Frontiers and Open Challenges
CS330



Logistics

Poster session on Weds Final project report
Details on Ed. Due next Monday.

This is our last lecture!

From high-resolution feedback

T you are remote & need TA mentor input, email them to
set-up a zoom meeting.

Will briefly discuss the connection between topics/lectures




Plan for Today

Meta reinforcement learning

The meta-RL problem set-up

Black-box meta-

L

Meta-learning efficient exploration

Open challenges

Other frontiers of research
How to develop generalists?



A formalization of behavior
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Observe state s,
<r Take action a, (e.g. by sampling from policy my( - | S,))

Observe nextstate S, sampled from unknown world dynamics p( - | s,, a,)

Result: a trgjectory Sy, a4, ...,Sy.  also called a policy roll-out



Reinforcement learning is reward maximization

action space dynamics
A reinforcement T A (S ngl[ (s). i ,‘l ) r(s.2)) Meta-reinforcement learning
. . = LA p(S), p(s’]|s,a), r(s,a | |
learning task: ’ Tl ’ plTl Pi ’ T = meta-learning with RL tasks
lan MDP) state initial state reward

space distribution

Rewards r(S, a): tell us which states & actions are better

e Nigh reward

Goal of RL: max [ Z r(s, a,)

A T~y
0
(spa,)ET

A 0w reward

Actions affect future states (& thus future rewards)
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Examples of meta-reinforcement learning problems

Locomotion on different terrains, slopes

avigation through different mazes
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Dialog with different users w/ different

Test tasks

Object manipulation with different objects, goals
preferences

4. unstack 5. turn off faucet 6. push back

Train tasks
7. pull lever 8. turn dial 9. push with stick Hikiopeiibiox

2. sweep 3. stack

1. wrn on faucet
14. sweep into 15. disassemble nut 16. place onto T pushmug 18. press handle
shelf side

47. close box

13. pull with stick hole

o seatbmiad 12. basketball

10. get coffee side
. retri |
24. pull handle 25. soccer < rEt::j\;e PRIE 27, retrieve plate

48. lock door

22. press button 23, press handle

19. hammer 20. slide plate  21. slide plate side wall
28. close drawer 2% peess bulton 30. reach 31. press bution topw/ 32. reach with wall  33. insert peg side 34. push 35. push with wall S6picc & plop.y
top vaall wall 49. unlock door
43. 44. ¢l 45,
3. open door close door 5. open drawer 50. pick bin

40. unplug peg 41. close window  42. open window

37. press button 38. pick & place 39. pull mug



Recall: The Meta-Learning Problem

Supervised Learning:

Inputs: X Outputs: Y Data: {(X, Y)z}
N A
Y = go(X)
Meta Supervised Learning:
Inputs: Dtr th Outputs: ytS Data: {Dz}
—
{(X,¥)1:K \ fe(D“‘/tS' Di: 1% ¥)i)

Why is this view useful?
Reduces the meta-learning problem to the design & optimization of f.

Finn. Learning to Learn with Gradients. PhD Thesis. 2018



he Meta Reinforcement Learning Problem

Reinforcement Learning:
Inputs: X'

a; = m(s¢;0)
Meta Reinforcement Learning:

Inputs Dtr S¢ Outputs: At Data: {Dz}
\ / dataset of datasets
K rollouts ﬂom n = fo (Dtr, St) collected for each task

Design & optimization of f *and* collecting appropriate data

(learning to explore)
Finn. Learning to Learn with Gradients. PhD Thesis. 2018



Imetal test time

Meta-RL Example: Maze Navigation

Given a small amount of experience Learn to solve the task

Dtrain St — at

A\ We need to figure out how to
collect this experience too!

9 diagram adapted from Duan et al. ‘17



Imetal train time

Imeta] test time

Meta-RL Example: Maze Navigation

By learning how to learn many other tasks:

T |

Given a small amount of experience

7 5

Dtrain

10

meta-training
tasks

L earn to solve the task

St —> At

diagram adapted from Duan et al. ‘17



How to extend black-box meta-learning to meta-RL?

Policy with memory
(LSTM, Transformer, Conv, ...)

A A9 a3 dr aq A9

L T

L _
T ] T

S1 So S3 S1 S92

Train across tasks: 7. = {S,, &, pi(s,), p/(s’| s, a), r(s, a)}

Question: What is one change to make this suitable for meta-learning?
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How to extend black-box meta-learning to meta-RL?

Policy with memory
(LSTM, Transformer, Conv, ...)

o N A9 a3 dr aq A9

I S By _
T 1 T T ]

S1 So S3 S1 S92

Train across tasks: 7. = (S, o, pi(s,), p/(s’| s, a), r{(s, )}

Question: What is one change to make this suitable for meta-learning?

