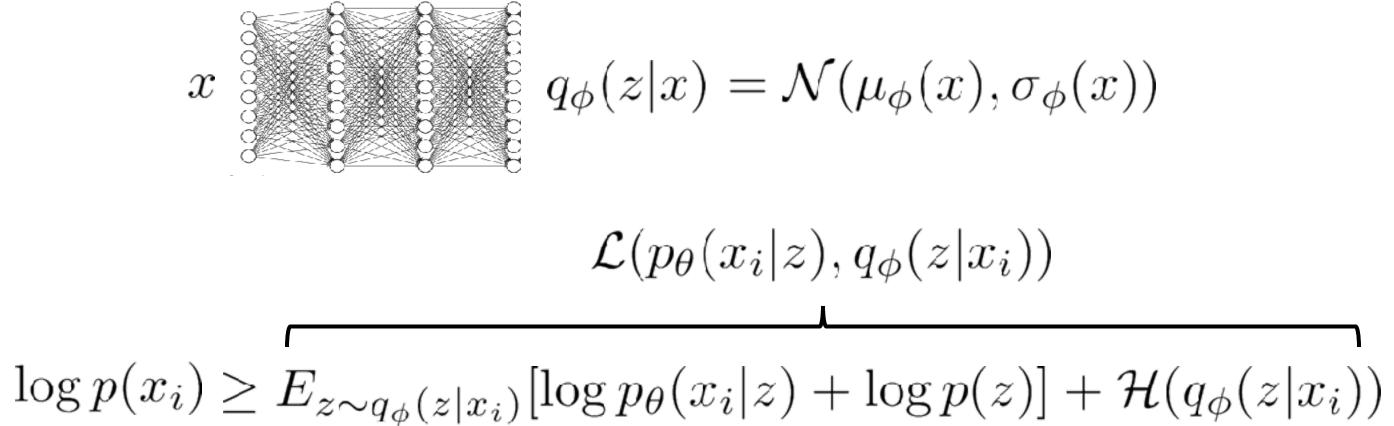
$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$



Amortized variational inference



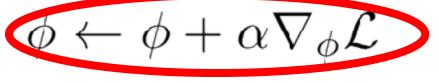
for each x_i (or mini-batch): calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$: sample $z \sim q_{\phi}(z|x_i)$ $\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$ $\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathcal{L}$ how do we calculate this?



Amortized variational inference

for each x_i (or mini-batch):

calculate $\nabla_{\theta} \mathcal{L}(p_{\theta}(x_i|z), q_{\phi}(z|x_i))$: sample $z \sim q_{\phi}(z|x_i)$ $\nabla_{\theta} \mathcal{L} \approx \nabla_{\theta} \log p_{\theta}(x_i | z)$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \mathcal{L}$ $\mathcal{L}_i = E$



$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x))$$

$$E_{z \sim q_{\phi}(z|x_{i})}[\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i}))$$

$$J(\phi) = E_{z \sim q_{\phi}(z|x_{i})}[r(x_{i}, z)]$$

an

The reparameterization trick

$$J(\phi) = E_{z \sim q_{\phi}(z|x_i)}[r(x_i, z)]$$

= $E_{\epsilon \sim \mathcal{N}(0,1)}[r(x_i, \mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i))]$

estimating $\nabla_{\phi} J(\phi)$:

sample $\epsilon_1, \ldots, \epsilon_M$ from $\mathcal{N}(0, 1)$ (a single sample

$$\nabla_{\phi} J(\phi) \approx \frac{1}{M} \sum_{j} \nabla_{\phi} r(x_i, \mu_{\phi}(x_i) + \epsilon_j \sigma_{\phi}(x_i))$$

- + Very simple to implement + Low variance
- Only continuous latent variables

$$\begin{aligned} q_{\phi}(z|x) &= \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \\ z &= \mu_{\phi}(x) + \epsilon \sigma_{\phi}(x) \\ & & \downarrow \\ \\ \text{works well!}) & \epsilon \sim \mathcal{N}(0, 1) \\ & \text{independent of } \phi! \end{aligned}$$

