Lifelong Learning

CS 330
Course Reminders

Optional homework 4 due today.

Project milestone due Wednesday.

Guest lecture on Wednesday!

Hanie Sedghi

Please try to show up in person & on-time.
Plan for Today

The lifelong learning **problem statement**

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from **the meta-learning perspective**
A brief review of problem statements.

Multi-Task Learning
Learn to solve a set of tasks.

Meta-Learning
Given i.i.d. task distribution, learn to learn tasks efficiently.

quickly learn new task
In contrast, many real world settings look like:

Our agents may not be given a large batch of data/tasks right off the bat!

Some examples:
- a **student** learning concepts in school
- a deployed **image classification system** learning from a stream of images from users
- a **robot** acquiring an increasingly large set of skills in different environments
- a **virtual assistant** learning to help different users with different tasks at different points in time
- a **doctor’s assistant** aiding in medical decision-making
Sequential learning settings

online learning, lifelong learning, continual learning, incremental learning, streaming data

distinct from sequence data and sequential decision-making
What is the lifelong learning *problem statement*?

Exercise:

1. Pick an example setting.

2. Discuss problem statement in small groups:

 (a) how would you set-up an experiment to develop & test your algorithm?

 (b) what are desirable/required properties of the algorithm?

 (c) how do you evaluate such a system?

Example settings:

A. **a student** learning concepts in school

B. **a deployed image classification system** learning from a stream of images from users

C. **a robot** acquiring an increasingly large set of skills in different environments

D. **a virtual assistant** learning to help different users with different tasks at different points in time

E. **a doctor’s assistant** aiding in medical decision-making
What is the lifelong learning *problem statement*?

Problem variations:
- **task/data order**: i.i.d. vs. predictable vs. curriculum vs. adversarial
- **discrete** task boundaries vs. **continuous** shifts (vs. both)
- **known** task boundaries/shifts vs. **unknown**

Some considerations:
- model **performance**
- data **efficiency**
- **computational** resources
- **memory**
- others: privacy, interpretability, fairness, test time compute & memory

Substantial variety in problem statement!
What is the lifelong learning \textit{problem statement}?

General [supervised] online learning problem:

for $t = 1, \ldots, n$

observe x_t

predict \hat{y}_t

observe label y_t

\textbf{i.i.d. setting:} $x_t \sim p(x)$, $y_t \sim p(y|x)$

p not a function of t

otherwise: $x_t \sim p_t(x)$, $y_t \sim p_t(y|x)$

\textbf{streaming setting:} cannot store (x_t, y_t)

- lack of memory
- lack of computational resources
- privacy considerations
- want to study neural memory mechanisms

true in some cases, but not in many cases!

- recall: replay buffers
What do you want from your lifelong learning algorithm?

minimal regret (that grows slowly with t)

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

$$\text{Regret}_T := \sum_{1}^{T} \mathcal{L}(\theta_t) - \min_{\theta} \sum_{1}^{T} \mathcal{L}(\theta)$$

(cannot be evaluated in practice, useful for analysis)

Regret that grows linearly in t is trivial. Why?
What do you want from your lifelong learning algorithm?

minimal regret (that grows slowly with \(t \))

\[
\text{regret: cumulative loss of learner} - \text{cumulative loss of best learner in hindsight}
\]

\[
\text{Regret}_T := \sum_{t=1}^{T} \mathcal{L}_t(\theta_t) - \min_{\theta} \sum_{t=1}^{T} \mathcal{L}_t(\theta)
\]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\hat{y}_t)</th>
<th>(y_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>10 30</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>10 29</td>
<td>32</td>
</tr>
</tbody>
</table>
What do you want from your lifelong learning algorithm?

positive & negative transfer

positive forward transfer: previous tasks cause you to do better on future tasks compared to learning future tasks from scratch

positive backward transfer: current tasks cause you to do better on previous tasks compared to learning past tasks from scratch

positive -> negative : better -> worse
Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective
Approaches

Store all the data you’ve seen so far, and train on it. ➞ follow the leader algorithm

 + will achieve very strong performance

 - computation intensive ➞ Continuous fine-tuning can help.

 - can be memory intensive [depends on the application]

Take a gradient step on the datapoint you observe. ➞ stochastic gradient descent

 + computationally cheap

 + requires 0 memory

 - subject to negative backward transfer “forgetting” sometimes referred to as catastrophic forgetting

 - slow learning

Can we do better?
Applying a simple continual learning algorithm to robotics

7 robots collected 580k grasps

86%

49%

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020
Applying a simple continual learning algorithm to robotics

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020
Applying a simple continual learning algorithm to robotics

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020
Applying a simple continual learning algorithm to robotics
Applying a simple continual learning algorithm to robotics

What about backward transfer? Can we do better?

