Optimization-Based Meta-Learning

CS 330
Course Reminders

HW1 due next Weds (10/6).

Some project idea suggestions to be posted today.
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Goals for by the end of lecture:
- Basics of optimization-based meta-learning techniques (& how to implement)
- Trade-offs between black-box and optimization-based meta-learning
Problem Settings Recap

Multi-Task Learning
Solve multiple tasks $\mathcal{T}_1, \ldots, \mathcal{T}_T$ at once.

$$\min_{\theta} \sum_{i=1}^{T} \mathcal{L}_i(\theta, \mathcal{D}_i)$$

Transfer Learning
Solve target task \mathcal{T}_b after solving source task \mathcal{T}_a by transferring knowledge learned from \mathcal{T}_a

The Meta-Learning Problem
Given data from $\mathcal{T}_1, \ldots, \mathcal{T}_n$, quickly solve new task \mathcal{T}_{test}

In transfer learning and meta-learning:
generally impractical to access prior tasks

In all settings: tasks must share structure.
Example Meta-Learning Problem

5-way, 1-shot image classification (MiniImagenet)

Given 1 example of 5 classes:

Classify new examples

Can replace image classification with: regression, language generation, skill learning, any ML problem
Black-Box Adaptation

How else can we represent $\phi_i = f_{\theta}(D^{tr}_i)$?

What if we treat it as an **optimization** procedure?

+ expressive

- challenging optimization problem

$$y^{ts} = f_{\text{black-box}}(D^{tr}_i, x^{ts})$$
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

} Part of Homework 2!
Black-Box Adaptation Optimization-Based Adaptation

\[f_\theta \]

\[\phi_i \]

\[x_{ts} \]

\[y_{ts} \]

\[\mathcal{D}_i^{tr} \]
Black-Box Adaptation Optimization-Based Adaptation

Key idea: embed optimization inside the inner learning process

Why might this make sense?
Recall: Fine-tuning

Fine-tuning

\[\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{tr}) \]

- pre-trained parameters
- training data for new task
- (typically for many gradient steps)

Universal Language Model Fine-Tuning for Text Classification. Howard, Ruder. ‘18

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

Fine-tuning less effective with very small datasets.
Optimization-Based Adaptation

Meta-learning \(\min \theta \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{i}^{tr}), D_{i}^{ts}) \)

Fine-tuning \(\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{i}^{tr}) \)

Key idea: Over many tasks, learn parameter vector \(\theta \) that transfers via fine-tuning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017
Optimization-Based Adaptation

\[\min_{\theta} \sum_{\text{task } i} \mathcal{L}(\theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_{i}^{tr}), D_{i}^{ts}) \]

\(\theta \) parameter vector being meta-learned

\(\phi_{i}^{*} \) optimal parameter vector for task i

Model-Agnostic Meta-Learning

Finn, Abbeel, Levine. Model-Agnostic Meta-Learning. ICML 2017
Optimization-Based Adaptation

Key idea: Acquire ϕ_i through optimization.

General Algorithm:

1. Sample task \mathcal{T}_i (or mini batch of tasks)
2. Sample disjoint datasets $\mathcal{D}^{\text{tr}}_i, \mathcal{D}^{\text{test}}_i$ from \mathcal{D}_i
3. Compute $\phi_i \leftarrow f_\theta(\mathcal{D}^{\text{tr}}_i)$, Optimize $\phi_i \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}(\theta, \mathcal{D}^{\text{tr}}_i)$
4. Update θ using $\nabla_\theta \mathcal{L}(\phi_i, \mathcal{D}^{\text{test}}_i)$

Black box approach Optimization-based approach

Do we get higher-order derivatives with more inner gradient steps?

Do we need to compute the full Hessian? 😱

-> whiteboard
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- **Compare:** optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

} Part of Homework 2!
Optimization vs. Black-Box Adaptation

Black-box adaptation

general form: \(y^{ts} = f_{\text{black-box}}(D_i^{tr}, x^{ts}) \)

Model-agnostic meta-learning

\[
y^{ts} = f_{\text{MAML}}(D_i^{tr}, x^{ts}) \\
= f_{\phi_i}(x^{ts})
\]

where \(\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_i^{tr}) \)

MAML can be viewed as **computation graph**, with embedded gradient operator

Note: Can mix & match components of computation graph

Learn initialization but replace gradient update with learned network

\[
\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, D_i^{tr})
\]

Ravi & Larochelle ICLR ’17

(actually precedes MAML)

This **computation graph view** of meta-learning will come back again!
Optimization vs. Black-Box Adaptation

How well can learning procedures generalize to similar, but extrapolated tasks?

Omniglot image classification

Does this structure come at a cost?

Finn & Levine ICLR ’18
Black-box adaptation

\[y^{ts} = f_{\text{black-box}}(D_i^{tr}, x^{ts}) \]

Optimization-based (MAML)

\[y^{ts} = f_{\text{MAML}}(D_i^{tr}, x^{ts}) \]

Does this structure come at a cost?

For a sufficiently deep network,
MAML function can approximate any function of \(D_i^{tr}, x^{ts} \)

Finn & Levine, ICLR 2018

Assumptions:
- nonzero \(\alpha \)
- loss function gradient does not lose information about the label
- datapoints in \(D_i^{tr} \) are unique

Why is this interesting?
MAML has benefit of inductive bias without losing expressive power.
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- Compare: optimization-based vs. black-box
- **Challenges & solutions**
- Case study of land cover classification (time-permitting)
Optimization-Based Adaptation

Challenges. Bi-level optimization can exhibit instabilities.

