Lifelong Learning

CS 330
Logistics

Project milestone due Wednesday.

Two guest lectures next week!

Jeff Clune Sergey Levine
Plan for Today

The lifelong learning **problem statement**

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**
A brief review of problem statements.

Multi-Task Learning
Learn to solve a set of tasks.

Meta-Learning
Given i.i.d. task distribution, learn a new task efficiently.
In contrast, many real world settings look like:

Our agents may not be given a large batch of data/tasks right off the bat!

Some examples:
- a **student** learning concepts in school
- a deployed **image classification system** learning from a stream of images from users
- a **robot** acquiring an increasingly large set of skills in different environments
- a **virtual assistant** learning to help different users with different tasks at different points in time
- a **doctor’s assistant** aiding in medical decision-making
Some Terminology

Sequential learning settings

online learning, lifelong learning, continual learning, incremental learning, streaming data

distinct from sequence data and sequential decision-making
What is the lifelong learning *problem statement*?

Exercise:

1. Pick an example setting.

2. Discuss problem statement with your neighbor:

 (a) how would you set-up an experiment to develop & test your algorithm?

 (b) what are desirable/required properties of the algorithm?

 (c) how do you evaluate such a system?

Example settings:

A. a **student** learning concepts in school

B. a deployed **image classification system** learning from a stream of images from users

C. a **robot** acquiring an increasingly large set of skills in different environments

D. a **virtual assistant** learning to help different users with different tasks at different points in time

E. a **doctor’s assistant** aiding in medical decision-making
What is the lifelong learning problem statement?

Problem variations:
- task/data order: i.i.d. vs. predictable vs. curriculum vs. adversarial
- discrete task boundaries vs. continuous shifts (vs. both)
- known task boundaries/shifts vs. unknown

Some considerations:
- model performance
- data efficiency
- computational resources
- memory
- others: privacy, interpretability, fairness, test time compute & memory

Substantial variety in problem statement!
What is the lifelong learning problem statement?

General [supervised] online learning problem:

for t = 1, ..., n

 observe \(x_t \)
 predict \(\hat{y}_t \)
 observe label \(y_t \)

i.i.d. setting: \(x_t \sim p(x), y_t \sim p(y|x) \)

\(p \) not a function of \(t \)

otherwise: \(x_t \sim p_t(x), y_t \sim p_t(y|x) \)

streaming setting: cannot store \((x_t, y_t) \)

- lack of memory
- lack of computational resources
- privacy considerations
- want to study neural memory mechanisms

true in some cases, but not in many cases!

- recall: replay buffers

<-- if observable task boundaries: observe \(x_t, z_t \)
What do you want from your lifelong learning algorithm?

minimal regret (that grows slowly with t)

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

$$\text{Regret}_T := \sum_{1}^{T} L_t(\theta_t) - \min_{\theta} \sum_{1}^{T} L_t(\theta)$$

(cannot be evaluated in practice, useful for analysis)

Regret that grows linearly in t is trivial. Why?
What do you want from your lifelong learning algorithm?

positive & negative transfer

positive **forward transfer**: previous tasks cause you to do better on future tasks compared to learning future tasks from scratch

positive **backward transfer**: current tasks cause you to do better on previous tasks compared to learning past tasks from scratch

positive -> negative : better -> worse
Plan for Today

The lifelong learning **problem statement**

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**
Approaches

Store all the data you’ve seen so far, and train on it. → *follow the leader* algorithm

+ will achieve very strong performance
- computation intensive → *Continuous fine-tuning* can help.
- can be memory intensive [depends on the application]

Take a gradient step on the datapoint you observe. → *stochastic gradient descent*

+ computationally cheap
+ requires 0 memory
- subject to negative backward transfer “forgetting”
 sometimes referred to as catastrophic forgetting
- slow learning

Can we do better?
Plan for Today

The lifelong learning **problem statement**

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**
Case Study: Can we use meta-learning to accelerate online learning?
Recall: model-based meta-RL

- gradual terrain change
- motor malfunction

online adaptation = few-shot learning

tasks are **temporal slices** of experience
gradual terrain change

motor malfunction

k time steps not sufficient to learn entirely new terrain

Continue to run SGD?

+ will be fast with MAML initialization
- what if ice goes away? (subject to forgetting)

Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning. ICLR ’19
Online inference problem: infer latent “task” variable at each time step

Mixture of neural networks over task variable \(T \), adapted continually: \(\theta_t(T_i) \)

Alternate between:

E-step: Estimate latent “task” variable at each time step \(P(T_t) \) given data \(x_t, y_t \)

\[
P(T_t = T_i | x_t, y_t) \propto p_{\theta(T_i)}(y_t | x_t, T_t = T_i) P(T_t = T_i)
\]

likelihood of the data under task \(T_i \).

prior

M-step: Update mixture of network parameters

\[
\theta_{t+1}(T_i) = \theta_t(T_i) - \beta P(T_t = T_i | x_t, y_t) \nabla_{\theta_t(T_i)} \log p_{\theta_t(T_i)}(y_t | x_t) \quad \forall T_i
\]

gradient step on each mixture element, weighted by task probability

Note: If neural net is random initialized, this procedure would be too slow.

