
CS 330 Autumn 2023 Homework 4
Advanced Meta-Learning Topics

Due Wednesday, November 15th, 11:59 PM PT

SUNet ID:
Name:

Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all of
this is my own work.

Overview

This assignment will explore three different advanced meta-learning topics. You will:

1. Answer conceptual questions about whether memorization can occur in a few real-
istic meta-learning scenarios.

2. Derive an objective for a Bayesian meta-learning setting where, in addition to a dataset,
metadata is available for all tasks.

3. Using provided code, run experiments comparing the computational costs of two
different methods for learning initial parameters for a neural network.

The first two problems are purely conceptual and involve no programming at all. For the
last question, you will use provided scripts to run experiments and report the results.

Grading policy: This assignment is optional, and accounts for up to 15% of your grade.
Your grade for this homework will replace the grade of either one prior homework or part
of the final project, whichever choice results in the highest final grade. Attempting this
homework will therefore never harm your grade.

Submission: To submit your homework, submit one PDF report to Gradescope containing
answers to the questions below. The PDF should also include your name and any students
you talked to or collaborated with. Any written responses or plots to the questions below
must appear in your PDF submission.

Code Submission: You are not required to submit code.

Problem 1: Memorization in Meta-Learning (6 Points)

In this problem, we will examine four task distributions in a meta-learning problem setting
to determine whether or not memorization can occur. We consider a meta-learning setting

1



where each task consists of a labeled support set and a query set which the model must
make predictions on. We adopt the notion of complete meta-learning memorization from [1].
A task distribution can suffer from complete memorization if a meta-learning algorithm
can achieve perfect performance for all tasks in the meta-training set, solely based on the
query set while ignoring the support set.

For each of the following meta-learning task settings, answer two questions and explain
your reasoning for each answer. First, state whether or not complete memorization can
occur. Second, state whether the performance on meta-test tasks will be (1) equal or worse
than random guessing (2) worse than meta-train but better than random guessing (3) as
good as meta-train. For each of these two questions, explain your reasoning in one or two
sentences. You are not required to provide a formal mathematical proof.

Note: some of these questions may have multiple plausible answers depending on how
you interpret the scenario and what additional assumptions you make. Explicitly state the
problem setup you are considering, including any additional assumptions. Any reason-
able and logically consistent answer will receive a full grade.

(a) Regression tasks from basis functions. Consider regression tasks where the input
and output domains are X = R and Y = R, respectively. Each task contains 10
train and 10 test datapoints, and is constructed from a finite set of basis functions
φi : R → R for i ∈ {1, . . . , n} that are linearly independent, i.e., there does not exist
w1, . . . , wn such that

∑
iwiφi = 0. Let p(w) be a distribution over Rn. Each task is

constructed by sampling w ∼ p(w) and then using x 7→
∑

iwiφi(x) as the ground-
truth function, where the inputs x are sampled from Unif([0, 1]). (2 points)
Your two-part answer goes here.

(b) Medical image classification. Consider a meta-learning dataset for medical imag-
ing, where the goal is for a model to be able to recognize a novel disease given a small
number of labeled cases. The input is a medical image, such as an X-ray or CT scan.
The output is a binary label y ∈ {0, 1} where 0 represents a sample from a healthy
person and 1 represents a sample with a specific disease. Assume we have a large
dataset of images corresponding toN different diseases, whereN is a large number.
To construct a meta-training task, we randomly sample one of the N diseases, then
sample 5 healthy and 5 diseased images. Meta-testing tasks are constructed similarly
from images corresponding to a set of M held-out diseases. (2 points)
Your two-part answer goes here.

(c) Robotic grasping. Consider a simplified robotic grasping task, where the goal is to
predict the three-dimensional coordinates (∈ R3) of a target object to grasp. The
robot is a movable arm firmly attached to a desk. Many different objects are placed
on the desk, and each task consists of grasping a specific object. The meta-testing
tasks correspond to held-out objects on the desk. The input is an image that shows
everything in the robot’s field of view, including multiple objects on a desk and a
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Figure 1: Plate notation diagram of a simple black-box Bayesian meta-learning model.

computer monitor. The target object for each task is written on a computer monitor,
inside the camera’s field of view. As task-specific adaptation, the robot is allowed
K = 5 attempts to predict the grasp location; i.e. the support set includes 5 grasp
attempts. During each attempt, the robot makes object coordinate predictions and
receives a reward signal based on how close its prediction was to the object. At meta-
test time, we test the robot on novel objects with the monitor turned off, and measure
the average grasping success rate after the initial 5 trials. (2 points)
Your two-part answer goes here.

Problem 2: Bayesian Meta-Learning (4 Points)

In this problem, we consider a Bayesian black-box meta-learning method with observable
task metadata as side information. The novel component in our setup is task metadata
which succinctly summarizes aspects of each task. We assume that m is available for all
tasks.

Our probabilistic model involves two latent variables φ1 ∈ RD and φ2 ∈ RD and an observ-
able task metadata variable m ∈ RD. We assume a prior p(φ1) over the top-level variable,
and that φ2 is sampled according to the conditional distribution p(φ2|φ1,m). The label cor-
responding to an example x is predicted as p(y|φ2, x). We use networks q(φ2|x1:N , y1:N) and
q(φ1|φ2,m) to perform amortized inference of the two hidden variables φ1 and φ2.