Idea: Automatically learn inner vector learning rate, tune outer learning rate
(Li et al. Meta-SGD, Behl et al. AlphaMAML)

Idea: Optimize only a subset of the parameters in the inner loop
(Zhou et al. DEML, Zintgraf et al. CAVIA)

Idea: Decouple inner learning rate, BN statistics per-step
(Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.
(Finn et al. bias transformation, Zintgraf et al. CAVIA)

Takeaway: a range of simple tricks that can help optimization significantly
Optimization-Based Adaptation

Challenges. Backpropagating through many inner gradient steps is compute- & memory-intensive.

Idea: [Crudely] approximate \(\frac{d\phi_i}{d\theta} \) as identity (Finn et al. first-order MAML ‘17, Nichol et al. Reptile ‘18)

Surprisingly works for simple few-shot problems, but (anecdotally) not for more complex meta-learning problems.

Idea: Only optimize the *last layer* of weights.

ridge regression, logistic regression (Bertinetto et al. R2-D2 ’19)

support vector machine (Lee et al. MetaOptNet ’19)

\(\rightarrow \) leads to a closed form or convex optimization on top of meta-learned features

Idea: Derive meta-gradient using the implicit function theorem (Rajeswaran, Finn, Kakade, Levine. Implicit MAML ’19)

\(\rightarrow \) compute full meta-gradient *without differentiating through optimization path*
Optimization-Based Adaptation

Can we compute the meta-gradient \textit{without differentiating through the optimization path}?

\textbf{Idea}: Derive meta-gradient using the implicit function theorem

(Rajeswaran, Finn, Kakade, Levine. Implicit MAML)

\begin{itemize}
 \item Memory and computation trade-offs
 \item Allows for second-order optimizers in inner loop
 \item Also useful for hyper parameter optimization
\end{itemize}

(e.g. Lorraine, Vicol, Duvenaud et al. Optimizing Millions of Hyperparameters by Implicit Differentiation ‘20)
Optimization-Based Adaptation

Challenges. How to choose architecture that is effective for inner gradient step?

Idea: Progressive neural architecture search + MAML
(Kim et al. Auto-Meta)
- finds highly non-standard architecture (deep & narrow)
- different from architectures that work well for standard supervised learning

MinImageNet, 5-way 5-shot
MAML, basic architecture: 63.11%
MAML + AutoMeta: 74.65%
Optimization-Based Adaptation

Key idea: Acquire \(\phi_i \) through optimization.

Takeaways: Construct *bi-level optimization* problem.

+ positive inductive bias at the start of meta-learning
+ tends to extrapolate better via structure of optimization
+ maximally expressive with sufficiently deep network
+ model-agnostic (easy to combine with your favorite architecture)
 - typically requires second-order optimization
 - usually compute and/or memory intensive
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- Compare: *optimization-based* vs. *black-box*
- Challenges & solutions
- **Case study of land cover classification** (time-permitting)

} Part of Homework 2!
Case Study

Meta-Learning for Few-Shot Land Cover Classification

Marc Rußwurm1,*, Sherrie Wang2,3,*, Marco Körner1, and David Lobell2

1Technical University of Munich, Chair of Remote Sensing Technology
2Stanford University, Center on Food Security and the Environment
3Stanford University, Institute for Computational and Mathematical Engineering

CVPR 2020 EarthVision Workshop

Problem: Map land covering from satellite images

Applications in global urban planning, climate change research

Challenges: Labeling data is expensive.
Different regions look different & have different land use proportions
Framing land cover mapping as a meta-learning problem

Different tasks: different regions of the world
Goal: Segment/classify images from a new region with a small amount of data

Croplands from four countries.
Framing land cover mapping as a meta-learning problem

Goal: Segment/classify images from a new region with a small amount of data

SEN12MS dataset (Schmitt et al. 2019)

Geographic meta-data provided

Example 2-way 2-shot classification task
Framing land cover mapping as a meta-learning problem

Goal: Segment/classify images from a new region with a small amount of data

DeepGlobe dataset (Demir et al. 2018)

No geographic metadata, used clustering to guess region
Evaluation

Meta-training data: \{\mathcal{D}_1, \ldots, \mathcal{D}_T\}
Meta-test time: small amount of data from new region: \mathcal{D}^{tr}_j
(meta-test training set / meta-test support set)

Random init: Train from scratch on \mathcal{D}^{tr}_j

Compare:
- Pre-train on meta-training data \mathcal{D}_1 \cup \ldots \cup \mathcal{D}_T, fine-tune on \mathcal{D}^{tr}_j
- MAML on meta-training data \{\mathcal{D}_1, \ldots, \mathcal{D}_T\}, adapt with \mathcal{D}^{tr}_j

SEN12MS dataset
DeepGlobe dataset

More visualizations and analysis in the paper!
Plan for Today

Recap
- Meta-learning problem & black-box meta-learning

Optimization Meta-Learning
- Overall approach
- Compare: optimization-based vs. black-box
- Challenges & solutions
- Case study of land cover classification (time-permitting)

Goals for by the end of lecture:
- Basics of optimization-based meta-learning techniques (& how to implement)
- Trade-offs between black-box and optimization-based meta-learning

} Part of Homework 2!
Roadmap for upcoming lectures

Next week:
- **Monday:** Non-parametric few-shot learners, comparison of approaches
- **Wednesday:** Advanced (but important!) meta-learning topics
- **Following Monday:** Bayesian meta-learning

Week 4: Start of reinforcement learning topics [project proposals due]
Course Reminders

HW1 due next Weds (10/6).

Some project idea suggestions to be posted today.