Discrete latent variables:

vector quantization & straight-through estimator ("VQ-VAE") - policy gradients / "REINFORCE"

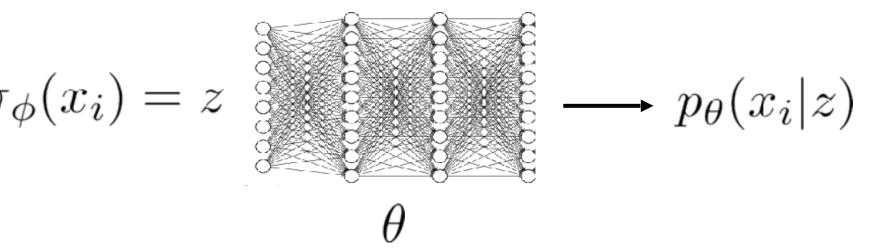
Another way to look at everything...

$$\mathcal{L}_{i} = E_{z \sim q_{\phi}(z|x_{i})} [\log p_{\theta}(x_{i}|z) + \log p(z)] + \mathcal{H}_{z}$$
$$= E_{z \sim q_{\phi}(z|x_{i})} [\log p_{\theta}(x_{i}|z)] + E_{z \sim q_{\phi}(z|x_{i})} [D_{\mathrm{KL}}]$$
$$-D_{\mathrm{KL}}$$

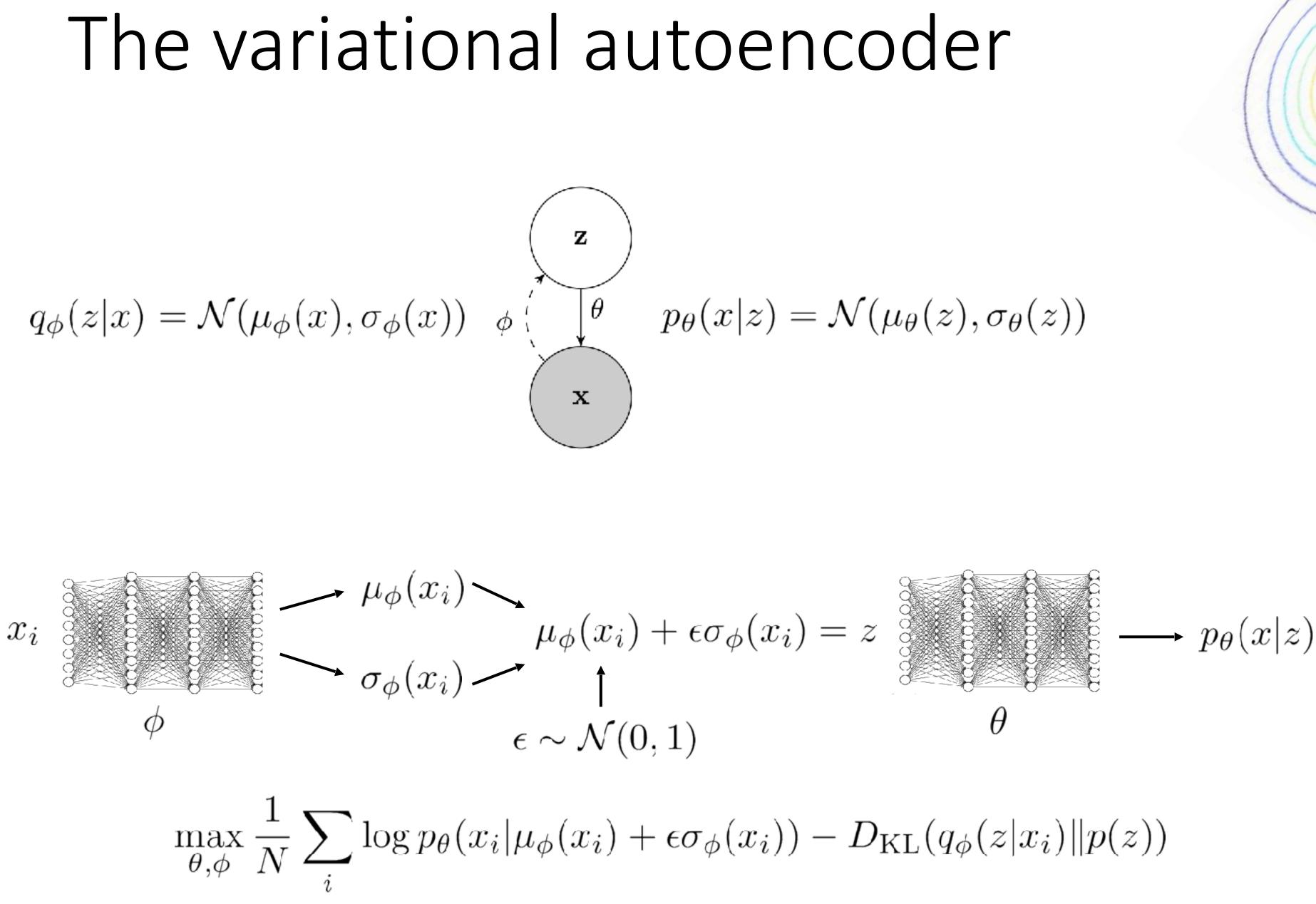
$$= E_{z \sim q_{\phi}(z|x_i)} [\log p_{\theta}(x_i|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x_i|z))]$$
$$= E_{\epsilon \sim \mathcal{N}(0,1)} [\log p_{\theta}(x_i|\mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i))]$$
$$\approx \log p_{\theta}(x_i|\mu_{\phi}(x_i) + \epsilon \sigma_{\phi}(x_i)) - D_{\mathrm{KL}}(q_{\phi}(x_i))]$$

