Reinforcement Learning as Sequence Modeling

Presenter: Igor Mordatch

Reinforcement Learning as Sequence Modeling

- Transformer-based architectures & large-scale pre-training (GPT/BERT/T5/etc)
- A lot of research, compute, and infrastructure investment
- How can we get the most out of this investment?

Reinforcement Learning as Sequence Modeling

- Not just using transformer network for policy/value, but replace RL algorithms with sequence modeling
- Drastic problem reduction, but how far can it take us?

Decision Transformer: Reinforcement Learning via Sequence Modeling

Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas*, Igor Mordatch*

 $\cdots \quad \widehat{\mathbb{R}}_{t-1} \, \, \widehat{\mathbb{S}}_{t-1} \, \, \widehat{\mathbb{Q}}_{t-1} \, \, \widehat{\mathbb{R}}_t \quad \widehat{\mathbb{S}}_t \quad \widehat{\mathbb{Q}}_t \quad \cdots$

 $R_t = \sum_{t'=t}^{T} r_{t'}$ (incorporates hindsight information)

[Representation learning with reward prediction errors, Alexander and Gershman, 2021]
[On The Effect of Auxiliary Tasks on Representation Dynamics, Lyle et al, 2021]

At deployment step t:

condition on target return/optimality

[Probabilistic Inference and Influence Diagrams, Shachter, 1988]
[Robot Trajectory Optimization using Approximate Inference, Toussaint, 2009]
[Optimal control as a graphical model inference problem, Kappen et al, 2012]
[Reinforcement Learning Upside Down, Schmidhuber, 2019]

Future reward prediction

Attention to past events

Game	DT (Ours)	CQL	QR-DQN	REM	BC
Breakout	267.5 ± 97.5	211.1	21.1	32.1	138.9 ± 61.7
Qbert	25.1 ± 18.1	104.2	1.7	1.4	17.3 ± 14.7
Pong	106.1 ± 8.1	111.9	20.0	39.1	85.2 ± 20.0
Seaquest	$\textbf{2.4} \pm \textbf{0.7}$	1.7	1.4	1.0	2.1 ± 0.3

Dataset	Environment	DT (Ours)	CQL	BEAR	BRAC-v	AWR	BC
Medium-Expert	HalfCheetah	86.8 ± 1.3	62.4	53.4	41.9	52.7	59.9
Medium-Expert	Hopper	107.6 ± 1.8	111.0	96.3	0.8	27.1	79.6
Medium-Expert	Walker	$\textbf{108.1} \pm \textbf{0.2}$	98.7	40.1	81.6	53.8	36.6
Medium-Expert	Reacher	89.1 ± 1.3	30.6	-	-	-	73.3
Medium	HalfCheetah	42.6 ± 0.1	44.4	41.7	46.3	37.4	43.1
Medium	Hopper	$\textbf{67.6} \pm \textbf{1.0}$	58.0	52.1	31.1	35.9	63.9
Medium	Walker	74.0 ± 1.4	79.2	59.1	81.1	17.4	77.3
Medium	Reacher	$\textbf{51.2} \pm \textbf{3.4}$	26.0	-	-	=	48.9
Medium-Replay	HalfCheetah	36.6 ± 0.8	46.2	38.6	47.7	40.3	4.3
Medium-Replay	Hopper	82.7 ± 7.0	48.6	33.7	0.6	28.4	27.6
Medium-Replay	Walker	66.6 ± 3.0	26.7	19.2	0.9	15.5	36.9
Medium-Replay	Reacher	18.0 ± 2.4	19.0	-	-	-	5.4
		74.7	63.9	48.2	36.9	34.3	46.4
		69.2	54.2	-	5 <u>+</u> 5	_	47.7

How well does it model the distribution of returns?

- How well does it model the distribution of returns?
- What is the benefit of using a longer context length?

Game DT (Ours)		DT with no context $(K=1)$		
Breakout	$\textbf{267.5} \pm \textbf{97.5}$	73.9 ± 10		
Qbert	$\textbf{25.1} \pm \textbf{18.1}$	13.7 ± 6.5		
Pong	$\textbf{106.1} \pm \textbf{8.1}$	2.5 ± 0.2		
Seaquest	$\textbf{2.4} \pm \textbf{0.7}$	0.5 ± 0.0		

- How well does it model the distribution of returns?
- What is the benefit of using a longer context length?
- Does it perform effective long-term credit assignment?

Dataset	DT (Ours)	CQL	BC	%BC	Random
1K Random Trajectories 10K Random Trajectories	71.8% 94.6%	13.1% 13.3%	1.4% $1.6%$	69.9% 95 .1%	$3.1\% \\ 3.1\%$

- How well does it model the distribution of returns?
- What is the benefit of using a longer context length?
- Does it perform effective long-term credit assignment?
- Does it perform well in sparse reward settings?

		Delayed (Sparse)		Agnostic		Original (Dense)	
Dataset	Environment	DT (Ours)	CQL	BC	%BC	DT (Ours)	CQL
Medium-Expert	Hopper	$\textbf{107.3} \pm \textbf{3.5}$	9.0	59.9	102.6	107.6	111.0
Medium	Hopper	60.7 ± 4.5	5.2	63.9	65.9	67.6	58.0
Medium-Replay	Hopper	$\textbf{78.5} \pm \textbf{3.7}$	2.0	27.6	70.6	82.7	48.6

Reinforcement Learning as Sequence Modeling

- Did not introduce new algorithms or models
- Analysis and problem reduction to whittle down the space of methods
- Build on our community's efforts more effectively

Links

arXiv: arxiv.org/abs/2106.01345

Github: github.com/kzl/decision-transformer