Pass in reward as input  Maintain hidden state across episodes within a task!
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Black-Box Meta-RL: Overview

Black-box network
(LSTM, Transformer, Conv, .. .) T | T i_, T i_. —>_I—
a; = fo(D",s¢) ‘ |
S1,0 S2, 71 S3, 72 St, 't—1

R/_'J query set

Dtr training/support set
gets larger over time

Question: Why dont we need to pass in the actions a,_; with the support set?
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Black-Box Meta-RL: Algorithm

a1 ao aq Ao : aj

- B BN

et s s e

s1,0 So., T ST, T -1 s1,0 S92, 71 ST, T'T—1 : S1, 0
Episode 1 Episode 2

1. Sample task T,
, 1 , (under dynamics p(s’|s, a)
2. Roll-out policy #(a|s, ") for N episodes
l and reward r(s, a))

3. Store sequence in replay buffer for task & ..

4. Update policy to maximize discounted return for all tasks.
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Black-Box Meta-RL: Algorithm

Meta-Training
1. Sample task I

der d ics ps'] s,
2. Roll-out policy n(a|s, D) for N episodes (under dynamics p(s’|s,a)
| and reward r(s,a))

3. Store sequence in replay buffer for task & ..

4. Update policy to maximize discounted return for all tasks.

Meta-Test Time

1. Sample new task J;

2. Roll-out policy z(a|s, @}:r) for up to N episodes

15



Meta-RL Example
From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. ICLR 2018

Experiment: Learning to visually navigate a maze
- train on 1000 small mazes
- test on held-out small mazes and large mazes

10



Meta-RL Example
From: Mishra, Rohaninejad, Chen, Abbeel. A Simple Neural Attentive Meta-Learner. |ICLR 2018

Experiment: Learning to visually navigate a maze
- train on 1000 small mazes
- test on held-out small mazes and large mazes

Method Small Maze Large Maze
Episode 1 Episode 2 Episode 1 Episode 2

Random 188.6 3.5 187.7x3.5 | 4202 +1.2 420.8 = 1.2
LSTM 524+13 39109 | 180.1 =6.0 150.6 5.9
SNAIL (OllI‘S) 50.3 = 0.3 34.8 + 0.2 140.5 = 4.2 105.9 + 2.4

Table 5: Average time to find the goal on each episode

17



Plan for Today

Meta reinforcement learning

Meta-learning efficient exploration



How Do We Learn to Explore?

Solution #1: Optimize for Exploration &
Exploitation End-to-End w.r.t. Reward

(Duan et al, 2016, Wang et al,, 2016, Mishra et al,, 2017, Stadie et
al., 2018, Zintgraf et al., 2019, Kamienny et al., 2020)

simple
+ leads to optimal strategy
N principle

- challenging optimization
when exploration is hara




A simple, running example

Hallway 1 lallway 2 lallway N

B | agent , o
| information on Different tasks: navigating to

where to go the ends of different hallways




How Do We Learn to Explore?

Solution #1: Optimize for Exploration & . . o
Exploitation End-to-End w.r.t. Task Reward i e I o, I o, B I -
(Duan et al, 2016, Wang et al., 2016, Mishra et al,, 2017, Stadie et Slo s2,Tr1 ST,LT_I 510 s2,Tr1 ST,[“T_1 Slo
al., 2018, Zintgraf et al.,, 2019, Kamienny et al., 2020) L — J — J
Episode 1 Episode 2

Example episodes during meta-training:
- gets positive reward for current task,

agent goes to the end of the correct hallway but S’Z}r won't be different than for any other task

+/- provides signal on a suboptimal

agent goes to wrong hallway then correct hallway exploration + exploitation strategy

agent looks at the instructions - good exploratory behavior, but won't
get any reward for this behavior

It's hard to learn exploration & exploitation at the same time!



Why is End-to-End Training Hard in This Example?

End-to-end approach: optimize exploration and execution episode behaviors end-to-end to
maximize reward of execution

Ingredient not found Cannot learn to cook
/\A (bad exploration) " (bad execution)
—_
‘K/ 1{
Learning to cook Learning to find ingredients Cannot cook Low reward for any
(execution) (exploration) (bad execution) - exploration

Coupling problem: learning exploration and execution depend on each other

—> can lead to poor local optima, poor sample efficiency

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021



Solution #2

ldea 2.0:  Label each training task with a unique 1D u

Exploration policy: train policy 7°*“P(a|s) and task identification model g(x | Dir)

Meta
training such that D, ~ n°%P allows accurate task prediction from f
Execution policy: train ID-conditioned policy z°*““(a s, u.)
Meta - €XP 7 . €XeC A
testing Explore: D¢, ~ (a|s) Infertask: i ~ g(u|2yy) Perform task: 77 (als, /i)

+ decoupled exploration and exploitation

— may not generalize well for one-hot u



Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information 2) Learn to explore by recovering that i,

