CS330 Autumn 2022 Homework 1
Data Processing and Black-Box Meta-Learning
Due Wednesday October 12, 11:59 PM PST
SUNet ID:
Name:
Collaborators:

By turning in this assignment, I agree by the Stanford honor code and declare that all
of this is my own work.

Overview

Goals: In this assignment, we will look at meta-learning for few shot classification. You
will:

1. Learn how to process and partition data for meta learning problems, where training
is done over a distribution of training tasks p(7).

2. Implement and train memory augmented neural networks, a black-box meta-learner
that uses a recurrent neural network [1].

3. Analyze the learning performance for different size problems.
4. Experiment with model parameters and explore how they improve performance.

We have provided you with the starter code, which can be downloaded from the course
website. We will be working with Omniglot [2], a dataset with 1623 characters from 50
different languages. Each character has 20 28x28 images. We are interested in training
models for K-shot, N-way classification, i.e. training a classifier to distinguish between N
previously unseen characters, given only K labeled examples of each character.

Submission: To submit your homework, submit one PDF report to Gradescope containing
written answers and Tensorboard graphs (screenshots are fine) to the questions below, as
well as the hwl.py and load_data.py scripts in a single zip file. The PDF should also
include your name and any students you talked to or collaborated with. Any written
responses or plots to the questions below must appear in your PDF submission.

Problem 1: Data Processing for Few-Shot Classification

Before training any models, you must write code to sample batches for training. Fill in the
_sample function in the DataGenerator class. The class already has variables defined for
batch size batch_size (B), number of classes num_classes (/N), and number of samples
per class num_samples_per_class (K + 1). Your code should:

Support Set Query Set
Number of Ways N=3 1mages 0,1,1] images)|0, 2, 2]
fitmc g I\.| 816 1[C
q g £11,0,00 [0,1,0] [0,0,1] [1,0,0] 0,1,0] [0,0,1]) | {[0,0,1] [1,0,0] [0,1,0])
° \Z ,
o] (= 3
clal®
sim¢ 3l =t 9)[¢ 9
[a1)] |(_E ko]
5[100] 0,1,00 0,011 |[1,0,0 [0,1,0 [0,0,1]) | {[0,1,0] [0,0,1] [1,0,0])
Number of S'hots K =2 K+1

Figure 1: Example data batch from the Data Generator. The first K sets of images form the support
setand are passed in the same order. The final set of images forms the query set and must be shuffled.

1. Sample N different characters from either the specified train, test, or validation folder.

2. Load K + 1 images per character and collect the associated labels, using K images
per class for the support set and 1 image per class for the query set.

3. Format the data and return two tensors, one of flattened images with shape [K +
1, N, 784] and one of one-hot labels [K + 1, N, N].

Note that your code only needs to return one single (image, label) tuple. We batch the
inputs using an instance of torch.utils.data.DataLoader, and the final shape input images
is [B, K + 1, N, 784], and that of the input labels is [B, K 4+ 1, N, N|, where B is the batch
size.

Figure 1 illustrates the data organization. In this example, we have: (1) images from
N = 3 different classes; (2) we are provided K = 2 sets of labeled images in the support
set and (3) our batch consists of only two tasks, i.e. B = 2.

1. We will sample both the support and query sets as a single batch, hence one batch ele-
ment should obtain image and label tensors of shapes [K+1, N, 784] and [K+1, N, N]
respectively. In the example of Fig. 1, images[0, 1, 1] would be the image of the
letter “C” in the support set with corresponding class label [0, 1,0] and images [0,
2, 2] would be the the letter “C” in the query set (with the same label).

2. We must shulffle the order of examples in the query set, as otherwise the network
can learn to output the same sequence of classes and achieve 100% accuracy, without
actually learning to recognize the images. If you get 100% accuracy, you likely did
not shuffle the query data correctly. In principle, you should be able to shuffle the
order of data in the support set as well; however, this makes the model optimization

HI
AT A s
iR OB BB

\ J \ y
v g

N K Support data points (class order is fixed) NN Query images (class order is shuffled)

Figure 2: Feed K labeled examples of each of IV classes through the memory-augmented
network. Then feed final set of N examples and optimize to minimize loss.

much harder. You should feed the support set examples in the same, fixed order.
In the example above, the support set examples are always in the same order.