 $\mathcal{H}(q_{\phi}(z|x_{i}))$ $[\log p(z)] + \mathcal{H}(q_{\phi}(z|x_{i})))$ $L(q_{\phi}(z|x_{i})||p(z)) \qquad \text{this has a convenient analytical form} for Gaussians$ $x_{i})||p(z))$ $[-D_{\mathrm{KL}}(q_{\phi}(z|x_{i})||p(z))$

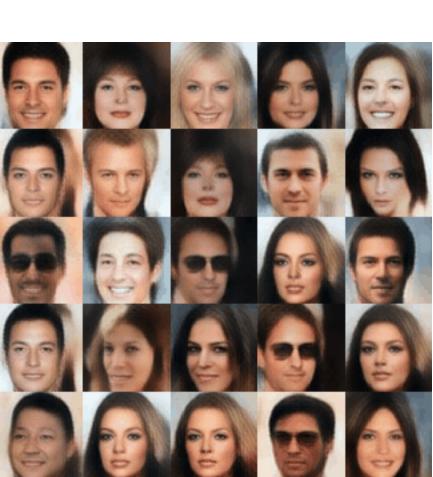
 $(z|x_i)\|p(z))$



Example Models



 \mathcal{Z} $p_{\theta}(x|z)$



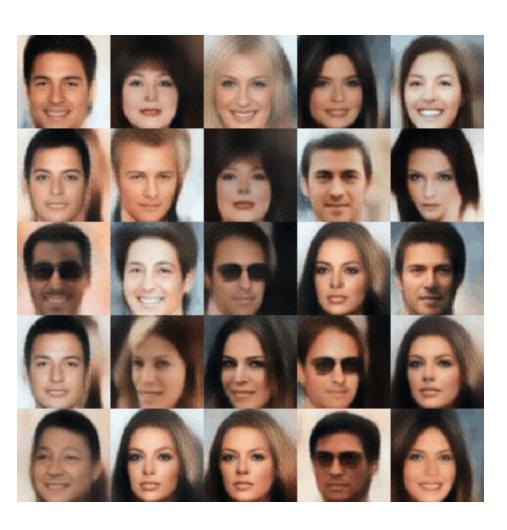
Using the variational autoencoder

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \quad \phi \underbrace{\begin{pmatrix} \mathbf{z} \\ \mathbf{\theta} \\ \mathbf{x} \end{pmatrix}}_{\mathbf{x}} p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \sigma_{\theta}(z))$$

$$p(x) = \int p(x|z)p(z)dz$$

why does this work?