(a) Draw a plate notation diagram for this model. Your diagram should include all vari-
ables θ, φ1, φ2, x, y,m with appropriate node colors reflecting whether each node is
hidden or observable, and plates representing the T tasks and N datapoints in each
task. You can hand-draw a diagram or modify the provided tikz diagram for a sim-
pler black-box Bayesian meta-learning model (Figure 1). (1 points)
Your diagram goes here.
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(b) Complete the following derivation of an evidence lower bound (ELBO) for this model,
given the dataset (x1:N , y1:N) and metadata m from each task. Your derivation can
use standard lemmas such as Jensen’s inequality without proof. (3 points)

Hint: introducing new symbols such as X = x1:N and Y = y1:N can simplify your equa-
tions.

Your derivation goes here, and should likely start with something like:

log p(y1:N |x1:N ,m) ≥ . . . (1)

Problem 3: Scaling of Meta-Learning Algorithms (5 Points)

In this problem, you will investigate how the computational costs, both runtime and mem-
ory usage, of two meta-learning algorithms scale with different hyperparameters. We will
consider Model-Agnostic Meta-Learning (MAML) and Evolution Strategies (ES). Under-
standing the computational behavior of these algorithms is important for understanding
their practicality in real-world applications, where computational resources are often a
limiting factor.

Your primary objective is to profile the computational costs of MAML and ES under dif-
ferent hyperparameter configurations. You will be provided with code to run the experi-
ments. We will not be considering the actual performance of the meta-learning methods;
we will focus exclusively on their computational costs. To measure the computational
costs with the provided code, you must run the experiments on a GPU, since we use total
allocated GPU memory as a proxy for memory usage.

We will be using a simple 1D regression task, where the input and output are both scalars.
Each task corresponds to a random sinusoidal function with a random phase, bias, and
amplitude. The dataset for each task consists of 10 training examples and 100 test exam-
ples. The meta-learner is trained on many tasks of this type, and is expected to generalize
to new tasks by learning a good initialization for model parameters which quickly adapts
to new tasks based on the 10 training examples. The provided codebase automatically
generates a random dataset for each task. The model is a fully-connected neural network,
and the default architecture uses 2 hidden layers of 128 hidden units each.

We will be comparing two meta-learning methods: Model-Agnostic Meta-Learning (MAML)
and Evolution Strategies (ES), which we briefly review here. We use either method to
learn the initial parameters of a neural network that is then adapted to a new task using
gradient descent. Denote the initial parameters as θ, the adapted parameters as φ, and the
dataset for a task Ti as Di = (Dtr

i ,Dts
i ). Inner-loop adaptation is performed by taking L
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gradient descent steps on the support data Dtr
i :

φ1 = φ0 − α∇φ0L(φ0,Dtr
i )

φ2 = φ1 − α∇φ1L(φ1,Dtr
i )

...
φL = φL−1 − α∇φL−1L(φL−1,Dtr

i ). (2)

In this assignment, both MAML and ES optimize the initial parameters θ = φ0 by taking
gradient steps with respect to the meta-objective:

J (θ) = ETi∼p(T ),(Dtr
i ,Dts

i )∼Ti
[
L(φL,Dts

i )
]
. (3)

The two methods differ in how they compute the meta-objective gradient∇θJ (θ). MAML
performs backpropagation through all L unrolled inner-loop gradient steps:

∇θJ (θ) = ETi∼p(T ),(Dtr
i ,Dts

i )∼Ti
[
∇θL(φL,Dts

i )
]

= ETi∼p(T ),(Dtr
i ,Dts

i )∼Ti
[
∇θL(φL−1 − α∇φL−1L(φL−1,Dtr

i ),Dts
i )
]

= ETi∼p(T ),(Dtr
i ,Dts

i )∼Ti
[
∇θL(φL−2 − αφL−2 · · ·

]
(4)

In contrast, ES uses a finite-difference estimator:

∇θJ (θ) ≈
1

N

N∑
i=1

J (θ + εδi)− J (θ − εδi)
2ε

δi, (5)

where δi is a random vector that has the same dimension as θ and is sampled from a
standard normal distribution. This sort of finite-difference estimator is commonly used
in evolutionary algorithms; its use for optimizing initial parameters has been explored
in [2]. In the context of this assignment, we are comparing the computational costs of
unrolled backpropagation (MAML) and finite-difference estimation (ES) for the same
optimization problem rather than comparing the performance of the two methods.

We will be comparing the computational costs of MAML and ES while varying three hy-
perparameters:

• Inner steps: the number of gradient descent steps to take on the support set.

• Layers: the number of hidden layers in the model.

• Hidden units: the number of hidden units per layer.

(a) Plots [2 points] Compare the runtime and memory cost of MAML and ES while
varying the number of inner steps, layers, and hidden units. Show results in six plots,
one for each combination of metric (runtime or memory) and experiment (inner
steps, layers, hidden units).
Your plots go here.
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(b) Analysis [3 points] Comment on your plots, and explain the trends you observe.
For which experiment do you see the largest qualitative difference between MAML
and ES, and why do you think this is the case?
Your analysis goes here.
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