\y /

Information recovery reward

MI(z; 7)

[

| information -
- [

MDP identifier p Bottlenecked  Execution | Eyploration
representation policy | policy  Exploration episode T
wall color | 2 | /—\

ingredients . CXCC :
decorations | ] [
|

&

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021



Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information 2) Learn to explore by recovering that &,

I
I information -
: I
MDP identifier p Bottlenecked  Execution | Eyploration
representation policy | policy  Exploration episode T
wall color | 2 | /—\
ingredients | () @ > grORCC : er v
decorations | 1 | Information recovery reward
> ! MI(z; 7)
Train z°%%“(a|s, z;) and encoder F(z;| u,) to: Train z°*P such that collected P4, is predictive of z..

max Y Erexec[rs] — Dxr (F(2i]p:)[|V(0,1))

In practice: (1) and (2) can be trained simultaneously.

Liu, Raghunathan, Liang, Finn. Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices. ICML 2021



Example application: finding bugs & providing feedback in student programs

Bounce programming assignment Breakout assignment
(Code.org) (CST06A)

el: 1100001 001021011]
Binaxy label: when&oal-noBallLaunch - £ ! ! ! ! 1 1
Action: Nome . 5 ' ' ' ' | ! |

Time-consuming for instructors/TAs to give feedback, grades.
Use meta-RL to learn exploration!



Experiments: Learned Exploration Behavior on Bounce

Undexlying env ID: 2732

axy label: whenwall-illegal-moveRight
Action: None

Exploxation xewaxrd: 0.079

What happens when... the ball hits the wall?



Experiments: Al-Assisted Grading in CS106A (Spring 2023)

Leads to 44% faster & 6% more accurate grading.
anon_student_20

® Assignment: Breakout

? Help = Menu / Save Grade

paddle drawing 7 Grading Scheme Human Grading Time Grading Accuracy

Ball drawing wa o~ T — e T Manual 8 min 35s + 6 min 47s  86.4% + 8.9%
Autograder with human 4 min49s + 2 min5s 92.3% + 7.6%

Constants Y EEEEEEEEEE Autograder only — 90.1% £ 11.0%

Wall bouncing 33+ v [ ) e— e Y s .

Paddle bouncing 22 ¢ v

on - v Stanford TAs like using it.

New life 0/4 * v

Likert Scale (Strongly Disagree = 1, Disagree = 2, Neutral = 3, Agree = 4, Strongly Agree = 5)

Brick collision Statement Avg. Score
Ball correctly bounces when hitting a brick (2 @ Using the autograder is easier than manually grading. 4.5
Brick i d when ball hits brick (3) () (4 . . .
J Using the autograder is faster than manually grading. 4.5
Losing 33 o v I Using the autograder is more accurate than manually grading. 3.9
The autograder’s grades were useful to me. 4.4
Total Score I Code  Demo I enjoyed using the autograder. 4.6

Net Promoter Score (0 - 10 inclusive)

Autogra d er p re po p u lates ru b riC & ShOWS Vid e0Ss. How much would you recommend using the autograder over 9.0

manually grading in the future?




How Do We Learn to Explore?

End-to-End Decoupled Exploration & Execution
eads to optimal strategy in + leads to optimal strategy in
orinciple orinciple

+ easy to optimize In practice

- challenging optimization when -~ requires task identifier

exploration is hard



Plan for Today

Meta reinforcement learning

The meta-RL problem set-up

Black-box meta-

L

Meta-learning efficient exploration

Open challenges

Other frontiers of research

How to develop more generalists?



Putting Some of the Pieces Together

Mu

lti-Task Learning

Learning many tasks in one model

Transfer Learning
Only care about one target task

Meta Learning

Transfer from
Optimize

multiple tasks to a new one

‘or transfer to new tasks

Lifelong Learning
Apply these ideas to a sequence of tasks

31

Supervised tasks:

Vary in terms of p(x), p(y

X), L

Domains (special case)
Vary only in terms of p(x)

RL tasks:

Vary in terms of S, A, p(s’

s,a), r(s,a)



Putting Some of the Pieces Together

Meta Learning
Transfer from multiple tasks to a new one
Optimize for transfer to new tasks

Black-box Non-parametric / metric-based Optimization-based

/ Unsupervised pre-training

Next-token prediction

w/ transformers

(If the data requires it) Contrastive learning

32



Open Challenges in Multi-Task and Meta Learning

(that we haven't previously covered)



Open Challenges in Multi-Task and Meta Learning

Improving scalability

- How best to use meta-learning algorithms in conjunction with foundation models?

34



Can we combine meta-learning with modern foundation models?

Some models are already a form of black-box meta-learning (enables in-context learning)

Can we improve the adaptability of foundation models?