We provide helper functions to (1) take a list of folders and provide paths to image files/labels,
and (2) to take an image file path and return a flattened numpy matrix. The functions
np.random. shuffle and np. eye will also be helpful. Be careful about output shapes and
data types!

Problem 2: Memory Augmented Neural Networks (MANN) [1, 3]

We will now be implementing few-shot classification using memory augmented neural
networks (MANNSs). The main idea of MANN is that the network should learn how to
encode the first K examples of each class into memory such that it can be used to accurately
classify the K + 1th example. See Figure 2 for a graphical representation of this process.
Data processing will be done as in SNAIL [3]. Each set of labels and images are con-
catenated together, and the NV x K support set examples are sequentially passed through
the network as shown in Fig. 2. Then the query example of each class is fed through the
network, concatenated with 0 instead of the true label. The loss is computed between the
query set predictions and the ground truth labels, which is then backpropagated through
the network. Note: The loss is only computed on the set of N query images, which com-
prise of the last examples from each character class.
In the hwi. py file:

1. Fill in the call function of the MANN class to take in image tensor of shape [B, K +
1, N,784] and a label tensor of shape [B, K + 1, N, N] and output labels of shape
[B, K +1,N, N]. The layers to use have already been defined for you in the __init__
function. Hint: Remember to pass zeros, not the ground truth labels for the final N examples.

2. Fill in the function called loss_function in the MANN class which takes as input the
[B,K+1,N,N]labelsand [B, K +1, N, N] predicted labels and computes the cross
entropy loss only on the N test images.

Note: Both of the above functions will need to be backpropogated through, so they need
to be written in PyTorch in a differentiable way.

Problem 3: Analysis

Once you have completed problems 1 and 2, you can train your few shot classification
model. You should observe both the support and query losses go down, and the query
accuracy go up. Now we will examine how the performance varies for different size prob-
lems. Train models for the following values of K and IV:

e K=1,N=2
e K=2,N=2
e K=1,N=3

e K=1,N=4

Example code:
For checking training results and/or taking a screenshot for the writeup, use:

You should start with the case K = 1, N = 2 as it can aid you in the implementation
and debugging process. Your model should be able to achieve a query set accuracy of
above 90% in this first two scenarios scenario on held-out test tasks, around 80% in the
second scenario, and around 70% in the final scenario.

For each configuration, submit a plot of the meta-test query set classification accuracy
over training iterations (A TensorBoard screenshot is fine). Answer the following ques-
tions:

Your plot goes here.

1. How does increasing the number of classes affect learning and performance?
Your answer goes here.

2. How does increasing the number of examples in the support set affect performance?

Your answer goes here.

https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy
https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy

Problem 4: Experimentation

a Experiment with one hyperparameter that affects the performance of the model,
such as the type of recurrent layer, size of hidden state, learning rate, or number of
layers. Submit a plot that shows how the meta-test query set classification accuracy
of the model changes on 1-shot, 3-way classification as you change the parameter.
Provide a brief rationale for why you chose the parameter and what you observed
in the caption for the plot.

Your plot and answer goes here.
b Extra Credit: In this question we’ll explore the effect of memory representation on
model performance. We will focus on the K =1, N = 3 case.

In the previous experiments we used an LSTM model with 128 units. Consider addi-
tional memory sizes of 256, and 8. How does increasing and decreasing the memory
capacity influence performance?

Your plot and answer goes here.

References

[1] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lil-
licrap. Meta-learning with memory-augmented neural networks. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1842-1850, New York, New York, USA, 20-22 Jun 2016. PMLR.

[2] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):1332—
1338, 2015.

[3] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-learning with
temporal convolutions. CoRR, abs/1707.03141, 2017.

