Meta-Learning Unsupervised Update Rules

Paper by Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein
Outline

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Experimental Results
Critiques
Unsupervised learning enables representation learning on mountains on unlabeled data for downstream tasks
Unsupervised learning enables representation learning on mountains of unlabeled data for downstream tasks.

Unsupervised Learning Rules

- **VAE**: Severe overfitting to training space.
- **GANs**: Great for images, weak on discrete data (ex. text).
- **Both**: Learning rule not unsupervised (ex. surrogate loss).
Motivation

Unsupervised learning enables representation learning on mountains of unlabeled data for downstream tasks

Unsupervised Learning Rules

- **VAE**: Severe overfitting to training space.
- **GANs**: Great for images, weak on discrete data (ex. text).
- **Both**: Learning rule not unsupervised (ex. surrogate loss).

Question: Can we meta-learn an unsupervised learning rule?
Semi-Supervised Few-Shot Classification

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques
Semi-Supervised Few-Shot Classification

Can we meta-learn this unsupervised learning rule?

Unlabeled train

Apply unsupervised rule to tune encoder

Apply encoder to get compact vector

Fit Model

Labeled train

Motivation

Problem Breakdown

Method Overview

Meta-Learning Setup

Inner Loop

Outer Loop

Results

Critiques
Learning the Learning Rule

Backpropagation:
\[
\begin{align*}
W_{ij}[l] &\to W_{ij}[l] - \lambda \frac{\partial L(W_{ij}[l], b[l])}{\partial W_{ij}} \\
b[l] &\to b[l] - \lambda \frac{\partial L(W_{ij}[l], b[l])}{\partial b[l]}
\end{align*}
\]

Unsupervised Update: \[
\Delta W = f(\theta, h^{[l-1]})
\]
Method Overview

Outer loop
- Optimize meta-objective:

\[
\theta^* = \arg \min_{\theta} E_{task}[\sum_t \text{MetaObjective}(\phi_t)]
\]

Inner loop
- Learn encoder using unsupervised update rule.
Meta-Learning Setup

Outer Loop / Meta-training

- Compute MetaObjective
 - Labeled data
- Update UnsupervisedUpdate with gradient descent
- Update base model with UnsupervisedUpdate
- Unlabeled data

Inner Loop

- Base model
Meta-Learning Setup

Inner loop applies an unsupervised learning alg. on unlabeled data
Meta-Learning Setup

Inner loop applies an unsupervised learning alg. on unlabeled data

Outer loop evaluates unsupervised learning alg. using labeled data
Inner Loop

Question: Given a base model, $g(x; \phi)$, which encodes inputs into compact vectors, how do we learn its parameters ϕ to give useful features?
Inner Loop

Question: Given a base model, $g(x; \phi)$, which encodes inputs into compact vectors, how do we learn its parameters ϕ to give useful features?

Idea: What if we use another neural network to generate a neuron-specific error signal?

Then we can learn its parameters θ (the meta-parameters) to produce useful error signals
Inner Loop: Forward Pass

1) Take an input
2) Generate intermediate activations
3) Produce a feature representation
Inner Loop: Generate Error Signal

1) Input each layer’s activation through an MLP

2) Output error vector
Inner Loop: Backward Pass

1) Initialize top-level error with output of MLP
2) Backprop the error
3) Linearly combine output from MLP with backpropagated error
Inner Loop: Update ϕ

ϕ consists of all base model parameters W^i, V^i, and b^i

Updates like ΔW^i, ΔV^i are linear* functions of local error quantities h^{i-1} and h^i

*There are also nonlinear normalizations within this function
Inner Loop: Key Points

- Error generating network replicates the mechanics of backprop for unsupervised learning.
- An iterative updates tune ϕ for some higher-level objective.
- Outer loop sets objective by modifying the error generating function.
Inner Loop: Key Points

- Error generating network replicates the mechanics of backprop for unsupervised learning
Inner Loop: Key Points

- Error generating network replicates the mechanics of backprop for unsupervised learning

- An iterative updates tune ϕ for some higher-level objective
Inner Loop: Key Points

- Error generating network replicates the mechanics of backprop for unsupervised learning

- An iterative updates tune ϕ for some higher-level objective

- Outer loop sets objective by modifying the error generating function
Outer Loop

Motivation
Problem Breakdown
Method Overview
Meta-Learning Setup
Inner Loop
Outer Loop
Results
Critiques
Outer Loop: Compute MetaObjective

Unlabeled support

Apply Unsupervised Rule θ to tune Encoder

Labeled support

Apply encoder

Fit Linear Model

Evaluate Model

MS Error

Labeled query

Motivation

Problem Breakdown

Method Overview

Meta-Learning Setup

Inner Loop

Outer Loop

Results

Critiques
Outer Loop: Compute MetaObjective

Unlabeled support

Applying Unsupervised Rule \(\theta \) to tune Encoder

Labeled support

Apply encoder

Fit Linear Model

Evaluate Model

Labeled query

MS Error

Motivation

Problem Breakdown

Method Overview

Meta-Learning Setup

Inner Loop

Outer Loop

Results

Critiques
Outer Loop: Compute MetaObjective

Unlabeled support

Labeled support

Labeled query

Apply encoder

Apply Unsupervised Rule θ to tune Encoder

Backprop all the way back to θ

Fit Linear Model

Evaluate Model

MS Error
Outer Loop: Compute MetaObjective

Unlabeled support: x_1, x_2, x_3, x_4, x_5

Apply Unsupervised Rule θ to tune Encoder

Labeled support: x_1, x_2, x_3, x_4

Apply encoder

Labeled query: x_1^*, x_2^*

Fit Linear Model

Evaluate Model

MS Error

Backprop all the way back to θ

Truncated backprop
Results

Training Data: CIFAR10 & Imagenet.

- Generalization over datasets.
- Generalization over domains
- Generalization over network architectures
Results: Generalization over datasets

What’s going on?
- Evaluation of unsupervised learning rule on different datasets
- Comparison to other methods.
Results: Generalization over Domains

What’s going on?
Evaluation of unsupervised learning rule on 2-way text classification.
30h vs 200h of meta-training.
Results: Generalization over Networks

What's going on?
Evaluation of unsupervised learning rule on different network architectures.
Critiques: Limitations

Computationally expensive. 8 days, 512 workers.

Many, many tricks.

Lack of ablative analysis.

Reproducibility. # labeled examples? # unlabeled?
Critiques: Suggestions

Ablative analysis

Implicit MAML?

Investigate generalization to CNN and attention-based models.

Better way to encode learning rule? Is this architecture expressive?