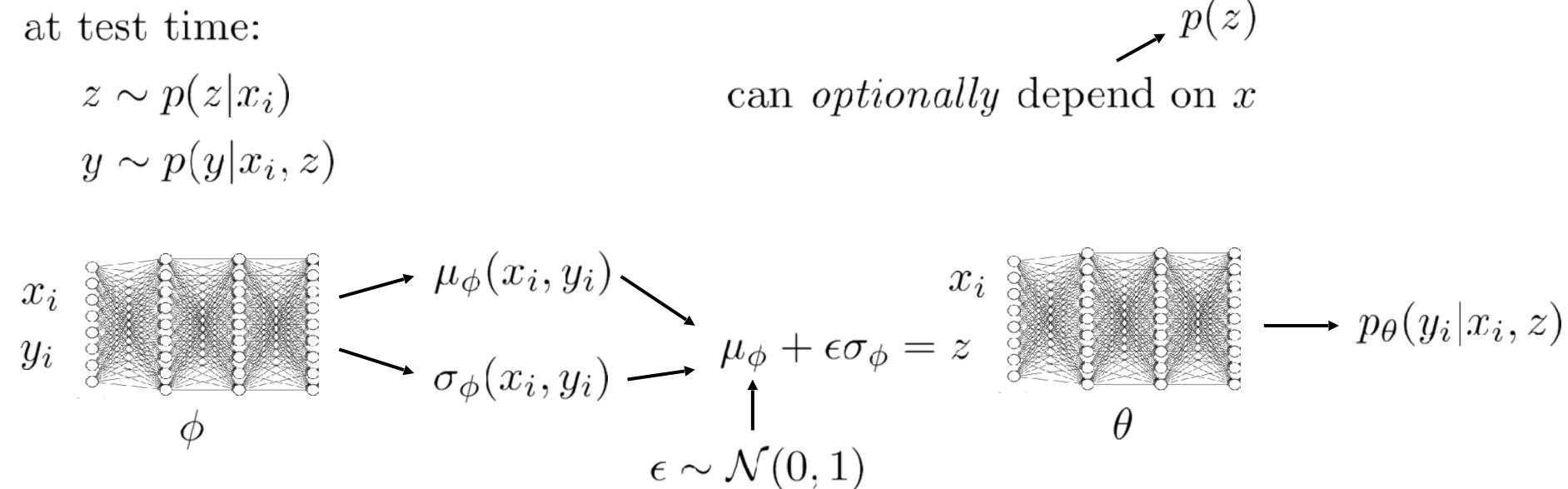
sampling: $z \sim p(z)$ $x \sim p(x|z)$ $\mathcal{L}_i = E_{z \sim q_\phi(z|x_i)} [\log p$ $\mathcal{L}_i = E_{z \sim q_\phi(z|x_i)}[\log p_\theta(x_i|z)] - D_{\mathrm{KL}}(q_\phi(z|x_i)||p(z))$