Enable LLM editing

Improve in-context learning o . o
x, = “Who is the prime y, = “Boris Johnson x, = “"Who is the
minister of the UK?” v UK PM?”
! v, [ MEND | 7 }
Instruction: “Is the comment positive?” Pre-trained model (p,)) p-1x) |Vl | §§ . @W [ Edited model (p_g,) | Poc (- 1x)
x1: “Good movie!” y1: “yes” O o o | N %% . | O o
x2: “Bad movie!” y2: “no” % 8 O~ .l* CEE e % 8 8 . I _
L O°| - | a2 |- OO e
struction P [y e v RS | | N |
0.— 0_A Mitchell, Lin, Bosselut, Finn, Manning. ICLR ‘22 Tan, Zhang, Fu. ‘23
Few-shot Adaptation via Meta-Update via ols L e .
In-context Learning Gradient Descent M ore efrective nne _t unin g

Downstream Task

LD CC Unsupervised Online Adaptation :
Evaluation (es.oa

Chenl ZhOng/ Zha/ Ka rypiS’ He' ACL (22 Pre-training 222222222 - President Financial markets are A Japanese company

Volodomyr Zelensky of still betting that ispace lost contact with

Ukraine received vows Congress and the White its spacecraft moments
ooooooooooooooooooooo

Hu, Mitchell, Manning, Finn. EMINLP ‘23



Open Challenges in Multi-Task and Meta Learning

Improving scalability

- How best to use meta-learning algorithms in conjunction with foundation models?
- Can we make large-scale bi-level optimization more practical?

DN

Addressing problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions

36



The challenge of long-tailed distributions.

big data

|
|
|
|
1
1
1
\
\
|
|
|
‘

# of datapoints

/ Few-shot generalization to the tail:
prototypical clustering networks for dermatological
—— diseases (Prabhu et al. 2018)
objects encountered - adaptive risk minimization (Zhang et al. 2021)
interactions with people
words hearo Further hints might come from domain

driving scenarios , _
: adaptation, robustness literature.

We learned how to do few-shot learning

..but these few-shot tasks may be from
a

37



Open Challenges in Multi-Task and Meta Learning

Improving scalability

- How best to use meta-learning algorithms in conjunction with foundation models?
- Can we make large-scale bi-level optimization more practical?

DN

Addressing problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?

38



Rich sources of prior experiences.

visual imagery tactile feedback language

social cues

Can we learn priors across multiple data modalities?

Varying dimensionalities, units

Carry different, complementary forms of information

Some hints might come from some recent works.

Liang et al. Cross-Modal Generalization: Learning in Low Resource Modalities via Meta-Alignment. MM 2021.

Reed, Zolna, Parisotto et al. Gato: A Generalist Agent. TMLR 2022

Alayrac, Donahue, Luc, Miech et al. Flamingo: a Visual Language Model for Few-Shot Lear
OpenAl. GPT-4V(ision) System Card. 2023.

But these are mostly
vision+language!

39




Open Challenges in Multi-Task and Meta Learning

Improving scalability

- How best to use meta-learning algorithms in conjunction with foundation models?
- Can we make large-scale bi-level optimization more practical?

DN

Addressing problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?
- Algorithm, Model Selection: When will multi-task learning help you?

Developing generalists

40
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machine translation DQON

Many machines are
specialists.
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Some generalist models

In language, vision domains

ChatGPT

Flamingo

((® Output: text

Humans are generalists.

".v\

Source: https://voutu.be/8vNxiwt2AgY 42



https://youtu.be/8vNxjwt2AqY

How do we build other generalists, extend existing ones?

e.g. generalist robot; generalist web agent; extending GPT to handle video; ...

Some of what we - learn multiple tasks in a single model (multi-task learning)

covered in C5330: . leverage prior experience when learning new things (pre-training,
meta-learning)

leveraging unlabeled prior data (contrastive, generative pre-training)

leveraging data from different domains (domain adaptation &
generalization)

learn continuously (lifelong learning)

What's missing?
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Open Challenges in Multi-Task and Meta Learning

Improving scalability

- How best to use meta-learning algorithms in conjunction with foundation models?
- Can we make large-scale bi-level optimization more practical?

DN

Addressing problem assumptions

- Generalization: Out-of-distribution tasks, long-tailed task distributions
- Multimodality: Can you learn priors from multiple modalities of data?
- Algorithm, Model Selection: When will multi-task learning help you?

Developing generalists

- Can we build generalists in domains beyond language? (e.qg. robotics, web nav, scientists)
- What is needed to extend the capabilities of existing generalist models?

+ the challenges you discovered in your homework & final projects!
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Logistics

Poster session on Weds Final project report
Details on Ed. Due next Monday.

This is our last lecture!

Thank you all for a great quarter!
(and see you at the poster session on Weds!)
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