Does it work?

Crawler with crippled legs

Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning. ICLR '19
Does it work?

Latent task distribution during online learning

Crawler with crippled legs

Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning. ICLR '19
Case Study: Can we modify vanilla SGD to avoid negative backward transfer? (from scratch)
Idea:

1. store small amount of data per task in memory
2. when making updates for new tasks, ensure that they don’t unlearn previous tasks

How do we accomplish (2)?

learning predictor \(y_t = f_\theta(x_t, z_t) \)

memory: \(M_k \) for task \(z_k \)

For \(t = 0, ..., T \)

minimize \(\mathcal{L}(f_\theta(\cdot, z_t), (x_t, y_t)) \)

subject to \(\mathcal{L}(f_\theta, M_k) \leq \mathcal{L}(f_{\theta-1}, M_k) \) for all \(z_k < z_t \) (i.e. s.t. loss on previous tasks doesn’t get worse)

Assume local linearity:

\[\langle g_t, g_k \rangle := \left\langle \frac{\partial \mathcal{L}(f_\theta, (x_t, y_t))}{\partial \theta}, \frac{\partial \mathcal{L}(f_\theta, M_k)}{\partial \theta} \right\rangle \geq 0 \] for all \(z_k < z_t \)

Can formulate & solve as a QP.
Experiments

Problems:
- MNIST permutations
- MNIST rotations
- CIFAR-100 (5 new classes/task)

BWT: backward transfer,
FWT: forward transfer

Total memory size:
5012 examples

If we take a step back... do these experimental domains make sense?
Can we meta-learn how to avoid negative backward transfer?

Plan for Today

The lifelong learning **problem statement**

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**
What might be wrong with the online learning formulation?

Online Learning
(Hannan ’57, Zinkevich ’03)

Perform sequence of tasks while minimizing static regret.

More realistically:

perform perform perform perform perform perform perform perform

zero-shot performance

time

learn learn learn learn learn learn learn learn

slow learning rapid learning

time
Online Learning
(Hannan ’57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.

Online Meta-Learning
Efficiently learn a sequence of tasks from a non-stationary distribution.

What might be wrong with the online learning formulation?

Primarily a difference in evaluation, rather than the data stream.

(Finn*, Rajeswaran*, Kakade, Levine ICML ’18)
The Online Meta-Learning Setting

for task $t = 1, ..., n$

observe \mathcal{D}_t^{tr}

use update procedure $\Phi(\theta_t, \mathcal{D}_t^{tr})$ to produce parameters ϕ_t

observe x_t

predict $\hat{y}_t = f_{\phi_t}(x_t)$ \hspace{1cm} Standard online learning setting

observe label y_t

\textbf{Goal:} Learning algorithm with sub-linear

$$\text{Regret}_T := \sum_{t=1}^{T} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta))$$

\hspace{1cm} Loss of algorithm \hspace{4cm} Loss of best algorithm in hindsight

(Finn*, Rajeswaran*, Kakade, Levine ICML ’18)
Can we apply meta-learning in lifelong learning settings?

Recall the follow the leader (FTL) algorithm:

Store all the data you’ve seen so far, and train on it.
Deploy model on current task.

Follow the meta-leader (FTML) algorithm:

Store all the data you’ve seen so far, and meta-train on it.
Run update procedure on the current task.

What meta-learning algorithms are well-suited for FTML?

What if $p_t(\mathcal{T})$ is non-stationary?
Experiments

Experiment with **sequences of tasks**:
- Colored, rotated, scaled **MNIST**
- **3D object pose prediction**
- **CIFAR-100** classification
Experiments

Comparisons:
- **TOE** (train on everything): train on all data so far
- **FTL** (follow the leader): train on all data so far, fine-tune on current task
- **From Scratch**: train from scratch on each task

Follow The Meta-Leader learns each new task faster & with greater proficiency, approaches **few-shot learning** regime.
Takeaways

Many flavors of lifelong learning, all under the same name.

Defining the problem statement is often the hardest part

Meta-learning can be viewed as a slice of the lifelong learning problem.

A very open area of research.
Reminders

Project milestone due **Wednesday**.

Two **guest lectures** next week!

Jeff Clune Sergey Levine