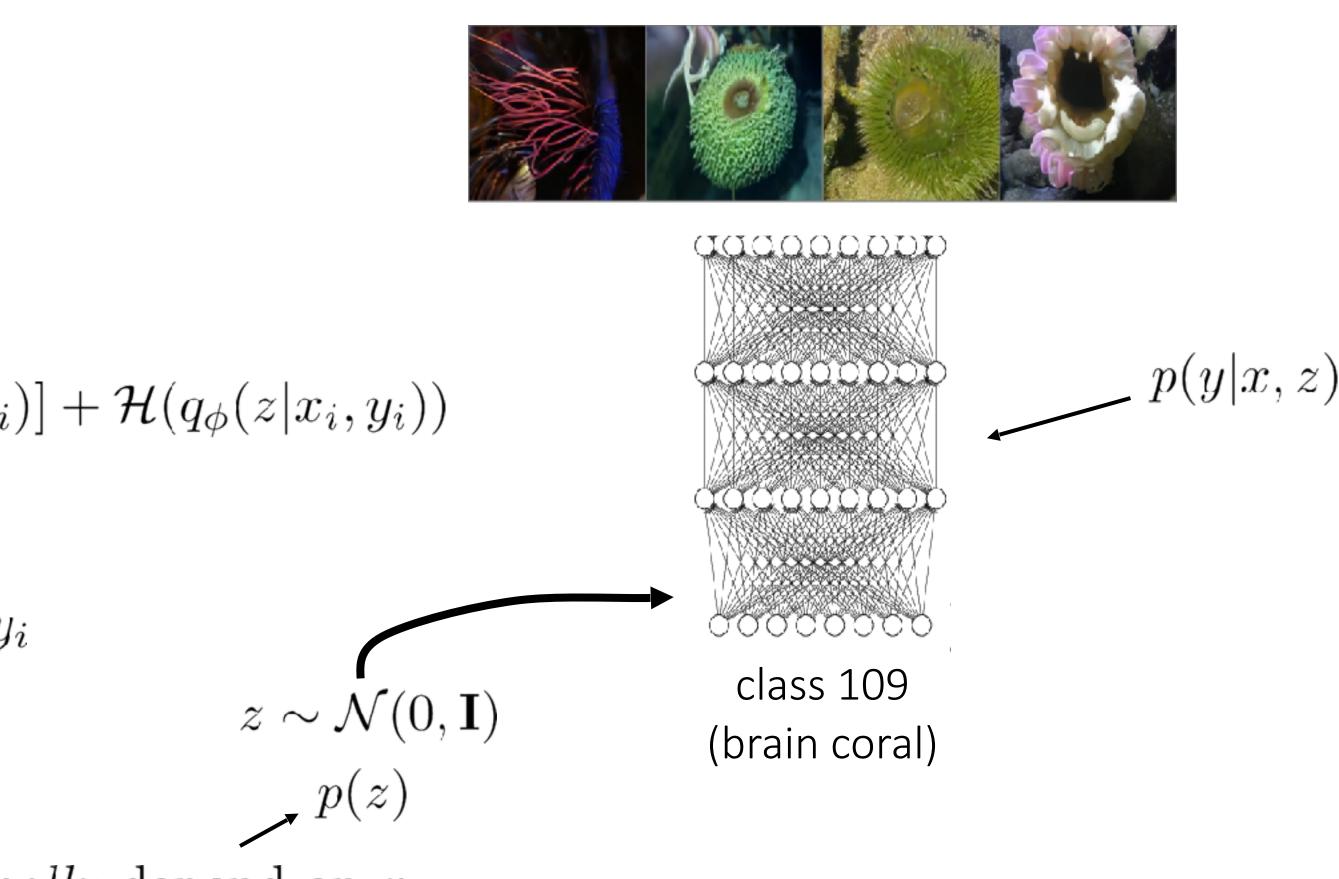
Conditional models

$$\mathcal{L}_i = E_{z \sim q_\phi(z|x_i, y_i)} [\log p_\theta(y_i|x_i, z) + \log p(z|x_i)]$$

just like before, only now generating y_i and *everything* is conditioned on x_i



Images from Razavi, van den Oord, Vinyals. Generating Diverse High-Fidelity Images with VQ-VAE-2. '19



Plan for Today

- 1. Latent variable models
- 2. Variational inference
- 3. Amortized variational inference
- 4. Example latent variables models

Goals

- Understand latent variable models in deep learning
- Understand how to use (amortized) variational inference

Part of (optional) Homework 4

Homework 3 due Monday next week.

Tutorial session on Thursday 4:30 pm

Next time: Bayesian meta-learning

Course Reminders

Be careful Azure usage — turning off machines when you are not using them!