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020
Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective
Case Study: Can we modify vanilla SGD to avoid negative backward transfer? (from scratch)
Idea:
(1) store small amount of data per task in memory
(2) when making updates for new tasks, ensure that they don’t unlearn previous tasks

How do we accomplish (2)?

learning predictor $y_t = f_\theta(x_t, z_t)$ memory: \mathcal{M}_k for task z_k

For $t = 0, ..., T$

minimize $\mathcal{L}(f_\theta(\cdot, z_t) , (x_t, y_t))$

subject to $\mathcal{L}(f_\theta , \mathcal{M}_k) \leq \mathcal{L}(f_{\theta^{-1}} , \mathcal{M}_k)$ for all $k < t$

(i.e. s.t. loss on previous tasks doesn’t get worse)

Assume local linearity:

$\langle g_t, g_k \rangle := \left\langle \frac{\partial \mathcal{L}(f_\theta , (x_t, y_t))}{\partial \theta} , \frac{\partial \mathcal{L}(f_\theta , \mathcal{M}_k)}{\partial \theta} \right\rangle \geq 0$ for all $z_k < z_t$

Can formulate & solve as a QP.

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS ‘17
Experiments

Problems:
- MNIST permutations
- MNIST rotations
- CIFAR-100 (5 new classes/task)

BWT: backward transfer,
FWT: forward transfer

Total memory size: 5012 examples

If we take a step back... do these experimental domains make sense?
Can we meta-learn how to avoid negative backward transfer?

Beaulieu et al. *Learning to Continually Learn*. ‘20
Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective
Formulation of online learning when faced with sequence of tasks

Online Learning
(Hannan ’57, Zinkevich ’03)

Perform sequence of tasks while minimizing static regret.

More realistically:

- **zero-shot performance**
 - Perform sequence of tasks
 - time

- **slow learning**
 - learn
 - time

- **rapid learning**
 - learn
 - time
Online Learning
(Hannan ‘57, Zinkevich ’03)
Perform sequence of tasks while minimizing static regret.

Online Meta-Learning
Efficiently learn a sequence of tasks from a non-stationary distribution.

Primarily a difference in evaluation, rather than the data stream.

(Finn*, Rajeswaran*, Kakade, Levine ICML ’18)
The Online Meta-Learning Setting

for task \(t = 1, \ldots, n \)

- observe \(D_t^{tr} \)
- use update procedure \(\Phi(\theta_t, D_t^{tr}) \) to produce parameters \(\phi_t \)
- observe \(x_t \)
- predict \(\hat{y}_t = f_{\phi_t}(x_t) \)

Goal: Learning algorithm with sub-linear

\[
Regret_T := \sum_{t=1}^{T} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{T} \ell_t(\Phi_t(\theta))
\]

(Finn*, Rajeswaran*, Kakade, Levine ICML ’18)
Can we apply meta-learning in lifelong learning settings?

Recall the **follow the leader** (FTL) algorithm:
- Store all the data you’ve seen so far, and train on it.
- Deploy model on current task.

Follow the meta-leader (FTML) algorithm:
- Store all the data you’ve seen so far, and meta-train on it.
- Run update procedure on the current task.

What meta-learning algorithms are well-suited for FTML?
- What if $p_t(\mathcal{T})$ is non-stationary?
Online meta-learning experiments

Experiment with **sequences of tasks**:
- Colored, rotated, scaled **MNIST**
- **3D object pose prediction**
- **CIFAR-100** classification

Example pose prediction tasks

- plane
- car
- chair
Online meta-learning experiments

Comparisons:
- **TOE** (train on everything): train on all data so far
- **FTL** (follow the leader): train on all data so far, fine-tune on current task
- **From Scratch**: train from scratch on each task

Follow The Meta-Leader learns each new task faster & with greater proficiency, approaches few-shot learning regime
Takeaways

Many flavors of lifelong learning, all under the same name.

Defining the problem statement is often the hardest part

Meta-learning can be viewed as a slice of the lifelong learning problem.

A very open area of research.
Course Reminders

Optional homework 4 due **today**.

Project milestone due **Wednesday**.

Guest lecture on Wednesday!

Hanie Sedghi

Please try to show up in person & on-time.